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Abstract: Background: Glioblastoma (GBM) is the most common and deadly brain tumor. The
clinical significance of necroptosis (NCPS) genes in GBM is unclear. The goal of this study is to
reveal the potential prognostic NCPS genes associated with GBM, elucidate their functions, and
establish an effective prognostic model for GBM patients. Methods: Firstly, the NCPS genes in GBM
were identified by single-cell analysis of the GSE182109 dataset in the GEO database and weighted
co-expression network analysis (WGCNA) of The Cancer Genome Atlas (TCGA) data. Three machine
learning algorithms (Lasso, SVM-RFE, Boruta) combined with COX regression were used to build
prognostic models. The subsequent analysis included survival, immune microenvironments, and
mutations. Finally, the clinical significance of NCPS in GBM was explored by constructing nomograms.
Results: We constructed a GBM prognostic model composed of NCPS-related genes, including CTSD,
AP1S1, YWHAG, and IER3, which were validated to have good performance. According to the above
prognostic model, GBM patients in the TCGA and CGGA groups could be divided into two groups
according to NCPS, with significant differences in survival analysis between the two groups and a
markedly worse prognostic status in the high NCPS group (p < 0.001). In addition, the high NCPS
group had higher levels of immune checkpoint-related gene expression, suggesting that they may be
more likely to benefit from immunotherapy. Conclusions: Four genes (CTSD, AP1S1, YWHAG, and
IER3) were screened through three machine learning algorithms to construct a prognostic model for
GBM. These key and novel diagnostic markers may become new targets for diagnosing and treating
patients with GBM.

Keywords: glioblastoma; necroptosis; machine learning algorithms; single-cell analysis; immune
microenvironments

1. Introduction

Glioblastoma (GBM) is an aggressive, highly malignant, and lethal brain tumor that
originates from astrocytes and accounts for approximately 80% of all CNS malignan-
cies [1]. The overall survival of GBM patients after standard treatment is generally less than
15 months, and although some patients with recurrent GBM can benefit from improved
survival and prognosis when they undergo secondary surgery [2,3], the overall 5-year
survival rate is still less than 5% [4,5]. The high frequency of molecular mutations (p53, RB,
unmethylated MGMT) makes GBM less sensitive to conventional cytotoxic therapies and
highly resistant to standard chemotherapy and radiotherapy [6]. Thus, it is important to
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identify new targets and molecular mechanisms that can propose alternative therapeutic
strategies. Genetic data mining has attracted more and more attention with the develop-
ment of high-throughput sequencing and bioinformatics. Therefore, the discovery of new
markers that inhibit cell growth, migration, and invasion in GBM, and the study of their
biological mechanisms for treating GBM patients, as well as the construction of prognostic
models are undoubtedly essential for the advancement of prognosis and treatment.

Tumors can escape from immune surveillance, which includes the loss of programmed
apoptosis [7]. Therefore, the inducing of programmed apoptosis in tumor cells is an impor-
tant treatment for tumors. Targeting NCPS is considered a prospective cancer treatment
strategy. Programmed cell death participated in homeostatic regulation, inflammatory
response, anti-infective, and carcinogenic, which includes apoptosis, cell scorch, NCPS, and
iron death [8–10]. Since the discovery of NCPS by HITOMI et al. in 2008 [11], the underlying
mechanisms have been elucidated as research progresses [12]. Further exploration of NCPS
has contributed to a new understanding of the composition of programmed cell death. It is
mechanistically similar to apoptosis and morphologically similar to necrosis. It is mediated
by activated receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-spectrum
kinase domain-like (MLKL) [13]. Previous studies find NCPS associated with several tumor
types and their immune microenvironment [14]. At present, research on NCPS in neuro-
logical disorders has focused on non-neoplastic diseases, such as cerebral ischemia [15],
traumatic brain injury [16], and Alzheimer’s disease [17]. Previous researchers have shown
that Alzheimer’s disease can be alleviated by overexpression of the core molecule of NCPS,
MLKL [17]. Damage caused by cerebral ischemia can be reduced by inhibitors of NCPS [15].
However, its relationship with GBM is not yet clear. Thus, it is of great significance to
explore the role of NCPS in GBM.

