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Cronobacter species are emerging opportunistic food-borne pathogens, which consists
of seven species, including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C.
dublinensis, C. universalis, and C. condimenti. The organism can cause severe clinical
infections, including necrotizing enterocolitis, septicemia, and meningitis, predominately
among neonates <4weeks of age. Cronobacter species can be isolated from various
foods and their surrounding environments; however, powdered infant formula (PIF) is
the most frequently implicated food source linked with Cronobacter infection. This
review aims to provide a summary of laboratory-based strategies that can be used
to identify and trace Cronobacter species. The identification of Cronobacter species
using conventional culture method and immuno-based detection protocols were first
presented. The molecular detection and identification at genus-, and species-level
along with molecular-based serogroup approaches are also described, followed by the
molecular sub-typing methods, in particular pulsed-field gel electrophoresis and multi-
locus sequence typing. Next generation sequence approaches, including whole genome
sequencing, DNA microarray, and high-throughput whole-transcriptome sequencing, are
also highlighted. Appropriate application of these strategies would contribute to reduce
the risk of Cronobacter contamination in PIF and production environments, thereby
improving food safety and protecting public health.

Keywords: Cronobacter species, molecular identification, whole genome sequencing, DNA microarray, high-
throughput whole-transcriptome sequencing

Introduction

Cronobacter species (formerly known as Enterobacter sakazakii) are opportunistic pathogens of
the family Enterobacteriaceae, which have been documented in life-threatening infections pre-
dominantly in neonates of <4weeks of age (1). The mortality rate of Cronobacter infections
ranges from 40 to 80%, and includes the clinical syndromes of necrotizing enterocolitis (NEC),
bacteremia, and meningitis (2, 3). This bacterium has been isolated from a range of food
sources including dairy-based products, dried foods such as herbal tea, flour, nuts, adult and
infant cereals, herbs and spices, dried meats, rice, and others (4–6). Additionally, Cronobacter
species have also been cultured from a variety of different sources and environments based on
surveillance studies, including from common house flies, households, livestock facilities, and food
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manufacturing operations, in particular powdered infant for-
mula (PIF) production facilities (7–10). Contaminated PIF has
been epidemiologically linked with many of the infections
reported (1, 2). The capacity to detect and identify Cronobac-
ter species, differentiating them from other members of the
Enterobacteriaceae, would contribute positively toward a reduc-
tion in the health risks to vulnerable individuals. This review
summarizes the laboratory-based approaches that can be used
to detect, and trace this pathogen of importance to neonatal
health.

Conventional Culture Strategies

The conventional culture method for the identification of
Cronobacter species was first reported by Muytjens et al. (11).
The International Organization for Standardization (ISO) and
International Dairy Federation (IDF) published a technical stan-
dard protocol, known as ISO/TS 22964, for the detection of
Cronobacter species from milk-based powdered formula.1 The
US Food and Drug Administration (US-FDA) later established
both a culture method for the detection/isolation of Cronobacter
spp. and a real-time PCR method for rapid screening (12). The
procedures and flowchart for the sample preparation, isolation,
confirmation, and identification of Cronobacter species have been
described in detail.2 Both ISO/TS 22964 and US-FDA method are
currently accepted as reference methods for the identification of
Cronobacter species.

Immuno-Based Detection Protocols

Efforts on immuno-based protocols have been made both
commercially and within the laboratories. The enzyme-linked
immunosorbent assay (ELISA) technology has been applied in
the VITEK immuno diagnostic assay system (known as VIDAS,
bioMérieux, France) for the detection of several organisms using
kits, including Salmonella, Escherichia coli O157:H7, Listeria
species, Campylobacter jejuni, and Staphylococcus species entero-
toxins. The kits for Cronobacter species have been developed and
early stage tests showed promising results (13).

1http://www.iso.org/iso/catalogue_detail.htm?csnumber=41258
2http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/
ucm289378.htm

Meanwhile, several antibody targets, such as IgG, IgY, and
outer membrane protein A (OmpA), were used for the immuno
detection of Cronobacter species (14–17). Hochel and Škvor (14)
developed an indirect competitive enzyme immunoassay for the
detection of Cronobacter species using polyclonal antibodies. The
surface antigenic determinants inCronobacter species usingmon-
oclonal antibodies (MAbs) and MALDI-TOF Mass spectrometry
were also investigated (15). A sandwich ELISA was undertaken
to detect C. muytjensii in PIF (16). Recently, two rapid analytical
methods, including a pAb-based indirect ELISA and a sandwich
ELISA using pAb and mAb, were established for the detection of
Cronobacter species in PIF (18).

Molecular Detection and Identification

Molecular detection techniques have always been regarded as
useful tools to extend our understanding of the epidemiology of
a bacterium of importance to human health. These protocols are
usually designed to target unique genes contained on the genome
of the pathogen of interest. ForCronobacter species, themolecular
detection and identification targets are designed at various levels,
including the genus-, species-, and serotype-levels, respectively as
described in Figure 1.

Genus Detection
Cronobacter species were originally known as yellow-pigmented
Enterobacter cloacae, being reclassified subsequently as Enter-
obacter sakazakii based on deoxyribonucleic acid (DNA)–DNA
hybridization, biochemical reactions, pigment production, and
antibiotic susceptibility (19). The phylogenetic relationships of
Cronobacter species to that of othermembers of the Enterobacteri-
aceaewere investigated for 126 isolates using partial 16S ribosomal
DNA (rDNA) and hsp60 sequencing. These data identified four
clusters within the genus and indicated substantial taxonomic het-
erogeneity (20). Further investigation using amplified fragment
length polymorphism (f-AFLP) analysis, full-length 16S rDNA
gene sequencing, DNA–DNA hybridization, in combination with
phenotypic profiling, provided the grounds to consider the re-
designation of E. sakazakii as a new bacterial genus. This was
designated as Cronobacter species (21, 22).

A real-time PCR protocol, using a TaqMan-based design, was
subsequently developed to aid in the detection of this genus. This
method was originally described by Seo and Brackett (23). This

FIGURE 1 | A flowchart describes the molecular detection and identification of Cronobacter species at genus, species, and serotype levels.
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approach focused on part of themacromolecular synthesis (MMS)
operon (including the dnaG gene at 5′ end and the rpsU gene
at 3′-end) to amplify a target sequence of 78 bp. Other strategies
targeted different geneswithin the bacterium including 16S rRNA,
ompA, and others (23–29). The 16S rRNA gene was later selected
in a number of studies for the rapid detection of Cronobacter
species using TaqMan (24, 27). Recently, the ompA gene has
also been used as a target for the specific detection and rapid
identification of Cronobacter species in PIF (28, 29). Both Taq-
Man and SYBR green assays were reported to be highly specific,
sensitive, and efficient methods for the detection of Cronobacter
species in infant formula-based matrices using suitable primers
(25, 26).

Several commercial real-time PCR based protocols were made
available, and which include the BAX® System PCR Assay E.
sakazakii (DuPont, Qualicon, Wilmington, DE, USA), the Assur-
ance GDSTM E. sakazakii (BioControl, Bellvue, CO, USA), and
the foodproof® E. sakazakii Detection Kit (Biotecon Diagnostics,
Potsdam, Germany) (30). In comparisons with the conventional
ISO and US-FDA methods, these rapid detection systems reduce
the time to detect Cronobacter species and therefore would facili-
tate a positive release strategy for finish products.

