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ABSTRACT

Time-course experiments using parallel sequencers
have the potential to uncover gradual changes in
cells over time that cannot be observed in a two-point
comparison. An essential step in time-series data
analysis is the identification of temporal differen-
tially expressed genes (TEGs) under two conditions
(e.g. control versus case). Model-based approaches,
which are typical TEG detection methods, often set
one parameter (e.g. degree or degree of freedom) for
one dataset. This approach risks modeling of linearly
increasing genes with higher-order functions, or fit-
ting of cyclic gene expression with linear functions,
thereby leading to false positives/negatives. Here,
we present a Jonckheere–Terpstra–Kendall (JTK)-
based non-parametric algorithm for TEG detection.
Benchmarks, using simulation data, show that the
JTK-based approach outperforms existing methods,
especially in long time-series experiments. Addition-
ally, application of JTK in the analysis of time-series
RNA-seq data from seven tissue types, across devel-
opmental stages in mouse and rat, suggested that
the wave pattern contributes to the TEG identifica-
tion of JTK, not the difference in expression lev-
els. This result suggests that JTK is a suitable al-
gorithm when focusing on expression patterns over
time rather than expression levels, such as compar-
isons between different species. These results show
that JTK is an excellent candidate for TEG detection.

INTRODUCTION

Time-course experiments using a parallel sequencer or mass
spectrometry capture dynamic changes during the develop-
ment or perturbation of a cellular system over time (1,2).
Although specific issues in biological data, such as low sam-

pling frequency, exist (3), recent advancements in modern
high-throughput techniques have enabled description of the
regulatory molecular circuits that drive differentiation pro-
cesses and adaptation to the environment in greater detail
(4,5).

One of the major steps in analyzing time-series omics
data is the identification of genes that are differentially ex-
pressed between two groups (e.g. wild-type versus knock-
out strain) on a time axis (6). We defined differentially ex-
pressed genes over time as temporal differentially expressed
genes (TEGs). While algorithms for general differentially
expressed gene analysis (7,8) and algorithms for interpre-
tation of time-series data in the field of circadian rhythms
have been relatively well studied (9,10), the golden standard
for TEG analysis has not been established.

Many tools have been implemented in the detection of
TEGs in time-course experiments (11). MaSigPro (12,13)
performs polynomial regressions to model time-course ex-
pression values, and a log likelihood ratio test to detect
TEGs. MaSigPro consists of two steps; in the first step,
dynamic (non-flat) genes are selected, and in the second
step, the best model is sought, and the P-value is calculated
using user-specified parameters. SplineTimeR (splineTC)
(14) was originally developed for the construction of gene
networks and for provision of pathway-enrichment anal-
ysis and visualization functions. SplineTC fits natural cu-
bic spline curves to time-course data and applies empirical
Bayes moderate F-statics between two groups. ImpulseDE2
(15) fits the impulse model (16,17) to time-course data, and
the null model is represented by a common impulse model;
therefore, the alternative model is represented by a differ-
ent impulse model. LimoRhyde is designed to detect differ-
ential rhythmicity and differential expression using cosinor
regression (18). These methods have shown high accuracy
in comprehensive comparative studies of Spies et al., except
for the recently published LimpRhyde (11). These studies
are considered as good benchmarks for TEG detection al-
gorithms.
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Previous approaches for TEG analysis have mainly been
performed by fitting regression models to two groups and by
assessing whether the models are statistically consistent by
using a hypothesis test. However, experimental data contain
genes and proteins that differ in complexity, which poses the
risk of modeling linearly increasing genes with higher-order
functions or fitting cyclically varying genes with linear func-
tions, thereby leading to false positives or false negatives. To
tackle this issue, we need to explore the parameters to model
each gene or develop a model-free and non-parametric ap-
proach.

Here, we propose a Jonckheere–Terpstra–Kendall (JTK)-
based non-parametric TEG detection algorithm to char-
acterize time-course experiments. The Jonckheere–Terpstra
test (19,20) is a non-parametric test for the detection of or-
dering patterns between two measured quantities, with the
correlation coefficient, Kendall’s � , measuring the ordinal
association between two groups. In circadian rhythm stud-
ies, the JTK algorithm, which combines these two statis-
tical methods, has been widely used to detect oscillating
molecules in omics datasets (9,21). We expanded this appli-
cation of the JTK algorithm to TEG detection. To the best
of our knowledge, JTK is the only non-parametric TEG
detection method. Our study demonstrates the novelty of
a powerful non-parametric approach in the exploration of
differentially expressed genes in time-series omics datasets.