Single-cell RNA sequencing (scRNA-seq) is now emerging as a new approach to the
study of human tumors, allowing gene expression data to be analyzed at the individual
cell level. The multidimensional analysis of cell clustering allows for a clear exploration
of the cellular heterogeneity of tumor tissue and the spatial, molecular, and functional
heterogeneity of associated immune cells [18]. Currently, some researchers have begun to
explore glioma heterogeneity from a single-cell perspective [19–21]. However, the majority
of studies have focused on the heterogeneity of immune cells themselves in gliomas, with
limited studies focusing on the expression of cell death-related molecules in gliomas and
the impact on the immune microenvironment, particularly NCPS.

Nowadays, next-generation sequencing (NGS) technologies allow us to explore the
variation of thousands of molecules at multiple omics levels, but how to choose the right
and accurate variables in a high-dimensional computation, machine learning is a promising
algorithm for computing such problems [22]. Some of the popular machine learning
algorithms include the Least Absolute Shrinkage and Selection Operator (LASSO), Support
Vector Machine (SVM), and Random Forest (RF). LASSO [23] is a regression method that
is of great importance in datasets with many variables and supports unbiased parameter
selection. SVM is an algorithm that efficiently handles problems by using a non-linear
kernel function [24,25], while recursive feature elimination (RFE) is a popular method of
variable selection at the multi-omics level [26,27]. In this research, we used support vector
machine recursive feature elimination (SVM-RFE) to dimensionally reduce the search for
suitable variables. Random Forest is an integrated algorithm based on decision trees [28].
The Boruta algorithm is a wrapper around the Random Forest algorithm, allowing the
algorithm to iteratively remove less relevant features determined by statistical tests [29].

In this study, to explore GBM-associated potentially prognostic NCPS genes and
clarify their functions to provide a new reference for the diagnosis and treatment of GBM
patients, we collected and collated GBM patients’ data from The Cancer Genome Atlas
(TCGA) database, the GEO database, and sequencing data from China Glioma Genome
Atlas Database (CGGA). Weighted co-expression network analysis (WGCNA) combined
with machine learning was used to develop a GBM NCPS-related prognostic model, which
was divided into two groups based on median values according to risk scores. In addition,
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the value of using multiple immune scoring algorithms to assess the tumor immune
microenvironment and tumor mutational load characteristics is also explored in this paper.

2. Materials and Methods
2.1. Transcriptome Data Download and Processing

The transcriptome files of GBM and the clinical information of the samples correspond-
ing to them were downloaded from the TCGA database (https://portal.gdc.cancer.gov/,
accessed on 16 May 2022), and the TPM data were extracted for subsequent analysis. After
removing the non-primary tumor samples, a final sample of 143 GBM patients with com-
plete clinical information was used as a training cohort (Table S1). After downloading 325
glioma samples from the CGGA portal (http://www.cgga.org.cn/index.jsp, accessed on 16
May 2022), only GBM-related information was retained, and, finally, 85 GBM samples were
obtained, and the transcriptome FPKM data were converted to TPM data and combined
with clinical information as the validation cohort data [30].

2.2. Single-Cell Data Download and Processing

The GSE182109 single-cell glioma dataset was downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 19 May 2022) and 11 GBM samples
from 44 glioma patients were selected for analysis [31]. To assure data quality, the cells
selected for this study set the screening criteria as less than 20% of mitochondrial genes,
more than 200 genes, and gene expression between 200 and 7000, and containing more
than three genes. The number of highly variant genes was 3000. Samples were integrated
using SCT correction. Next, data dimensionality was reduced by setting the “DIMS”
parameter to 25 and using the TSNE method. The clustering of cells was performed using
the “KNN” method. Cells were subsequently annotated using different cell surface markers.
Finally, NCPS genes were imported using the “AddModuleScore” function to determine
the percentage of NCPS-related genes in each cell.

2.3. The Acquisition of NCPS-Related Genes

A total of 614 genes associated with NCPS were identified in the Genecards database
(https://www.genecards.org/, accessed on 17 April 2022). We set the correlation coefficient
threshold to greater than or equal to 1.0 and finally obtained 91 genes associated with NCPS.

2.4. Weighted Co-Expression Network Analysis (WGCNA) and Single Sample Gene Set
Enrichment Analysis (ssGSEA)

Weighted gene co-expression network analysis (WGCNA) is a systems biology ap-
proach that explores the gene network itself and its associated phenotypes, as well as the
core genes in the network, by finding highly correlated gene modules, which are ultimately
used to identify candidate biomarker genes or therapeutic targets. Additionally, ssGSEA
analysis is commonly used to quantify specific genomes in a sample. In this study, ssGSEA
analysis was used to obtain the associated scores of NCPSfor each GBM patient. Then,
WGCNA was used to obtain GBM score-associated gene modules in order to identify
NCPS-associated genes.

2.5. Construction of the Prognostic Model Associated with NCPS

Univariate Cox analysis was used to initially identify the correlation between NCPS-
related genes and patient prognosis, and we selected a p value less than 0.01 as an indication
that the gene had a significant prognostic ability. After filtering, candidate prognostic genes
were selected by a combined analysis of three machine learning algorithms, including
the LASSO regression algorithm, the SVM-RFE algorithm [32], and the random forest-
based Boruta algorithm [33]. In all three algorithms, the number of random seeds is
set to 2022, the maximum number of passes of the lambda value on the data in LASSO
is 1000, the 10-fold cross-validation is used in the RFE algorithm and the calculation
method is set to “svmRadial”, and the number of trees to 500 is adjusted in the Boruta
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algorithm. Subsequently, overlapping genes from the three algorithms were selected from
the candidate genes and, finally, a prognostic model was constructed using multivariate
Cox regression. The correlation coefficients from multifactorial Cox regression analyses
allowed us to derive the NCPS scores for each sample and to divide them into two groups
according to the median. The prognosis was assessed using the Kaplan–Meier curve, and
p < 0.05 was considered a clinically significant prognosis. The classification of GBM was
evaluated by applying principal component analysis (PCA) to observe the grouping of
this model. On this basis, modeling tests were performed on the external data using the
above-mentioned methods.

2.6. Immunological Function and Mutation Analysis

The “IBOR” package integrates various immune infiltration assessment algorithms in
the R language [34]. Using the “IBOR” package, we evaluated seven immune infiltration
algorithms for GBM patients in the TCGA repository and showed the different levels of
infiltration of various immune cells in a heat map to investigate the differences in immune
cell infiltration between the different necroptotic groups. The genes associated with the
immune checkpoint identified in the NCPS subgroup were also analyzed in a box plot. We
also performed a study of the major variants in GBM, presenting the top 20 genes with the
highest mutation frequency and the base types of the major mutations in GBM.

2.7. Location and Expression of Prognostic Models in Single-Cell Sequencing Analysis

In single-cell sequencing analysis, the expression of the genes used to construct the
prognostic model was analyzed in the well-annotated cells to find out the expression of
a specific gene in prognostic model genes at the single-cell level, and the expression was
presented using TSNE plots.

2.8. Building a Predictive Nomogram

In this study, we used the Nomogram to establish a method that can effectively predict
the probability of survival of patients, taking into account the influence of clinical covariates.
The NCPS values were correlated with clinical data to construct a Nomogram to evaluate
the risk of death in patients with GBM. Finally, the patient’s prognosis was evaluated based
on the ROC curve.

3. Results
3.1. Single Cell Sequencing Data Analysis

The study flow chart of this article is shown in Figure 1. The single-cell sequencing
dataset GSE182109 from GBM was used as a follow-up analysis and different samples were
integrated. The results are shown in Figure 2A, with 11 samples having no significant batch
effects for subsequent analysis. All cells were then clustered into 12 clusters using the KNN
clustering algorithm (Figure 2B,C). Subsequently, using the “AddModuleScore” function,
91 genes associated with NCPS were entered, resulting in the percentage of each cell type
associated with NCPS. Based on the percentage of cells obtained, these cells were divided
into two groups according to the median value and displayed as TSNE plots (Figure 2D).
Then, based on the surface marker genes of different cell types (Table S2), their expression
in different clusters was observed (Figure 2C), and, finally, seven cell types were identified
based on the expression, they were: B cells, T cells, endothelial cells, myeloid cells, pericytes,
oligodendrocytes, and glioblastoma cells (Figure 2E). The differentially expressed genes
were then analyzed for the high and low NCPS groups, and a total of 2451 differential
genes were identified.
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Figure 2. Single-cell sequencing analysis of GSE182109. (A) The integration effect of 11 samples is
good. (B,C) Dimensionality reduction and cluster analysis. All cells in 11 samples were clustered
into 12 clusters. (D) The percentage of necroptosis genes in each cell. The cells were divided into
high- and low-necroptosis cells. (E) According to the surface marker genes of different cell types, the
cells are annotated as B cells, T cells, endothelial cells, myeloid cells, pericytes, oligodendrocytes, and
glioblastoma cells, respectively.
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3.2. Weighted Co-Expression Network Analysis

TCGA transcriptomics were performed in 143 GBM patients using the WGCNA
method to acquire gene modules related to NCPS. The soft threshold was set to 12, the
minimum number of modules was set to 80, deepSplit was set to 2, and the modules
with similarity lower than 0.25 were merged to derive a total of 15 non-grey modules
(Figure 3A). In non-grey modules, a strong association was found between Meblue, Me-
brown, and Meyellow and NCPS (Figure 3B). Genes from the three modules were selected
for subsequent analysis.
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Figure 3. WGCNA and construction of the necroptosis-related prognostic model. (A,B) WGCNA
found that Meblue, Mebrown, and Meyellow modules were closely related to the score of necroptosis.
(C) Fourteen genes were selected to construct the prognostic model by Lasso regression. (D) Six genes
were selected to construct the prognostic model by the Boruta algorithm. (E) Thirteen genes were se-
lected to construct the prognostic model by the SVM-RFE algorithm. (F) Intersection feature selection
between LASSO, SVM-RFE algorithm, and Boruta algorithm and their individual components.
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3.3. Selection of Prognostic Candidate Genes by Machine Learning Algorithms

To begin with, differential genes between high and low expression populations were
acquired according to the NCPS gene scores from the previous single-cell dataset. It was
then intersected with the NCPS-related genes obtained in the WGCNA to yield a total of
1437 genes. By matching the TCGA with the crossover genes obtained in the previous step,
eventually, all genes analyzed in the previous step were allowed for subsequent calculations.
In the following analysis, we take the TCGA cohort as our training set, univariate Cox
analysis was set at p < 0.01, and 18 genes associated with patient prognosis were initially
obtained. Then, the random seed was set to 2022 and the results of the regression revealed
that the contraction of the lasso stabilized when the number of variables was 14, with
the smallest deviation in the score and the best LAMDA of 0.062 (Figure 3C). The Boruta
algorithm set the same random seeds and outcome variables as the previous two algorithms,
and obtained three genes that the algorithm considered as definitively correlated with
survival time, called “Confirmed”; three genes that were considered potentially correlated,
described as “Tentative”; the rest of the variables were not considered relevant. In order to
include more variables, “Confirmed” and “Tentative” were selected for inclusion in the final
results and plotted for display (Figure 3D). SVM-RFE used survival time as the outcome
variable, and the results of the 10-fold validation showed that minimal root mean square
error (RMSE) was obtained when the number of genes was 13, outputting the above genes
as the result of SVM-RFE (Figure 3E). The results of the above algorithms were presented
in Venn diagrams and the overlapping results were selected as the final candidate features
for inclusion in the construction of the model so that we obtained four genes (Figure 3F).
They are CTSD, AP1S1, YWHAG, and IER3, respectively. The respective optimal results of
these three algorithms and the intersecting genes are summarized in Table S3.

3.4. Construction and Validation of NCPS-Related Prognostic Model

Based on the results of multivariate Cox regression analysis, the four genes previously
analyzed were still chosen to construct prognostic signatures (Figure 4A). For this signature,
the concordance index = 0.65, Akaike information criterion (AIC) = 874.69, and p-value
= 4.55 × 10−6. The following equation was applied to construct the risk score formula:
NCPS = (0.002758577 * Expr CTSD) + (0.00431492 * Expr AP1S1) + (0.001704931 * Expr
YWHAG) + (0.013004668 * Expr IER3). Where each coefficient is derived from the results
of multivariate Cox regression. All four genes in the formula were considered risk factors
for HR > 1 (Figure 4A). A score was assigned to the prognosis of each GBM patient based
on the above formula, and all patients were divided into two groups, named the high-risk
or low-risk group, according to the median of this score. In the figure, survival time was
more beneficial for patients with low-risk scores (p < 0.001). Surprisingly, in the validation
set (CGGA), we observed similar results, namely a significantly worse outcome in patients
with high NCPS (p < 0.01, