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Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV). Although SFTS originated in 
China, it is an emerging infectious disease with prevalence confirmed in Japan, Korea, and Vietnam. The full-length genomes 
of 51 Korean SFTSV isolates from 2013 to 2016 were sequenced, and the sequences were deposited into a public database 
(GenBank) and analyzed to elucidate the phylogeny and evolution of the virus. Although most of the Korean SFTSV iso-
lates were closely related to previously reported Japanese isolates, some were closely related to previously reported Chinese 
isolates. We identified one Korean strain that appears to have resulted from multiple inter-lineage reassortments. Several 
nucleotide and amino acid variations specific to the Korean isolates were identified. Future studies should focus on how 
these variations affect virus pathogenicity and evolution.

Severe fever with thrombocytopenia syndrome (SFTS) is 
caused by SFTS virus (SFTSV), a member of the order Bun-
yavirales, family Phenuiviridae, genus Bandavirus (https 
://talk.ictvo nline .org/taxon omy). SFTS is a newly emerg-
ing infectious disease with its major clinical symptoms 

and laboratory findings including fever, thrombocytopenia, 
gastrointestinal symptoms, leukopenia, and elevated levels 
of serum hepatic enzymes. Patients with SFTS usually die 
from multiple organ failure, and the average fatality rate is 
12%, although it has been reported to be as high as 30% in 
some areas [1–3]. SFTS was first reported in China, with 
additional cases subsequently confirmed in Japan, Korea, 
and, most recently, Vietnam [4]. Two cases with comparable 
symptoms caused by a similar virus, Heartland virus, were 
reported in the United States, and cases of infection with 
novel bandaviruses, including the Hunter Island group virus, 
Malsoor virus, and Guertu virus, were reported in Australia, 
India, and China, respectively [1, 5–10].

SFTS is mainly transmitted by ticks. Specifically, ticks 
of the family Ixodidae have been implicated as vectors of 
SFTSV. However, human-to-human transmission by contact 
with blood or body fluid from infected patients has also been 
reported in China and South Korea [2, 11–14]. Significantly, 
a novel case of SFTS infection was reported in South Korea 
without evidence of a tick bite [13]. Since the first report 
of SFTS infection in 2010, the number of cases has con-
tinuously increased every year in China, Japan, and South 
Korea. Patient surveillance in South Korea demonstrated 36 
confirmed cases in 2013, which increased to 55 in 2014, 79 
in 2015, and 165 in 2016 [15, 16]. A total of 158 SFTSV 
strains were isolated from the serum of these patients as 
described previously [17, 18]. Given the novelty of this virus 
and the limited information available, we aimed to acquire 
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more molecular-level information on SFTSV toward the goal 
of developing a new diagnostic method for SFTS. To this 
end, we randomly selected 51 cases while ensuring that all 
provinces with a confirmed SFTS patient were included, and 
the isolates from these cases were sequenced.

The 51 clinical samples used in this study were collected 
as part of a laboratory surveillance system led by the Korea 
National Institute of Health (KNIH) during 2013–2016. In 
brief, the 5′- and 3′-terminal regions were sequenced by 
rapid amplification of cDNA ends technology. The genome 
sequences, including 41 tripartite (segments L, M, and S) 
and 10 bipartite (segments M and S) sequences, were gener-
ated using de novo assembly with DNASTAR SeqMan ver-
sion 7.1 (Lasergene). The genome sequences obtained in this 
study were deposited in the GenBank/EMBL/DDBJ data-
bases under the accession numbers KU507543–KU507577, 
KP663731–KP663745, and MF094728–MF094820, respec-
tively. For gene characterization, we collected and manually 
edited 207 tripartite segmented genome sequences (163 Chi-
nese, 43 Japanese, and one Korean) with available sampling 
dates from the GenBank database. Here, we focused on the 
protein-coding regions of SFTSV to investigate sequence 
variations and evolutionary dynamics.

The geographical distribution of the sequenced SFTSV 
samples is shown in Figure 1. In our dataset, isolates from 
Daegu represented the majority of the SFTSV genomes 
sequenced.