MATERIALS AND METHODS

Design

The schematic diagram of JTK and the definition of TEG
in each method are shown in Figure 1. JTK calculates
Kendall’s � between two groups (e.g. control and case). For
two time-series with lengths n, the replicates were averaged,
x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn), we define:

τ (x, y) =
∑

1�i< j�n sgn
(
xj − xi

)
sgn

(
yj − yi

)
1
2 n(n − 1)

, (1)

sgn(x) =
{−1 (x < 0)

0 (x = 0)
1 (x > 0)

. (2)

The numerator in Equation (1) indicates the number of
pairs with consistent behavior between the two time-series,
minus the number with inconsistent behavior. All possible
pairs, and not just neighboring points, are included in the
calculation of � . The denominator indicates the total num-
ber of pairs in the datasets, and � must be in the range from
−1 to 1. Two time-series are perfectly correlated if τ = 1,
and are perfectly anti-correlated if τ = −1, or uncorrelated
if τ = 0. Null distributions for each gene were predicted by
permutation. The number of Kendall’s � obtained by per-
mutation, which is smaller than the � obtained from the ac-
tual order, was counted and divided by the number of per-
mutations (1000 times) to be considered as the P-value.

Data simulation

To assess the performance of each method, we generated
synthetic data that mimicked read count data of RNA-seq

data. The time-course of each gene was simulated using the
following four functions based on the work of Wang et al.
(22):

f1(t) = α log (t + 1) + β (3)

f2(t) = α

(
2

t + 1

)2

+ β (4)

f3(t) = α cos
(

t
2

)
+ 5 + β (5)

f4(t) = α sin
(

t
2

)
+ 5 + β (6)

where, t is the time point, and � and � set the amplitude
and intercept, respectively. The � and � followed a power-
law distribution, and were generated by the rplcon function
(n = 1, min = 30, α = 2.5) of the powerRaw package in R.
The values obtained by these functions (average expression
values) were converted to read counts by a negative bino-
mial (NB) distribution.

Readcount(t) = NB
(

φ−1,
1

f (t) × φ

)
(7)

where � indicates the magnitude of the noise, and in this
study, the noise level refers to �. TEGs, which had different
time-series expression patterns between controls and cases,
were generated from different functions for controls and
cases, while non-TEGs were generated from the same func-
tion. The synthetic dataset for Figures 2 and 3 contains 200
time-series gene expression data conducted for each condi-
tion. The data in Figure 4 contains 100 time-series gene ex-
pression data for each condition. For the gene-labeled non-
TEG, the time-series data for the control and cases were
generated using the same function, and for the gene-labeled
TEG, were generated using the two specified functions. The
combination of functions in the labeled genes is constant
and is shown in the figure.

Implementation of other methods

A brief summary of each method is shown in Table 1. With
maSigPro version 1.56.0 the first step was performed with
the following parameters: degree = 3, 5 or 7, counts =
TRUE, Q = 1, and the second step, step.method = ‘back-
ward’, α = 1. SplineTC version 1.16.1 was performed by
df = 3, 5 or 7, intercept = FALSE for simulation datasets,
or intercept = TRUE for experimental data. ImpulseDE2
version 1.8.0 was performed with the following parame-
ters: boolCaseCtrl = TRUE, scaNProc = 4, scaQThres = 1,
boolIdentifyTransients = TRUE. LimoRhyde version 0.1.2
was used along with default parameters to perform the anal-
ysis. LimoRhyde is used to conduct analysis using the fol-
lowing three steps: (i) test for rhythmicity, (ii) test for dif-
ferential rhythmicity in rhythmic genes and (iii) TEG anal-
ysis of non-differential rhythmicity genes. The first step was
performed for all the genes and the second step was per-
formed for the only significantly rhythmic genes (q < 0.15)
determined in the first step. For the significantly differential



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 3

t

Ex
pr

es
si

on

1 2
3

1

2

3

A

Ex
pr

es
si

on

t

JTK

Not TEG

TEG

Not TEG

TEG

maSigPro

TEG

Not subject
to TEG

analysis*1

TEG

TEG by
adjusting
degree

splineTC

TEG by
default*2

TEG

TEG

TEG by
adjusting the

degree of freedom

ImpulseDE2

TEG

TEG

TEG

Not cover
multimodal data

B
LimoRhyde

TEG

TEG

TEG

Diffierential
rhythmicity

Figure 1. (A) An illustration of the JTK algorithm. Solid arrows pointing upward, downward and sideways indicate an increase, decrease and constant,
respectively, between two points. JTK compares the increase/decrease pattern of two sequences (e.g. control versus case). The relationship of all combi-
nations between the points is summed up, and normalized by the number of combinations that are within the range of −1 to 1. The two time-series are
perfectly correlated if τ = 1, are perfectly anti-correlated if τ = −1 and are uncorrelated if τ = 0. (B) The definition of the TEG in each method. (*1)
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Figure 2. Example plots and ROC curves of simulated data. (A) Simulated data for different sequence lengths and (B) number of points. In the case of sine
curves, the number of peaks increases as the sequence length increases. As the number of time points increases, the number of peaks remains the same,
but the sampling intervals become shorter. The box on the left indicates typical examples of non-TEG genes, and the box on the right indicates typical
examples of TEG genes. The noise level is 0.05, and the error bars represent the standard deviation (n = 3). The top boxes represent examples of sequence
length or time points of 8, while bottom boxes represent examples of 9. Comparison of method performance with ROC curves for different (C) sequence
lengths and (D) number of time points. Datasets in A were used to generate the ROC curves in (C), and datasets in (B) corresponded to (D). The numbers
at the top indicate the length of the sequence or the number of time points, and the numbers on the right indicate the noise level. The degree and degree of
freedom are shown using the color legend. As the degree and degree of freedom should be less than a time point, only limited conditions are illustrated in
the boxes with sequence length or time points of 4.

rhythmic genes (q < 0.05) determined in the second step,
the P-values calculated in the second step were used to draw
ROC. For all genes that were not significant in the first and
second steps, the P-values calculated in the third step were
used to draw the ROC. All P-values were corrected using the
Benjamini–Hochberg (BH) method (23). Unless otherwise
noted, the significance level was set at 0.05.

Processing of biological data

We used time-series RNA-seq data from the study recently
published by Cardoso-Moreira et al. (24) for method com-
parison using realistic datasets. The fastq files were down-
loaded from ArrayExpress with the accession codes E-
MTAB-6798 (mouse) and E-MTAB-6811 (rat). We used the
RNA-seq data on seven tissue types (forebrain, hindbrain,
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Figure 3. Comparison of method performance with ROC curves for different number of replicates with 16 time points. Numbers at the top indicate the
number of replicates, while numbers on the right indicate the noise level. Since ImpulseDE2 requires multiple replicates to predict the NB distribution, the
condition of n = 1 is not shown.

heart, kidney, liver, ovary and testis) across developmen-
tal time points, from early organogenesis to adulthood, for
mouse and rat. Each developmental stage was investigated
in the original study (e.g. e13.5 of mouse was assigned to e15
of rat, and P63 of mouse was assigned to P112 of rat). The
corresponding stages between mouse and rat are shown in
Table 2. We mapped the reads against the reference genome,
GRCm38 and Rnor 6.0, for mouse and rat, respectively, us-
ing STAR version 2.7.6 (25). We calculated transcripts per
million (TPM) using RSEM version 1.3.0 (26). The BAM
files were converted to count data by HTSeq version 0.12.4
(27) with option ‘-s reverse’ using the reference genome.
Data on genes whose average expression level (in TPM) at
each point in mouse and rat was less than 1 were deleted.
This was done to delete data on genes with low expression,
excluding data on genes that are highly expressed in mice
but not in rats. The input for JTK, maSigPro, splineTC and
LimoRhyde was TPM, and the input for ImpulseDE2 com-
prised count data. Enrichment analysis was performed by
gprofiler2 with the default parameters (28).

Computational resource and software

All analyses, except for the RNA-seq data analysis, were
performed on a MacBook Pro 2.3 GHz Intel Core i5 with
16 GB of RAM, using R version 3.6.1 (29). RNA-seq data
analysis was performed using DELL PowerEdge R640 (In-
tel Xeon Gold 6138) and DELL PowerEdge R930 (Intel
Xeon E7-8890v4). The running time was measured with a
single thread.

RESULTS

Our approach is a non-parametric TEG detection algo-
rithm based on JTK. The JTK-based approach calcu-
lates the similarity between two series (e.g. with and with-
out stimuli) and sequentially identifies genes with tempo-

rally different expression trajectories by calculating their P-
values in a permutation test. We compared this JTK-based
approach with maSigPro, splineTC and ImpulseDE2 using
simulated and temporal RNA-seq datasets.

JTK outperforms other methods in performance test with
synthetic time-series datasets

We generated synthetic data to compare the performance
of each method. The simulated datasets consisted of 200
genes, comprising 100 TEG and 100 non-TEG genes. Each
gene was generated by the four functions shown in the ‘Ma-
terials and Methods’ section. Non-TEG genes were gener-
ated from the same function in the control and case, while
TEG genes were generated from a different function. We
sampled three replicates based on an NB distribution, and
evaluated the statistical test power of each method based on
the area under the receiver operator characteristic (ROC)
curve. Here, the input for the ROC curves was BH-corrected
P-values. In order to compare the method performance un-
der different conditions, we generated data based on two
scenarios. In the first scenario, the sequence length was var-
ied, for example, genes based on a sine function increased in
frequency with increasing sequence length (Figure 2A); the
second scenario involved varying the number of time points,
with the sampling interval decreasing with an increase in the
number of time points (Figure 2B).

Considering the resulting ROC curves, the JTK-based
approach performed the best under most conditions com-
pared with the other methods (Figure 2C and D). In both
scenarios, all methods performed poorly as the noise level
increased, but JTK performed well even under high noise
levels. Notably, the performance of the JTK-based ap-
proach tended to increase as the sequence length increased
(Figure 2C). We found that the area under curve (AUC) val-
ues was saturated for conditions with more than 16 points,
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Figure 4. Preferences of each method and function. Functions 1–4 correspond to Equations (3–6), respectively. For example, the top left box in each panel
shows the results of the performance evaluation of the dataset containing only function 1 and 2. The y-axis represents the AUC, and the x-axis represents
various methods. (A) 4 time points, (B) 8 time points, (C) 16 time points and (D) 32 time points, with a noise level of 0.05.

Table 1. Summary of each of the methods compared in this study

Method Model/algorithm Hypothesis test Ref

maSigPro NB model polynomial regression Log likelihood ratio (13)
splineTC Spline regression Moderate F-statics (14)
ImpulseDE2 NB model Impulse model Log likelihood ratio (15)
LimoRhyde Cosinor regression Moderate F-statics (18)
JTK Jonckheere–Terpstra-Kendall’s � Permutation test This work

This table is based on Spies et al. (11).

Table 2. Stage correspondences between mouse and rat

Organism\stage number 0 1 2 3 4 5 6 7 8 9 10 11 12

Mouse e10.5 e11.5 e12.5 e13.5 e14.5 e15.5 e16.5 e17.5 P0 P3 P14 P28 P63
Rat e11 e12 e14 e15 e16 e18 e19 e20 P0 P3 P14 P42 P112
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but the AUC tended to increase for conditions with 4–16
points.

In addition to sequence length and time points, we also
studied the effect of the number of replicates on method ac-
curacy (Figure 3). The results showed that the JTK-based
approach also outperformed the other methods in fewer
replicates. All methods performed worse with increasing
noise levels, but accuracy tended to increase with increas-
ing number of replicates. In order to clarify the preference of
each method and function, we compared the performance
under the condition that the combination of functions was
fixed for the gene labeled as TEG (Figure 4). As a result,
it was found that the performance of the methods differed
depending on the combination of functions.

Comparison of TEG detection approaches using simulation
data reported by Spies et al.

To impartially compare the different methods, we per-
formed a performance test using the simulation dataset cre-
ated by Spies et al. (11). This dataset contained 18 503
genes, of which 1200 were TEGs. To mimic realistic biolog-
ical datasets, mean and dispersion indexes were extracted
from expression datasets comprising 41 immortalized �-
cell samples (30), and NB distributions were created based
on the parameters. Control sequences were sampled from
corresponding NB distributions, and TEGs were generated
by multiplying arbitrary multiplicators by the control se-
quences. For example, ‘Down early slow’ was generated
by multiplying each of the four data points by 0.5, 0.17,
0.17 and 0.17, respectively (Figure 5A). Similarly, ‘Mixed
slow’ indicates the second, third and fourth data points
multiplied by 6, 3 and 1.2, respectively. While ‘Up early
slow’ indicates data points multiplied by 2, 6 and 6, re-
spectively, ‘Down early slow’ indicates data points gener-
ated by multiplying each of the four data points by 0.5,
0.17, 0.17 and 0.17, respectively. Based on the resulting
ROC curve, ImpulseDE2 exhibited the best performance,
followed by splineTC, while maSigPro and JTK were less
accurate than the other approaches, and roughly exhibited
the same performance (Figure 5B).

Application for the transcriptomes across developmental time
points for mouse and rat

To assess the methods in a practical dataset, we evalu-
ated each method using developmental time-series RNA-
seq data from mice and rats. The resulting overlap in genes
in the forebrain, hindbrain, heart, kidney, liver, ovaries and
testes identified as TEG by each method are shown in Fig-
ure 6A, B, C, D, E, F and G, respectively. ImpulseDE2,
successively followed by splineTC, LimoRhyde, maSigPro
and JTK, detected the largest number of TEGs. The time-
series changes in the expression of genes identified by TEGs
by each method are shown in Figure 7. Figure 7A shows a
TEG, identified by all methods in the liver and Figure 7B
shows a gene that were identified as TEGs only by JTK and
ImpulseDE2. Figure 7C show a gene that was identified as
TEGs by the three methods barring JTK. The enrichment
analysis using significant genes identified by LimoRhyde,
which includes an intermediate number of candidates, is
shown in Supplementary Table S1.

Evaluation of running time

Finally, we evaluated the computational speed of the JTK-
based approach by comparing it with other methods us-
ing simulated datasets that comprised eight time points and
two hundred genes (Figure 8). The permutation test for the
JTK-based method was performed 1000 times. For maSig-
Pro, a non-flat gene extraction step was included in the run-
ning time. JTK had the second-longest computation time
after ImpulseDE2, followed by maSigPro, splineTC and
LimoRhyde. The ranks did not depend on the degree or de-
gree of freedom. Most of the running time of JTK was uti-
lized in the performance of a permutation test to calculate
the P-values.

DISCUSSION

The best approach depends on the research objectives

The primary outcome of this study suggests that the selec-
tion of an analytical method depends on its adaptability to
your hypothesis and objectives because each method has a
different definition of TEGs, as shown in Figure 1B. For ex-
ample, whether a gene with the same waveform but with a
different intercept is a TEG depends on the purpose of the
analysis. Therefore, if the aim is to detect it as a TEG, you
should select a method that also includes the intercept in the
hypothesis test, and you should not choose a method, such
as JTK, that focuses only on the correlation of magnitude
between data points. Alternatively, if the aim is to explore
genes with different waveform shapes rather than expression
levels, JTK, which focuses on the large and small relation-
ships between time points, is an excellent candidate.

Benchmarks

In a performance comparison using unique simulation data
based on several scenarios, JTK showed an advantage over
other methods (Figure 2). The performance of JTK im-
proved as the sequence length increased, while there was
barely any change in accuracy with an increase in time
points. This suggests that a longer experimental period may
result in a better experimental design for TEG detection
with JTK, compared to a more frequent sampling period.
Furthermore, data show that increasing the number of repli-
cates as well as the sequence length, improves the accuracy
of TEG detection in all methods (Figure 3). These results
suggest an essential fact when considering the experimen-
tal design. Even if the noise is considerable, frequent sam-
pling and the use of many replicates guarantee accuracy. In
contrast, for experimental systems with low noise, accuracy
is maintained even if the number of sampling points and
replicate usage is reduced, thus decreasing the experiment’s
cost. Furthermore, optimization of the sampling frequency
is required to differentiate genes with similar expression pat-
terns. It is essential to examine or estimate the phase du-
ration by pilot experiments to optimize the sampling fre-
quency. These results show that an appropriate experimen-
tal design that considers the cost, precision, replication and
sampling frequency leads to the design of a successful time-
series experiment.
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Although the general workflow of maSigPro and
LimoRhyde involves multiple tests for hypothesis valida-
tion, we decided to evaluate the results of the hypothesis test
in the final step only. This is because the definition of TEG
differs among various methods, and the P-values obtained
by a single hypothesis test, and those obtained by multiple
hypothesis tests have different false discovery rates. There is
also a problem regarding whether the P-values obtained in
the first step or the second step should be used as input of
the ROC curve. LimoRhyde detects the phase change of pe-
riodic gene expression as differential rhythmicity in the sec-
ond step, but the second step is skipped in determination
of the comparison in this study such that the results may
be different in the analysis by using the general workflow.
The benchmark may be disadvantageous for LimoRhyde
because the synthetic data set includes both sine and cosine
curves as TEGs.

Next, the analysis with a fixed combination of functions
revealed each method’s preference (Figure 4). Although the
trends were generally consistent across time point lengths,
the combination of functions 1 and 4 in Figure 4A (bot-
tom left box) showed an AUC of almost 0.5 for all methods.
This is because the waveforms of the first half of the sine
curve and the exponentially increasing pattern are consis-
tent under the condition with few time points. As the num-
ber of time points increased, a trough of the sine curve was
formed, which could be discriminated by each method. Fur-
thermore, the combination of functions 3 and 4 (lower right
box) in JTK, that is, the sine and cosine curves, can be ac-
curately distinguished, which indicates that JTK can also
be used to detect the phase. The Limorhyde workflow may
detect genes with different phases in the second step, but as

we skipped that step, we could not detect the difference be-
tween sine and cosine curves. These results show that JTK
exhibits no extreme bias due to specific functions and shows
consistent performance for all functions.

In contrast, a comparison of the method accuracy using
the simulation data reported by Spies et al. (11) showed that
the performance of JTK was similar to that of maSigPro
and lower than that of the other two approaches (Figure 5).
This is due to the specific method used in the identification
of TEGs that are generated by multiplying some control se-
quence points by a constant. With this method of TEG cre-
ation, the magnitude of correlation of each time point may
not change; therefore, JTK cannot elucidate the change, but
can only detect a change if the magnitude of correlation of
each time point has changed. To accurately detect TEGs in
such data, a pairwise comparison with each time point as
a category may be more appropriate than the analysis in
the time domain used here, as argued by Spies et al. (11).
Thus, the detectable TEGs may vary between methods, and
a method must be selected by considering the type of TEG
intended for detection.

JTK also had the second-longest running time among
the comparators in this study (Figure 8). This is because
the computation cost increases linearly depending on the
number of permutations, since the P-value is computed by
the permutation test. This problem can be solved by using
the Harding algorithm to predict the null distribution (31).
However, it should be noted that because the Harding algo-
rithm requires a long sequence (>10), the datasets that can
be analyzed are limited.

In this study, we used the mean expression level rather
than the median. Since outliers may influence accurate test-



8 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

A Forebrain B Hindbrain C Heart

D Kidney E Liver F Ovary

G Testis

JTK

maSigPro

splineTC

LimoRhydeImpulseDE2

2

1

9

152860

0

0

2
1

10

152

67

504

625

0

0

0

5
0

3

24 207

49

5601
3

0
0

12

3222

26

JTK

maSigPro

splineTC

LimoRhydeImpulseDE2

0

5

9

191910

0

0

21

03

355

69

327

627

0

0

0

3
0

1

27 307

89

5283
4

0
0

18

3344

40

JTK

maSigPro

splineTC

LimoRhydeImpulseDE2

3

3

13

243476

0

1

30

21

205

69

555

690

0

0

0

4
0 2

15 276

29

5469
4

0
1

14

2584

27

JTK

maSigPro

splineTC

LimoRhydeImpulseDE2

3

0

4

512091

0

2

01

00

0

151

163

1501

0

0

0

110
4

0 0

0

9308
0

0

0

99

2

0

JTK

maSigPro

splineTC

LimoRhydeImpulseDE2

0

14

18

42939

0

0

0
0

160

355

58

1380

233

0

0

0

81
1

9 761

5

5307
1

1

0

33

948

17

JTK

maSigPro

splineTC

LimoRhydeImpulseDE2

5

0

11

442763

0

1

35

00

2

114

596

1256

0

0

0

121
6

1 18

0

9040
0

0
0

59

86

3

JTK

maSigPro

splineTC

LimoRhydeImpulseDE2

3

2

21

365865

0

0

5
5

00

13

106

834

1202

1

0

0

7
0 4

0 27

3

6248
0

0
0

58

50

2

Figure 6. Overlap of genes identified as TEGs by each method. Venn diagrams showing the overlap of TEGs (q < 0.05) detected by each method in (A)
forebrain, (B) hindbrain, (C) heart, (D) kidney, (E) liver, (F) ovary and (G) testis.

ing, the median may be more robust when analyzing sam-
ples with high variability. Appropriate statistical treatment
should be applied depending on the experimental design.
The JTK concept can also be applied to the clustering
of time-series data. Most of the existing methods, such as
DTWscore (22), are used to calculate the distance between
two time series data to obtain the similarity. In contrast,
as JTK only focuses on increasing or decreasing values be-
tween two points, it may be possible to cluster the data ac-
cording to the waveform patterns rather than expression
levels. We assessed the performance on the small simulation
data, but it would be interesting to verify it on a more ex-
tensive data set, say with 20k genes. This will evaluate the
robustness of the false positive rate.

Application for RNA-seq datasets

The analysis of time-series developmental RNA-seq data
for mice and rats showed that method selection and thresh-
old settings were essential for the analysis of time-series data
(Figure 6). While about 0.5–1% of the genes were signifi-
cant at the 5% level of significance for JTK, more than 95%
of the genes in ImpulseDE2 were determined to be TEGs.
This suggests that JTK is a more statistically conservative
test than the other methods. These results indicate that not
only the selection of the method but also the setting of the
significance level is essential for TEG analysis because the
distribution of P-values varies between methods. Further-
more, many genes that were not determined as TEGs by
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JTK but were determined as TEGs by the other four meth-
ods, had different expression baselines between mouse and
rat (Figure 7C). This is because JTK is an algorithm that fo-
cuses only on the relative increase or decrease between time
points, and not on absolute expression.

Limitations

The number of permutation tests must be increased to in-
crease the number of significant digits in the P-value, and
the computational cost increases linearly. Since JTK focuses
only on the magnitude of correlation of each time point, it
is not possible to distinguish between linear and non-linear
increases. The relationship for each time point indicates an

increasing pattern in both cases, even if one increases expo-
nentially while the other increases linearly, as illustrated in
the third row from the top of Figure 1B. Hence, JTK con-
siders linear and non-linear increases as equivalent.

CONCLUSION

We proposed a JTK-based non-parametric temporal differ-
ential expressed gene detection algorithm. JTK calculates
the similarity between two time-series expression datasets
by comparing the increase or decrease pattern between each
time point, while P-values are calculated using a permuta-
tion test. A comprehensive comparison with other methods
using synthetic data shows that JTK is an excellent TEG



10 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

detection algorithm, especially when the dataset has a long
sequence, or high noise levels. Additionally, we identified
genes that were differentially expressed between mouse and
rat developmental stages by applying JTK to time-series
RNA-seq data of seven organs across developmental time
points. Furthermore, JTK did show a tendency to iden-
tify genes as TEGs when the genes had different baselines
but similar wave patterns. These results suggest that JTK is
a suitable algorithm when focusing on expression patterns
over time rather than absolute expression levels, for exam-
ple, comparisons between different species. Moreover, the
results show that the JTK-based non-parametric TEG de-
tection algorithm is an excellent approach for TEG detec-
tion.
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