Species Identification
Originally six Cronobacter species were defined on the basis of f-
AFLP fingerprints, ribotype patterns, full-length 16S rRNA gene
sequencing, and DNA–DNA hybridization studies (21). These
species included C. sakazakii, C. malonaticus, C. turicensis, C.
muytjensii, C. dublinensis, and C. genomospecies 1. A new species
(C. condimenti) was subsequently identified and in addition C.
universalis now replaces the original C. genomospecies 1 (31).
Interestingly, it was proposed that three Enterobacter species,
namely E. pulveris, E. helveticus, and E. turicensis, should be
included in the genus Cronobacter, being designated as C. pul-
veris, C. helveticus, and C. zurichensis, respectively (32). This
reclassification was based on a multi-locus sequence analysis
(MLSA) scheme, using the concatenated nucleotide sequences of
gyrB, rpoB, infB, and atpD genes to generate a phylogenetic tree,
without any further phenotypic characterizations (32). All three

species were originally isolated and characterized as Enterobac-
ter species (33, 34) but excluded from the Cronobacter species
classification due to their obvious phenotypic characteristics (35).
More recently, the whole genome sequence (WGS) of these three
isolates (36–38), along with a detailed re-examination of their
taxonomic status, was reported (39). These data confirmed their
exclusion from the genus Cronobacter and furthermore provided
the evidence necessary to re-classify them as two new bacterial
genera, designated as Siccibater and Franconibacter, respectively
(39). Nonetheless, these studies demonstrate the considerable
diversitywith respect to both geno- andphenotypic characteristics
among Cronobacter species and its close taxonomic neighbors, as
well as the complexity and challenges, now confronting bacterial
taxonomists.

PCR assays targeting species-specific SNPs associated with
genes including rpoB (40, 41) and cgcA (42) have been developed
to facilitate the detection of all seven recognized species within
the Cronobacter genus. Figure 2 showed the applications of these
molecular-based protocols for the identification of Cronobacter
species using primers targeting the rpoB gene. Interestingly, using
this rpoB protocol, C. malonaticus and C. sakazakii could not be
differentiated and required a second PCR reaction to accurately
identify each of these species. A multiplex PCR assay targeting the
cgcA gene was developed to differentiate species within the genus
Cronobacter and this protocol was found to be 100% specific and
sensitive (42). Its advantage over the rpoB method is the ability
to directly identity C. sakazakii and C. malonaticus in a single
reaction. However, the recently described C. condimenti cannot
be identified using the cgcA method (42).

Other biomarkers, in particular virulence genes, also have
potential to be used as targets for species identification. Yan et al.
(43) designed a PCR and array-based biomarker verification strat-
egy for the detection and identification of Cronobacter species.
This strategy was being proposed to facilitate the elucidation of
virulence genes, which may be helpful as biomarkers for differ-
entiating Cronobacter species from other food-borne pathogens.
However, these putative markers are yet to be validated before
their adoption.

FIGURE 2 | A 1.0% agarose gel, showing rpoB amplicons, used to
identify seven species of the genus (40, 41). Lane 1, C. sakazakii ATCC®

BAA-894; Lane 2, C. malonaticus E615 (PCR amplification using rpoB C.
sakazakii primer pair); Lane 3, C. malonaticus E615 (a second PCR

amplification using rpoB C. malonaticus primer pair); Lane 4, C. muytjensii
ATCC® 51329; Lane 5, C. dublinensis E187; Lane 6, C. turicensis E694;
Lane 7, C. universalis E680; Lane 8, C. condimenti 1330; and Lane M,
100bp DNA ladder.
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Serotype Identification
The O-antigen is a component of the lipopolysaccharide (LPS)
structure located on the outer surface of gram-negative bacte-
ria, and is responsible for serological diversity. A molecular-
based strategy to identify O-serotype associated with Cronobacter
species was described previously (44–48). Mullane et al. (44) ini-
tially developed amolecular serotypingmethod, which included a
long-range PCR amplification of the rfb-encoding locus (inGram-
negative enteric bacteria located between galF and gnd genes),
followed by restriction fragment length polymorphism (RFLP)
analysis using MboII. These digests were separated on a conven-
tional agarose gel and visualized under UV light. A tiff image was
generated and imported into BioNumerics (Applied Maths, Sint-
Martens-Latem, Belgium). Using this approach, a PCR-RFLP pro-
file of each isolate was produced, which can be compared across
various isolates. The first twoO-antigenmolecular serotypes were
denoted as O:1 and O:2 within C. sakazakii (44).

Later, another five additional O-antigens were identified in C.
sakazakii by Sun et al. (46) and these correlatedwith the previously
reported PCR-RFLP profiles. These molecular-characterization
schemes were further extended to include other Cronobacter
species and define new molecular O-serotype gene clusters (45,
48). To date, 15 Cronobacter serogroups were identified following
the comparison of these PCR amplification schemes, which con-
sist of C. sakazakii O:1–O:4 and O:7; C. malonaticus O:1–O:2; C.
dublinensis O:1–O:2, C. muytjensii O:1–O:2, C. universalis O:1, as
well as C. turicensisO:1–O:3 (Figure 1). Interestingly, some of the
O-serotype gene clusters are shared among various species, such
asC. sakazakiiO:3 andC.muytjensiiO:1, as well asC.malonaticus
O:1 and C. turicensis O:1 (49).

Sub-Typing Methods

Molecular sub-typing has long been regarded as a useful approach
that can be applied to elucidate the nature of those bacteria
colonizing a particular ecological niche. A number of strate-
gies has been applied for the sub-tying of Cronobacter species,
which include pulsed-field gel electrophoresis (PFGE), multi-
locus sequence typing (MLST), multi-locus variable number
tandem-repeat analysis (MLVA), multi-locus sequence analysis
(MLSA), as well as matrix-assisted laser desorption ionization-
time of flight mass spectrometry (MALDI-TOP MS) (50). PFGE,
and MLST approaches are those most widely in use currently.

Pulsed-Field Gel Electrophoresis
Nazarowec-White and Farber (51) first applied PFGE to charac-
terize and sub-type Cronobacter species. Mullane et al. (8) charac-
terized and trackedCronobacter species in a PIF processing facility
using PFGE. The study provided a basis for the development of
efficient intervention measures contributing to the reduction of
Cronobacter in the PIF manufacturing environment. Since then,
PFGE approaches have been widely used to track the movement
of Cronobacter species in infant foods, soft cheese, various cate-
gories of ready-to-eat foods, farming and domestic environments,
food producing animals, dried milk, and related products (4, 52–
62). Meanwhile, a standardized PFGE protocol for sub-typing
Cronobacter has been developed and validated by PulseNet, a
network of national and regional laboratory sites dedicated to
tracking food-borne infections (63). Figure 3 shows an agarose
gel with Cronobacter isolates of diverse pulsotypes, cultured from
such environments.

FIGURE 3 | Pulsed-field gel electrophoresis (PFGE) profiles that
can be used to characterize and track Cronobacter species in a
PIF processing facility. Lane 1–10, sample 1–10, and Lane M,
Salmonella Braenderup H9812, molecular marker, genomic DNA

digested with XbaI. The arrow-heads at the foot of the image, including
lane 1 through 3, lane 6 through 8, lane 9 and 10, show that these
isolates have the same PFGE profile and would be considered
indistinguishable.
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Multi-Locus Sequence Typing
AMLST schemewas originally developed by Baldwin et al. (64) to
discriminate betweenC. sakazakii andC.malonaticus. ThisMLST
strategy included seven housekeeping genes: atpD, fusA, glnS, gltB,
gyrB, infB, pps (3,036 bp concatenated length) that could be used
for phylogenetic analysis and comparative genomics (65). Joseph
and Forsythe (66) reported the identification of a highly stable
sequence type (denoted as ST4) within C. sakazakii and which
was responsible for a large proportion of the documented severe
neonatal infections, including neonatal meningitis. A database
containing defined sequence types (ST) covering all Cronobacter
species is currently maintained at the University of Oxford. This
database and the associated MLST protocols can be accessed at
www.pubMLST.org/cronobacter. Figure 4 described the applica-
tion of MLST, which includes an initial genomic DNA extraction,
PCR amplification of target genes, DNA purification of amplified
fragments, Sanger sequencing, alignments to theMLSTCronobac-
ter database, and finally MLST data outputs. This scheme has
already been applied in epidemiologic investigations, screening
for Cronobacter species in both commercial infant formula prod-
ucts and in hospital or industrial environments (60, 62, 67, 68).
However, Pan et al. (62) reported that PFGE demonstrated a supe-
rior typing capability when compared with MLST and thereafter
suggested a combined approach for the sub-typing of Cronobacter
species from food and its related environments.

Additionally, combined with next generation sequencing
(NGS), the Cronobacter PubMLST genome and sequence defini-
tion database3 was established, which covered over 1,000 isolates
linked to neonatal meningitis and adult infections (69). These
authors identified C. sakazakii clonal complex 4 (CC4) as prin-
cipally associated with neonatal meningitis. This clonal lineage
was confirmed using ribosomal-MLST and whole genome-MLST
analysis.

3http://www.pubMLST.org/cronobacter

FIGURE 4 | A diagram outlining the MLST scheme from genomic DNA
to the MLST outputs.

Sequencing the Genome of Cronobacter
species

Genome sequencing efforts can be expected to facilitate the
correct identification of a bacterial species; it can also provide
detailed information regarding the unique geno- and phenotypic
features. Moreover, these approaches can be used for compara-
tive purposes in order to rapidly and simultaneously investigate
the presence/absence of all annotated genes or coding sequences
(CDS), and/or nucleotide polymorphisms that may contribute to
a specific morphology or physiology.

Whole Genome Sequencing
Thirty-five Cronobacter genome sequences are currently available
at the National Centre for Biotechnology Information (NCBI)
as described in Table S1 in Supplementary Material. Only five
Cronobacter genomes have been completed or closed, including
the genomes of C. sakazakii ATCC® BAA-894, ES15, and SP291,
C. turicensis z3032 (LMG 23827), as well asC. malonaticusCMCC
45402 (70–74).

Cronobacter sakazakiiATCC®BAA-894was the first sequenced
isolate (70), which was originally cultured from PIF and epidemi-
ologically linkedwith an outbreak in a neonatal intensive care unit
(75, 76). The genome sequence revealed a single chromosome of
4.4Mbp along with two plasmids, denoted as pESA2 (31 kbp) and
pESA3 (131 kbp). The isolate was compared with representatives
of five other species using DNA microarray in an effort to further
investigate the core genome of Cronobacter along with virulence
factors. Among 4,392 annotated genes, some 43% of the genes
were shared across five species, while 55% of the genes were
unique to C. sakazakii. A copper and silver resistance system,
which is known to be linked to invasion of the blood-brain barrier
by neonatal meningitis causing strains of E. coli (77), was identi-
fied in isolates associated with neonatal infections (including C.
sakazakii, C. malonaticus, and C. turicensis). In particular, genes
encoding multidrug efflux pumps and adhesins were found to be
unique to C. sakazakii ATCC® BAA-894 (70).

More recently, the complete genome of C. sakazakii SP291 was
reported (73, 78). This isolate was cultured from a PIF production
environment and it represented a cluster of isolates, which were
found to be persistent in the PIF production site for at least a
period of 2 years. The genome of C. sakazakii SP291 included
a 4.3Mbp chromosome and three plasmids, denoted as pSP291
(118 kbp), pSP291-2 (52 kbp), and pSP291-3 (4 kbp). Compared
with C. sakazakii ATCC® BAA-894, C. sakazakii SP291 exhib-
ited a markedly better series of stress response mechanisms (73).
Given the fact that C. sakazakii SP291 adapted to the stressful
PIF production environment, the osmoprotectant ABC trans-
porters, including YehZYXW, ProP, ProU, and OpuCABCD, can
be expected to play an important role in supporting its survival
(73), a feature that has been functionally confirmed in other
microorganisms (79–82). Furthermore, a greater ability to survive
in a broader range of heavy metals was also noted for C. sakazakii
SP291, which may be accounted for by its frequent exposure to
quaternary ammonium-containing disinfectants (73).

Cronobacter sakazakii ES15 was cultured from ground whole
grains, and subsequently sequenced (72). In this case the genome
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consisted of a single chromosome of 4.3Mbp devoid of any plas-
mids. Interestingly, a relatively high number of ABC transport
systems and phosphotransferase systems (PTS) were identified in
this genome, which may possibly suggest the existence of efficient
nutrient uptake systems. In additional, OmpA reported to be
involved in the basolateral invasion of the brain by C. sakazakii
(83) was also identified.

This isolate C. turicensis z3032, linked with the deaths of two
newborn infants in Switzerland in 2005, was subsequently cul-
tured from the blood of one child with meningitis. The genome
of this isolate was investigated in an effort to further deter-
mine those virulence factors and mechanisms associated with the
pathogenicity of these isolates (71). The genome was found to
be 4.4Mbp in size and contained three plasmids of sizes 138 kbp
(pCTU1), 22 kbp (pCTU2), and 54 kbp (pCTU3). In all, 4,455
CDS were annotated, with 5% of them being virulence- and
disease-related (71).

The latest WGS to be published was that of C. sakazakii CMCC
45402 (74), which was believed to be C. malonaticus based on
the neighbor-joint likelihood phylogeny (13). The rpoB gene of
C. malonaticus matched the CMCC 45402 draft genome com-
pletely, and which suggested that it was originally mis-identified
and is in fact a C. malonaticus isolate. This genome included
a 4.4Mbp chromosome with two plasmids of 127 kbp (denoted
as p1) and 56 kbp (denoted as p2) in length. The isolate was
cultured from a milk sample in China. Genes involved in path-
ways, such as microbial metabolism in diverse environments,
purine metabolism, and ABC transporter pathways were identi-
fied (74).

Grim et al. (84) reported on a comparative genomic analy-
sis of six species of Cronobacter in an attempt to understand
the evolution of these bacteria and the genetic contents of each
species. A total of 3,160 CDS comprised the core genome of the
Cronobacter species (84), which was considerably more than the
original 1,899 genes identified using DNA microarray across five
species (70). Eighty-four dispensable genomic regions (defined
as containing genes present in two or more strains) were also
determined. According to Medini et al. (85), the pan genome
consists of the sum of the core genome, which includes all genes
responsible for the basic aspects of the biology of a species and
its major phenotypic traits, as well as dispensable genomes, which
contributes to the species diversity and may encode supplemen-
tary biochemical pathways and functions that are not essential for
bacterial growth but confer selective advantages, such as adap-
tion to different niches, antibiotic resistance, or colonization of
a new host. Most notably, several type VI secretion system gene
clusters, transposons that carried tellurium, copper and/or sil-
ver resistance genes, along with a novel integrative conjugative
element (ICE), were identified (84). Furthermore, Cronobacter
appeared to have diverged into two clusters, one consisting of
C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other
comprised of C. sakazakii, C. malonaticus, C. universalis, and C.
turicensis (Csak-Cmal-Cuni-Ctur). The Cdub-Cmuy clade con-
tained several accessory genomic regions important for survival
in a plant-associated environmental niche, while the Csak-Cmal-
Cuni-Ctur clade genomes harbored numerous virulence-related
genetic traits (84).

Plasmid Sequencing
Numerous plasmids have been identified in the five completed
genomes of Cronobacter, including pESA2 and pESA3 in C.
sakazakiiATCC®BAA-894, pSP291-1, pSP291-2, and pSP291-3 in
C. sakazakii SP291, pCTU1, pCTU2, and pCTU3 in C. turicensis
z3032, as well as p1 and p2 in C. malonaticus CMCC 45402. Yan
et al. (73) classified these plasmids into two groups initially, based
on their similarity following alignments. With further analysis
performed more recently to include those new plasmids that
were reported, plasmid group 1 now contains of plasmids pESA3
from C. sakazakii ATCC® BAA-894, pSP291-1 from C. sakazakii
SP291, p1 from C. malonaticus CMCC 45402, and pCTU1 from
C. turicensis z3032. This group carries two arsenical resistance
genes and several putative virulence genes, including two genetic
loci encoding iron acquisition systems, namely an ABC trans-
porter gene cluster and an aerobactin or cronobactin siderophore
receptor gene cluster identified as eitCBAD and iucABCD/iutA,
respectively (73). The iucABCD/iutA is reported to be the only
active siderophore present in Cronobacter (84, 86). Additionally
plasmid group 2 now includes plasmids pSP291-2 from C. sakaza-
kii SP291, p2 from C. malonaticus CMCC 45402, and pCTU3
fromC. turicensis z3032. Fifteen heavymetal (copper, cobalt, zinc,
cadmium, lead, and mercury) resistance genes, an osmosensitive
K+ channel histidine kinase gene kdpD and a virulence associated
gene vagC were broadly shared among these plasmids (73). Fur-
thermore, the presence of a Cronobacter plasminogen activator-
encoding gene (cpa) [encoded on plasmids pESA3 and pSP291-1],
a single RepFIB-like origin of replication gene (repA) [encoded on
pESA3 and pCTU1], a type VI secretion system (T6SS) [encoded
on pESA3], a filamentous hemagglutinin/adhesin (FHA) gene
locus (located on pCTU1), membrane proteins, suppressor of
copper-sensitivity (scsA and scsB) [shared among pESA3, p1, and
pSP291-1], seven arsenical resistance genes (shared between p2
and pCTU3) suggested the existence of unique virulence deter-
minants in these species (73). Other plasmids, including pESA2,
pSP291-3, and pCTU2 demonstrated no similarity to any of
the above groups, as determined following their alignments and
analysis (73).

Microarray-Based Technologies and Deep-Level
RNA Sequencing
DNA Microarray has been applied to investigate the genetic
diversity of Cronobacter species previously (70, 87). Healy et al.
(87) initially designed and performed amicroarray-based analysis
of Cronobacter species using 276 open reading frame selected
from C. sakazakii ATCC® BAA-894 to identify species-specific
genes that could be evaluated as candidate markers for inclusion
in a molecular-based detection protocol. After completing the
WGS of C. sakazakii ATCC® BAA-894, Kucerova et al. (70) con-
structed a 387,000 probe oligonucleotide microarray in an effort
to identify the pan-genome of Cronobacter using five of the seven
recognized species. More recently, US-FDA developed a custom
designed multi-genome DNA microarray platform that contains
over 21,402 unique genes (470,844 probes), representing the pan
genome of all sevenCronobacter species (88). Early results showed
its capacity to distinguish all seven Cronobacter species from one
another and from closely related non-Cronobacter species (88).
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High-throughput whole-transcriptome sequencing (RNA-seq)
has also been performed to characterize and fingerprintC. sakaza-
kii responses following exposure to two garlic-derived organosul-
fur compounds, ajoene and diallyl sulfide (89). Interestingly,
RNA-seq revealed that bacteria response to the two compounds
differ. For example, ajoene caused downregulation of motility-
related genes, while diallyl sulfide treatment caused an increased
expression of cell wall synthesis genes. These findings will aid
the development of effective intervention strategies to decrease
the risk of Cronobacter contamination in the food production
environments and contact surfaces.

Future Directions

Cronobacter species, like other microorganisms, can adapt to the
production environment. Previous studies reported the isolation
of Cronobacter from PIF and its production environment, sug-
gesting that this bacterium has the capacity to adapt to, survive,

and persist under desiccated environmental conditions (53, 90).
With the advantages afforded byNGS technology, isolates of inter-
est can now be investigated in considerable detail. Additionally,
the stress response factors identified previously in Cronobacter
species, such as heat-shock, cold-stresses, survival in dry condi-
tions, water activity (aw), and pH need to be re-assessed using
RNA-seq and other novel approaches that are currently under
development. Advances in our understanding of mechanisms
involved with Cronobacter survival will be the key to developing
better food safety measures to reduce the risk of Cronobacter
contamination in PIF and its production environments and to
protect neonatal health.

Supplementary Material

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fped.2015.00038

References
1. Jason J. Prevention of invasive Cronobacter infections in young infants fed

powdered infant formulas. Pediatrics (2012) 130:e1076–84. doi:10.1542/peds.
2011-3855

2. BowenAB, BradenCR. InvasiveEnterobacter sakazakii disease in infants.Emerg
Infect Dis (2006) 12:1185–9. doi:10.3201/eid1208.051509

3. Friedemann M. Epidemiology of invasive neonatal Cronobacter (Enterobacter
sakazakii) infections. Eur J Clin Microbiol (2009) 28:1297–304. doi:10.1007/
s10096-009-0779-4

4. Baumgartner A, Grand M, Liniger M, Iversen C. Detection and frequency of
Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-
eat foods other than infant formula. Int J Food Microbiol (2009) 136:189–92.
doi:10.1016/j.ijfoodmicro.2009.04.009

5. Chap J, Jackson P, Siqueira R, Gaspar N, Quintas C, Park J, et al. International
survey of Cronobacter sakazakii and other Cronobacter spp. in follow up for-
mulas and infant foods. Int J Food Microbiol (2009) 136:185–8. doi:10.1016/j.
ijfoodmicro.2009.08.005

6. Healy B, Cooney S, O’brien S, Iversen C, Whyte P, Nally J, et al. Cronobac-
ter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne
Pathog Dis (2010) 7:339–50. doi:10.1089/fpd.2009.0379

7. Bar-Oz B, Preminger A, Peleg O, Block C, Arad I. Enterobacter sakazakii infec-
tion in the newborn. Acta Paediatr (2001) 90:356–8. doi:10.1111/j.1651-2227.
2001.tb00319.x

8. Mullane NR, Whyte P, Wall PG, Quinn T, Fanning S. Application of pulsed-
field gel electrophoresis to characterise and trace the prevalence of Enterobacter
sakazakii in an infant formula processing facility. Int J Food Microbiol (2007)
116:73–81. doi:10.1016/j.ijfoodmicro.2006.12.036

9. Kandhai, M.C. (2010). Detection, Occurrence, Growth and Inactivation of
Cronobacter spp. (Enterobacter sakazakii). Ph.D. thesis. Wageningen: Wagenin-
gen University.

10. Kilonzo-Nthenge A, Rotich E, Godwin S, Nahashon S, Chen F. Prevalence
and antimicrobial resistance of Cronobacter sakazakii isolated from domestic
kitchens in middle Tennessee, United States. J Food Prot (2012) 75:1512–7.
doi:10.4315/0362-028X.JFP-11-442

11. Muytjens HL, Roelofs-Willemse H, Jaspar GH. Quality of powdered substitutes
for breast milk with regard to members of the family Enterobacteriaceae. J Clin
Microbiol (1988) 26:743–6.

12. Chen Y, Song KY, Brown EW, Lampel KA. Development of an improved
protocol for the isolation and detection of Enterobacter sakazakii (Cronobacter)
from powdered infant formula. J Food Prot (2010) 73:1016–22.

13. Yan, Q.Q. (2014). Survelliance, Survival and Adaptation of Cronobacter species in
Low-Moisture Environments. Ph.D. thesis. Dublin: University College Dublin.

14. Hochel I, Škvor J. Chracterisation of antobodies for the immunochemical
detection of Enterobacter sakazakii. Czech J Food Sci (2009) 27:S2-66–77.

15. Jaradat ZW, Rashdan AM, Ababneh QO, Jaradat SA, Bhunia AK. Characteriza-
tion of surface proteins of Cronobacter muytjensii using monoclonal antibodies
and MALDI-TOF Mass spectrometry. BMC Microbiol (2011) 11:148. doi:10.
1186/1471-2180-11-148

16. Park S, Shukla S, Kim Y, Oh S, Hun Kim S, Kim M. Development of sand-
wich enzyme-linked immunosorbent assay for the detection of Cronobacter
muytjensii (formerly called Enterobacter sakazakii). Microbiol Immunol (2012)
56:472–9. doi:10.1111/j.1348-0421.2012.00466.x

17. Schauer K, Lehner A, Dietrich R, Kleinsteuber I, Canals R, Zurfluh K, et al.
A Cronobacter turicensis O1 antigen-specific monoclonal antibody inhibits
bacterial motility and entry into epithelial cells. Infect Immun (2015) 83:867–87.
doi:10.1128/IAI.02211-14

18. Xu X, Zhang Y, Shi M, Sheng W, Du XJ, Yuan M, et al. Two novel analytical
methods based on polyclonal and monoclonal antobodies for the rapid detec-
tion of Cronobacter spp.: development and application in powdered infant
formula. LWTFood Sci Technol (2015) 56:335–40. doi:10.1016/j.lwt.2013.11.028

19. Farmer JJ, Asbury MA, Hickman FW, Brenner DJ. Enterobacter sakazakii a
new species of Enterobacteriaceae isolate from clinical specime. Int J Syst Evol
Microbiol (1980) 30:569–84.

20. Iversen C, Waddington M, On SL, Forsythe S. Identification and phylogeny of
Enterobacter sakazakii relative to Enterobacter and Citrobacter species. J Clin
Microbiol (2004) 42:5368–70. doi:10.1128/JCM.42.11.5368-5370.2004

21. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, et al.
The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter
gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter
sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonati-
cus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov.,
Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol
Biol (2007) 7:64. doi:10.1186/1471-2148-7-64

22. Iversen C, Mullane N, Mccardell B, Tall BD, Lehner A, Fanning S, et al.
Cronobacter gen. nov., a new genus to accommodate the biogroups of Enter-
obacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov.,
Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter
muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomo-
species 1, and of three subspecies, Cronobacter dublinensis subsp. dublinen-
sis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and
Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol
(2008) 58:1442–7. doi:10.1099/ijs.0.65577-0

23. Seo KH, Brackett RE. Rapid, specific detection of Enterobacter sakazakii in
infant formula using a real-time PCR assay. J Food Prot (2005) 68:59–63.

24. Malorny B, Wagner M. Detection of Enterobacter sakazakii strains by real-time
PCR. J Food Prot (2005) 68:1623–7.

25. Derzelle S, Dilasser F. A robotic DNA purification protocol and real-time PCR
for the detection of Enterobacter sakazakii in powdered infant formulae. BMC
Microbiol (2006) 6:100. doi:10.1186/1471-2180-6-100

Frontiers in Pediatrics | www.frontiersin.org May 2015 | Volume 3 | Article 387

http://journal.frontiersin.org/article/10.3389/fped.2015.00038
http://dx.doi.org/10.1542/peds.2011-3855
http://dx.doi.org/10.1542/peds.2011-3855
http://dx.doi.org/10.3201/eid1208.051509
http://dx.doi.org/10.1007/s10096-009-0779-4
http://dx.doi.org/10.1007/s10096-009-0779-4
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.04.009
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.08.005
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.08.005
http://dx.doi.org/10.1089/fpd.2009.0379
http://dx.doi.org/10.1111/j.1651-2227.2001.tb00319.x
http://dx.doi.org/10.1111/j.1651-2227.2001.tb00319.x
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.12.036
http://dx.doi.org/10.4315/0362-028X.JFP-11-442
http://dx.doi.org/10.1186/1471-2180-11-148
http://dx.doi.org/10.1186/1471-2180-11-148
http://dx.doi.org/10.1111/j.1348-0421.2012.00466.x
http://dx.doi.org/10.1128/IAI.02211-14
http://dx.doi.org/10.1016/j.lwt.2013.11.028
http://dx.doi.org/10.1128/JCM.42.11.5368-5370.2004
http://dx.doi.org/10.1186/1471-2148-7-64
http://dx.doi.org/10.1099/ijs.0.65577-0
http://dx.doi.org/10.1186/1471-2180-6-100
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


Yan and Fanning Strategies for identification and tracking Cronobacter species

26. Liu Y, Cai X, Zhang X, Gao Q, Yang X, Zheng Z, et al. Real time PCR using Taq-
Man and SYBR Green for detection of Enterobacter sakazakii in infant formula.
J Microbiol Methods (2006) 65:21–31. doi:10.1016/j.mimet.2005.06.007

27. Kang ES, Nam YS, Hong KW. Rapid detection of Enterobacter sakazakii using
TaqMan real-time PCR assay. J Microbiol Biotechnol (2007) 17:516–9.

28. Cai XQ, Yu HQ, Ruan ZX, Yang LL, Bai JS, Qiu DY, et al. Rapid detec-
tion and simultaneous genotyping of Cronobacter spp. (formerly Enterobacter
sakazakii) in powdered infant formula using real-time PCR and high resolution
melting (HRM) analysis. PLoS One (2013) 8:e67082. doi:10.1371/journal.pone.
0067082

29. Zimmermann J, Schmidt H, Loessner MJ, Weiss A. Development of a
rapid detection system for opportunistic pathogenic Cronobacter spp. in
powdered milk products. Food Microbiol (2014) 42:19–25. doi:10.1016/j.fm.
2014.02.010

30. Fricker-Feer C, Cernela N, Bolzan S, Lehner A, Stephan R. Evaluation of three
commercially available real-time PCR based systems for detection of Cronobac-
ter species. Int J Food Microbiol (2011) 146:200–2. doi:10.1016/j.ijfoodmicro.
2011.02.006

31. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ.
Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter
universalis sp. nov., a species designation for Cronobacter sp. genomospecies
1, recovered from a leg infection, water and food ingredients. Int J Syst Evol
Microbiol (2012) 62:1277–83. doi:10.1099/ijs.0.032292-0

32. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation
of the genus Enterobacter based on multilocus sequence analysis (MLSA):
proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen.
nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov.,
respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Plural-
ibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively,
E. cowanii,E. radicincitans,E. oryzae andE. arachidis intoKosakonia gen. nov. as
Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia
oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turi-
censis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis
nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb.
nov., respectively, and emended description of the genera Enterobacter and
Cronobacter. Syst Appl Microbiol (2013) 36:309–19. doi:10.1016/j.syapm.2013.
03.005

33. Stephan R, Van Trappen S, Cleenwerck I, Vancanneyt M, De Vos P, Lehner
A. Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated
from fruit powder. Int J Syst Evol Microbiol (2007) 57:820–6. doi:10.1099/ijs.0.
64650-0

34. Stephan R, Van Trappen S, Cleenwerck I, Iversen C, Joosten H, De Vos P, et al.
Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and
an infant formula production environment. Int J Syst Evol Microbiol (2008)
58:237–41. doi:10.1099/ijs.0.65427-0

35. Iversen C, Druggan P, Schumacher S, Lehner A, Feer C, Gschwend K, et al.
Development of a novel screening method for the isolation of “Cronobacter”
spp. (Enterobacter sakazakii). Appl Environ Microbiol (2008) 74:2550–3. doi:10.
1128/AEM.02801-07

36. Gopinath GR, Grim CJ, Tall BD, Mammel MK, Sathyamoorthy V, Trach LH,
et al. Genome sequences of two Enterobacter pulveris strains, 601/05T (LMG
24057T DSM 19144T) and 1160/04 (LMG 24058 DSM 19146), isolated from
fruit powder. Genome Announc (2013) 1:e991–913. doi:10.1128/genomeA.
00991-13

37. Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, Chase HR,
et al. Genome sequence of an Enterobacter helveticus strain, 1159/04 (LMG
23733), isolated from fruit powder. Genome Announc (2013) 1:e1038–1013.

38. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH,
et al. Genome sequence of Enterobacter turicensis strain 610/05 (LMG 23731),
isolated from fruit powder. Genome Announc (2013) 1:e996–913. doi:10.1128/
genomeA.00996-13

39. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach
LH, et al. Re-examination of the taxonomic status of Enterobacter helveticus,
Enterobacter pulveris, and Enterobacter turicensis as members of Cronobacter
and description of Siccibacter turicensis com. nov., Franconibacter helveticus
comb. nov., and Franconibacter pulveris com. nov. Int J Syst Evol Microbiol
(2014) 64:3402–10. doi:10.1099/ijs.0.059832-0

40. Stoop B, Lehner A, Iversen C, Fanning S, Stephan R. Development and evalua-
tion of rpoB based PCR systems to differentiate the six proposed species within

the genus Cronobacter. Int J Food Microbiol (2009) 136:165–8. doi:10.1016/j.
ijfoodmicro.2009.04.023

41. Lehner A, Fricker-Feer C, Stephan R. Identification of the recently described
Cronobacter condimenti by a rpoB based PCR system. J Med Microbiol (2012)
61:1034–5. doi:10.1099/jmm.0.042903-0

42. Carter L, Lindsey LA, Grim CJ, Sathyamoorthy V, Jarvis KG, Gopinath G,
et al. Multiplex PCR assay targeting a diguanylate cyclase-encoding gene, cgcA,
to differentiate species within the genus Cronobacter. Appl Environ Microbiol
(2013) 79:734–7. doi:10.1128/AEM.02898-12

43. Yan X, Gurtler J, Fratamico P, Hu J, Gunther NW, Juneja V, et al. Com-
prehensive approaches to molecular biomarker discovery for detection and
identification of Cronobacter spp. (Enterobacter sakazakii) and Salmonella spp.
Appl Environ Microbiol (2011) 77:1833–43. doi:10.1128/AEM.02374-10

44. Mullane N, O’gaora P, Nally JE, Iversen C, Whyte P, Wall PG, et al. Molecu-
lar analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ
Microbiol (2008) 74:3783–94. doi:10.1128/AEM.02302-07

45. Jarvis KG, Grim CJ, Franco AA, Gopinath G, Sathyamoorthy V, Hu L, et al.
Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene
clusters and development of serotype-specific PCR assays. Appl Environ Micro-
biol (2011) 77:4017–26. doi:10.1128/AEM.00162-11

46. Sun Y, Wang M, Liu H, Wang J, He X, Zeng J, et al. Development of an O-
antigen serotyping scheme for Cronobacter sakazakii. Appl Environ Microbiol
(2011) 77:2209–14. doi:10.1128/AEM.02229-10

47. Sun Y, Wang M, Wang Q, Cao B, He X, Li K, et al. Genetic analysis of the
Cronobacter sakazakii O4 to O7 O-antigen gene clusters and development of
a PCR assay for identification of all C. sakazakii O serotypes. Appl Environ
Microbiol (2012) 78:3966–74. doi:10.1128/AEM.07825-11

48. Jarvis KG, Yan QQ, Grim CJ, Power KA, Franco AA, Hu L, et al. Identification
and characterization of five new molecular serogroups of Cronobacter spp.
Foodborne Pathog Dis (2013) 10:343–52. doi:10.1089/fpd.2012.1344

49. Yan Q, Jarvis KG, Chase HR, Hébert K, Trach LH, Lee C, et al. A proposed
harmonized LPS molecular-subtyping scheme for Cronobacter species. Food
Microbiol (2015) 50:38–44. doi:10.1016/j.fm.2015.03.003

50. Stephan R, Ziegler D, Pfluger V, Vogel G, Lehner A. Rapid genus- and species-
specific identification of Cronobacter spp. by matrix-assisted laser desorption
ionization-time of flightmass spectrometry. J ClinMicrobiol (2010) 48:2846–51.
doi:10.1128/JCM.00156-10

51. Nazarowec-White M, Farber JM. Phenotypic and genotypic typing of food and
clinical isolates of Enterobacter sakazakii. J Med Microbiol (1999) 48:559–67.
doi:10.1099/00222615-48-6-559

52. El-SharoudWM, El-DinMZ, Ziada DM, Ahmed SF, Klena JD. Surveillance and
genotyping of Enterobacter sakazakii suggest its potential transmission from
milk powder into imitation recombined soft cheese. J Appl Microbiol (2008)
105:559–66. doi:10.1111/j.1365-2672.2008.03777.x

53. Mullane N, Healy B, Meade J, Whyte P, Wall PG, Fanning S. Dissemination of
Cronobacter spp. (Enterobacter sakazakii) in a powdered milk protein manu-
facturing facility. Appl Environ Microbiol (2008) 74:5913–7. doi:10.1128/AEM.
00745-08

54. Proudy I, Bouglé D, Coton E, Coton M, Leclercq R, Vergnaud M. Genotypic
characterization of Enterobacter sakazakii isolates by PFGE, BOX-PCR and
sequencing of the fliC gene. J Appl Microbiol (2008) 104:26–34. doi:10.1111/
j.1365-2672.2007.03526.x

55. El-Sharoud WM, O’brien S, Negredo C, Iversen C, Fanning S, Healy B. Charac-
terization of Cronobacter recovered from dried milk and related products. BMC
Microbiol (2009) 9:24. doi:10.1186/1471-2180-9-24

56. Hein I, Gadzov B, Schoder D, Foissy H, Malorny B, Wagner M. Temporal and
spatial distribution of Cronobacter isolates in a milk powder processing plant
determined by pulsed-field gel electrophoresis. Foodborne Pathog Dis (2009)
6:225–33. doi:10.1089/fpd.2008.0175

57. Molloy C, Cagney C, O’brien S, Iversen C, Fanning S, Duffy G. Surveillance
and characterisation by pulsed-field gel electrophoresis of Cronobacter spp. in
farming and domestic environments, food production animals and retail foods.
Int J FoodMicrobiol (2009) 136:198–203. doi:10.1016/j.ijfoodmicro.2009.07.007

58. Craven HM, Mcauley CM, Duffy LL, Fegan N. Distribution, prevalence and
persistence of Cronobacter (Enterobacter sakazakii) in the nonprocessing and
processing environments of five milk powder factories. J Appl Microbiol (2010)
109:1044–52. doi:10.1111/j.1365-2672.2010.04733.x

59. Miled-Bennour R, Ells TC, Pagotto FJ, Farber JM, Kerouanton A, Meheut T,
et al. Genotypic and phenotypic characterisation of a collection of Cronobacter

Frontiers in Pediatrics | www.frontiersin.org May 2015 | Volume 3 | Article 388

http://dx.doi.org/10.1016/j.mimet.2005.06.007
http://dx.doi.org/10.1371/journal.pone.0067082
http://dx.doi.org/10.1371/journal.pone.0067082
http://dx.doi.org/10.1016/j.fm.2014.02.010
http://dx.doi.org/10.1016/j.fm.2014.02.010
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.02.006
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.02.006
http://dx.doi.org/10.1099/ijs.0.032292-0
http://dx.doi.org/10.1016/j.syapm.2013.03.005
http://dx.doi.org/10.1016/j.syapm.2013.03.005
http://dx.doi.org/10.1099/ijs.0.64650-0
http://dx.doi.org/10.1099/ijs.0.64650-0
http://dx.doi.org/10.1099/ijs.0.65427-0
http://dx.doi.org/10.1128/AEM.02801-07
http://dx.doi.org/10.1128/AEM.02801-07
http://dx.doi.org/10.1128/genomeA.00991-13
http://dx.doi.org/10.1128/genomeA.00991-13
http://dx.doi.org/10.1128/genomeA.00996-13
http://dx.doi.org/10.1128/genomeA.00996-13
http://dx.doi.org/10.1099/ijs.0.059832-0
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.04.023
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.04.023
http://dx.doi.org/10.1099/jmm.0.042903-0
http://dx.doi.org/10.1128/AEM.02898-12
http://dx.doi.org/10.1128/AEM.02374-10
http://dx.doi.org/10.1128/AEM.02302-07
http://dx.doi.org/10.1128/AEM.00162-11
http://dx.doi.org/10.1128/AEM.02229-10
http://dx.doi.org/10.1128/AEM.07825-11
http://dx.doi.org/10.1089/fpd.2012.1344
http://dx.doi.org/10.1016/j.fm.2015.03.003
http://dx.doi.org/10.1128/JCM.00156-10
http://dx.doi.org/10.1099/00222615-48-6-559
http://dx.doi.org/10.1111/j.1365-2672.2008.03777.x
http://dx.doi.org/10.1128/AEM.00745-08
http://dx.doi.org/10.1128/AEM.00745-08
http://dx.doi.org/10.1111/j.1365-2672.2007.03526.x
http://dx.doi.org/10.1111/j.1365-2672.2007.03526.x
http://dx.doi.org/10.1186/1471-2180-9-24
http://dx.doi.org/10.1089/fpd.2008.0175
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.007
http://dx.doi.org/10.1111/j.1365-2672.2010.04733.x
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


Yan and Fanning Strategies for identification and tracking Cronobacter species

(Enterobacter sakazakii) isolates. Int J FoodMicrobiol (2010) 139:116–25. doi:10.
1016/j.ijfoodmicro.2010.01.045

60. Müller A, Stephan R, Fricker-Feer C, Lehner A. Genetic diversity ofCronobacter
sakazakii isolates collected from a Swiss infant formula production facility.
J Food Prot (2013) 76:883–7. doi:10.4315/0362-028X.JFP-12-521

61. Cui J, Du X, Liu H, Hu G, Lv G, Xu B, et al. The genotypic characterization of
Cronobacter spp. isolated in China. PLoS One (2014) 9:e102179. doi:10.1371/
journal.pone.0102179

62. Pan Z, Cui J, Lyu G, Du X, Qin L, Guo Y, et al. Isolation and molecular typ-
ing of Cronobacter spp. in commercial powdered infant formula and follow-up
formula. Foodborne Pathog Dis (2014) 11:456–61. doi:10.1089/fpd.2013.1691

63. Brengi SP, O’brien SB, Pichel M, Iversen C, Arduino M, Binsztein N, et al.
Development and validation of a PulseNet standardized protocol for subtyping
isolates of Cronobacter species. Foodborne Pathog Dis (2012) 9:861–7. doi:10.
1089/fpd.2012.1161

64. Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson
C, et al. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter
malonaticus reveals stable clonal structures with clinical significance which
do not correlate with biotypes. BMC Microbiol (2009) 9:223. doi:10.1186/
1471-2180-9-223

65. Kucerova E, Joseph S, Forsythe S. TheCronobacter genus: ubiquity and diversity.
Qual Assur Saf Crop Foods (2011) 3:104–22. doi:10.1111/j.1757-837X.2011.
00104.x

66. Joseph S, Forsythe SJ. Predominance of Cronobacter sakazakii sequence type 4
in neonatal infections. Emerg Infect Dis (2011) 17:1713–5. doi:10.3201/eid1709.
110260

67. Siqueira Santos RF, Da Silva N, Amstalden Junqueira VC, Kajsik M, Forsythe
S, Pereira JL. Screening for Cronobacter species in powdered and reconstituted
infant formulas and from equipment used in formula preparation in maternity
hospitals. Ann Nutr Metab (2013) 63:62–8. doi:10.1159/000353137

68. GicovaA,OrieskovaM,Oslanecova L,DrahovskaH,Kaclikova E. Identification
and characterization of Cronobacter strains isolated from powdered infant
foods. Lett Appl Microbiol (2014) 58:242–7. doi:10.1111/lam.12179

69. Forsythe SJ, Dickins B, Jolley KA. Cronobacter, the emergent bacterial pathogen
Enterobacter sakazakii comes of age; MLST and whole genome sequence anal-
ysis. BMC Genomics (2014) 15:1121. doi:10.1186/1471-2164-15-1121

70. Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, et al.
Genome sequence ofCronobacter sakazakiiBAA-894 and comparative genomic
hybridization analysis with otherCronobacter species.PLoSOne (2010) 5:e9556.
doi:10.1371/journal.pone.0009556

71. Stephan R, Lehner A, Tischler P, Rattei T. Complete genome sequence of
Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in
neonates. J Bacteriol (2011) 193:309–10. doi:10.1128/JB.01162-10

72. Shin H, Lee JH, Choi Y, Ryu S. Complete genome sequence of the oppor-
tunistic food-borne pathogen Cronobacter sakazakii ES15. J Bacteriol (2012)
194:4438–9. doi:10.1128/JB.00841-12

73. Yan QQ, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, et al. Complete
genome sequence and phenotype microarray analysis of Cronobacter sakazakii
SP291: a persistent isolate cultured from a powdered infant formula production
facility. Front Microbiol (2013) 4:256. doi:10.3389/fmicb.2013.00256

74. Zhao ZJ, Wang L, Wang B, Liang HY, Ye Q, Zeng M. Complete genome
sequence of Cronobacter sakazakii strain CMCC 45402. Genome Announc
(2014) 2:e1139–1113. doi:10.1128/genomeA.01139-13

75. CDC. Enterobacter sakazakii infections associated with the use of powdered
infant formula – Tennessee, 2001. MMWR Morb Mortal Wkly Rep (2002)
51:297–300.

76. Himelright I, Harris E, Lorch V, Anderson M, Jones T, Craig A, et al. Enterobac-
ter sakazakii infections associated with the use of powdered infant formula –
Tennessee, 2001. MMWRMorb Mortal Wkly Rep (2002) 51:298–300.

77. Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-
transporting efflux system CusCFBA of Escherichia coli. J Bacteriol (2003)
185:3804–12. doi:10.1128/JB.185.13.3804-3812.2003

78. Power KA, Yan QQ, Fox EM, Cooney S, Fanning S. Genome sequence
of Cronobacter sakazakii SP291, a persistent thermotolerant isolate derived
from a factory producing powdered infant formula. Genome Announc (2013)
1:e0008213. doi:10.1128/genomeA.00082-13

79. Cairney J, Booth IR, Higgins CF. Osmoregulation of gene expression in
Salmonella typhimurium: proU encodes an osmotically induced betaine trans-
port system. J Bacteriol (1985) 164:1224–32.

80. Checroun C, Gutierrez C. Sigma(s)-dependent regulation of yehZYXW, which
encodes a putative osmoprotectant ABC transporter of Escherichia coli. FEMS
Microbiol Lett (2004) 236:221–6. doi:10.1016/j.femsle.2004.05.046

81. Frossard SM, Khan AA, Warrick EC, Gately JM, Hanson AD, Oldham ML,
et al. Identification of a third osmoprotectant transport system, the osmU
system, in Salmonella enterica. J Bacteriol (2012) 194:3861–71. doi:10.1128/JB.
00495-12

82. Finn S, Handler K, Condell O, Colgan A, Cooney S, Hinton J, et al.
ProP is required for the survival of Salmonella typhimurium desiccated on
stainless steel. Appl Environ Microbiol (2013) 79:4376–84. doi:10.1128/AEM.
00515-13

83. Kim K, Kim KP, Choi J, Lim JA, Lee J, Hwang S, et al. Outer membrane
proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of
Cronobacter sakazakii. Appl Environ Microbiol (2010) 76:5188–98. doi:10.1128/
AEM.02498-09

84. Grim CJ, Kotewicz ML, Power K, Pagotto F, Gopinath G, Mammel MK, et al.
Pan genome analysis of the emerging foodborne pathogen Cronobacter spp.
suggests a species-level bidirectional divergence driven by niche adaption. BMC
Genomics (2013) 14:366. doi:10.1186/1471-2164-14-366

85. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial
pan-genome. Curr Opin Genet Dev (2005) 15:589–94. doi:10.1016/j.gde.2005.
09.006

86. Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V, Jarvis KG, et al.
Characterization of putative virulence genes on the related RepFIB plasmids
harbored by Cronobacter spp. Appl Environ Microbiol (2011) 77:3255–67.
doi:10.1128/AEM.03023-10

87. Healy B, Huynh S,Mullane N, O’brien S, Iversen C, Lehner A, et al. Microarray-
based comparative genomic indexing of the Cronobacter genus (Enterobacter
sakazakii). Int J Food Microbiol (2009) 136:159–64. doi:10.1016/j.ijfoodmicro.
2009.07.008

88. Tall BD, Gangiredla J, Gopinathrao G, Yan Q, Chase HR, Lee B, et al. Devel-
opment of a custom-designed, pan genomic DNA microarray to characterize
strain-level diversity among Cronobacter spp. Front Pediatr (2015) 3:36. doi:10.
3389/fped.2015.00036

89. Feng S, Eucker TP, Holly MK, Konkel ME, Lu X, Wang S. Investigat-
ing the responses of Cronobacter sakazakii to garlic-drived organosulfur
compounds: a systematic study of pathogenic-bacterium injury by use of
high-throughput whole-transcriptome sequencing and confocal micro-raman
spectroscopy. Appl Environ Microbiol (2014) 80:959–71. doi:10.1128/AEM.
03460-13

90. Drudy D, O’rourke M, Murphy M, Mullane NR, O’mahony R, Kelly L, et al.
Characterization of a collection of Enterobacter sakazakii isolates from environ-
mental and food sources. Int J Food Microbiol (2006) 110:127–34. doi:10.1016/
j.ijfoodmicro.2006.02.008

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Yan and Fanning. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or
licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Pediatrics | www.frontiersin.org May 2015 | Volume 3 | Article 389

http://dx.doi.org/10.1016/j.ijfoodmicro.2010.01.045
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.01.045
http://dx.doi.org/10.4315/0362-028X.JFP-12-521
http://dx.doi.org/10.1371/journal.pone.0102179
http://dx.doi.org/10.1371/journal.pone.0102179
http://dx.doi.org/10.1089/fpd.2013.1691
http://dx.doi.org/10.1089/fpd.2012.1161
http://dx.doi.org/10.1089/fpd.2012.1161
http://dx.doi.org/10.1186/1471-2180-9-223
http://dx.doi.org/10.1186/1471-2180-9-223
http://dx.doi.org/10.1111/j.1757-837X.2011.00104.x
http://dx.doi.org/10.1111/j.1757-837X.2011.00104.x
http://dx.doi.org/10.3201/eid1709.110260
http://dx.doi.org/10.3201/eid1709.110260
http://dx.doi.org/10.1159/000353137
http://dx.doi.org/10.1111/lam.12179
http://dx.doi.org/10.1186/1471-2164-15-1121
http://dx.doi.org/10.1371/journal.pone.0009556
http://dx.doi.org/10.1128/JB.01162-10
http://dx.doi.org/10.1128/JB.00841-12
http://dx.doi.org/10.3389/fmicb.2013.00256
http://dx.doi.org/10.1128/genomeA.01139-13
http://dx.doi.org/10.1128/JB.185.13.3804-3812.2003
http://dx.doi.org/10.1128/genomeA.00082-13
http://dx.doi.org/10.1016/j.femsle.2004.05.046
http://dx.doi.org/10.1128/JB.00495-12
http://dx.doi.org/10.1128/JB.00495-12
http://dx.doi.org/10.1128/AEM.00515-13
http://dx.doi.org/10.1128/AEM.00515-13
http://dx.doi.org/10.1128/AEM.02498-09
http://dx.doi.org/10.1128/AEM.02498-09
http://dx.doi.org/10.1186/1471-2164-14-366
http://dx.doi.org/10.1016/j.gde.2005.09.006
http://dx.doi.org/10.1016/j.gde.2005.09.006
http://dx.doi.org/10.1128/AEM.03023-10
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.008
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.008
http://dx.doi.org/10.3389/fped.2015.00036
http://dx.doi.org/10.3389/fped.2015.00036
http://dx.doi.org/10.1128/AEM.03460-13
http://dx.doi.org/10.1128/AEM.03460-13
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.02.008
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.02.008
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive

	Strategies for the identification and tracking of Cronobacter species: an opportunistic pathogen of concern to neonatal health
	Introduction
	Conventional Culture Strategies
	Immuno-Based Detection Protocols
	Molecular Detection and Identification
	Genus Detection
	Species Identification
	Serotype Identification

	Sub-Typing Methods
	Pulsed-Field Gel Electrophoresis
	Multi-Locus Sequence Typing

	Sequencing the Genome of Cronobacter species
	Whole Genome Sequencing
	Plasmid Sequencing
	Microarray-Based Technologies and Deep-Level RNA Sequencing

	Future Directions
	Supplementary Material
	References