Variation analysis was performed using 207 genome 
sequences collected from the National Center for Biotech-
nology Information GenBank database and the 51 genome 
sequences from the KNIH. The genome sequences were 
aligned against a reference genome sequence (strain HB29: 
accession no. NC_018139, NC_018138, and NC_018137 
for the L, M, and S segment, respectively) using MUSCLE 
v3.8 [19]. At the nucleotide level, the total coding sequence 
length of the three segments was 6255, 3222, and 1620 
nucleotides for the L, M, and S segment, respectively. This 
dataset revealed sequence variations by segment, including 
1,254 variations for segment L, 803 for segment M, and 
358 for segment S, 207, 154, and 58 of which were present 
exclusively in the Korean isolates, respectively.

At the amino acid level, the L, M, and S segments contain 
2084, 1074, and 540 amino acid residues, respectively. In the 
Korean isolates, 82, 122, and 48 amino acids varied in the 
L, M, and S segments, respectively, 31, 37, and 16 of which 
were specific to the Korean sequences. In segment S, site 
238 of the nonstructural protein coding region contained 
multiple variations: D (Asp) > E (Glu)/N (Asn)/G (Gly). In 
all of the Japanese sequences, this change was to E (Glu), 
whereas the Korean sequences presented three variations: 
one E (Glu) (strain 16KS28), two N (Asn) (strain 16KS31 
and 16KS40), and one G (Gly) (strain 16KS26). A Japanese 
research group reported that substitution of the amino acid 

residue 962 (R > S) is crucial for the membrane fusion step 
of viral infection [20]. In our data, all of the KNIH strains 
except for strain 15KS7 (accession no. MF094809) had this 
replacement at residue 962. Another study found that the 
R > W 2 substitution at position 624 was associated with 
strong cell-fusion activity under acidic conditions, although 
none of the KNIH strains showed this variation [21].

To investigate the evolutionary dynamics of SFTSV, a 
maximum-clade-credibility tree was constructed from Bayes-
ian phylogenetic analysis using the BEAST v1.8.4 package 
[22] and the FigTree v1.4 program [23], with general time-
reversible, gamma-distributed substitution rate heterogeneity 
(G) and proportion of invariable sites (I) under both strict and 
uncorrelated relaxed molecular clocks. The trees for each of 
the three segments showed a similar topology (Fig. 2). A 
total of 248 sequences for segment L and 258 sequences for 
segments M and S were divided into two major geographical 
clades, designated as the Chinese clade and the Korean/Japa-
nese clade (hereafter referred to as clade B, representing the 
virus commonly circulating in South Korea and Japan). The 
Chinese geographical clade was composed of five clades (A, 
C–F), and geographical clade B was the largest single clade.

Among all of the analyzed isolates in clade B, there were 
30 Chinese, 42 Japanese, and 34 Korean strains for segment 
L; 29 Chinese, 42 Japanese, and 41 Korean strains for seg-
ment M; and 30 Chinese, 42 Japanese, and 41 Korean strains 

Fig. 1  Geographic distribution of 51 selected SFTS cases in South 
Korea from 2013 to 2016 analyzed in this study. Of the regions with 
confirmed cases, Daegu was the main endemic region in this study. 
The shading of each region reflects the number of SFTS cases by area
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for segment S. Among the 41 tripartite KNIH genomes (seg-
ments L, M, and S), 34 were clustered in clade B. Of the 
bipartite KNIH sequences (segments M and S), seven of 
10 isolates were also grouped in clade B. Six sequences of 
KNIH isolates – KASJH (2014), 16KS15 (2016), 16KS17 

(2016), 16KS33 (2016), 16KS51 (2016), and 16KS52 (2016) 
– were grouped in the Chinese clade D, whereas one and two 
isolates of the remaining three bipartite-sequenced samples 
belonged to the Chinese clade D and A, respectively. One 
unique isolate from the KNIH (16KS45) was identified to 
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Fig. 2  Maximum-clade-credibility phylogenetic trees of the three 
genome segments: (A) segment S, (B) segment M, and (C) segment 
L. Red, Korean complete genome sequences; orange, Korean incom-
plete genome sequences (M and S segments only); green, Japanese 

complete genome sequences; black, Chinese complete genome 
sequences; purple, Korean complete genome sequence from Gen-
Bank; blue, C1 clade in each of the three segments
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have resulted from multiple inter-lineage reassortment. This 
isolate was grouped into different Chinese clades accord-
ing to the segment analyzed: the segment L tree grouped 
16KS45 in clade C, whereas the segment M and S trees 
grouped this isolate into clade A.

Although 98% of the Japanese isolates clustered in clade B, 
the isolate SPL087A grouped in Chinese clades; clade C for 
segment L, clade E for segment M, and clade A for segment 
S. For the Chinese isolates, 81.6% of the genome sequences 
clustered in the Chinese clades, whereas 30 isolates clustered 
in the Korean/Japanese clade B. Altogether, these results indi-
cate that the majority of the Korean and Japanese SFTSV 
genomes cluster distinctly from the Chinese SFTSV genomes. 
Nevertheless, clade B may need to be separated into at least 
three subclades owing to the recent growth of this clade with 
a large number of Korean SFTSV sequences.

Genetic reassortment within the segmented RNA genome 
of SFTSV was observed in this study (Table 1). The Japa-
nese isolate SPL087A emerged as a unique reassortant 
within the Japanese genomes and clustered in the Chinese 
clade C, E, and A for the L, M, and S segment, respectively. 
The Korean isolate 16KS45 was a unique reassortant among 
the Korean sequences, belonging to the Chinese clade C, A, 
and A for the L, M, and S segment, respectively. The Chi-
nese strains NB32 and NB38 were reassigned from Chinese 
clades to the Korean/Japanese clade B. NB32 clustered in 
clade B, A, and B and NB38 clustered in clade A, A, and B 
for segment L, M, and S, respectively. Of the 15 strains that 
resulted from reassortment, eight had their L and S segments 
assigned to the same clade and the M segment was assigned 
to a different clade, which in accordance with the findings 
of Rezelj et al. [24]. The present analysis also identified a 

novel Korean reassortant of SFTSV that was not found in 
earlier studies [25, 26].

Bayesian phylogenetic analysis was performed to esti-
mate the evolutionary rate and timescale for SFTSV. 
The evolutionary rate of all sequences of SFTSV was 
estimated to be 1.07E-4 (5.25 E-5–1.62E-4) for seg-
ment L, 2.08E-4 (1.11E-4–3.04E-4) for segment M, 
and 2.60E-4 (1.4588E-4–3.5961E-4) for segment S. 
The estimated time of the most recent common ances-
tor was 1736.66 (1566.24–1874.19) for segment L, 
1758.65 (1600.62–1875.34) for segment M, and 1869.82 
(1798.98–1929.03) for segment S, thereby indicating that 
SFTSV might have originated between 1736 and 1869. 
Although a different dataset was used in each study, our 
estimates of evolutionary rate were similar to those reported 
previously [27, 28]. However, Liu et  al. [26] reported 
3.25–4.2 times higher evolutionary rates than our estimates.

In summary, in this study, we determined 51 full-length 
genome sequences of Korean SFTSV isolates that were sam-
pled from 2013 to 2016. This is the first phylogenetic and 
evolutionary analysis of a large number of Korean SFTSV 
genome sequences. Most of these KNIH sequences clus-
tered in a major clade with Japanese sequences, whereas 
six complete KNIH genome sequences clustered in Chinese 
clades. One of the Korean isolates was identified as a novel 
reassortant and was assigned to a Chinese clade.
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Table 1  Reassortants identified 
based on phylogenetic tree 
topology differences

Isolate Country (city) Collection date 
(year)

L M S

HZM China (Huaiyangshan) 2010 D D F
2011YPQ12 China (Henan, Xinyang pingqiao) 2011 F A F
2011YSC60 China (Henan, Xinyang guangshan) 2011 A F A
YSC3 China (Henan, Xinyang) 2011 F F A
AHL/China/2011 China (Anhui) 2011 C A D
LN2012-14 China (Liaoning) 2012 D F D
LN2012-34 China (Liaoning) 2012 D F D
LN2012-41 China (Liaoning) 2012 D F D
LN2012-42 China (Liaoning) 2012 D F D
LN2012-58 China (Liaoning) 2012 D F F
NB32/CHN/2013 China (NA) 2013 B A B
NB38/CHN/2013 China (NA) 2013 A A B
JS2014-39 China (Jiangsu) 2014 F F A
SPL087A Japan (NA) 2013 C E A
16KS45 South Korea (Gyeongsangnam) 2016 C A A
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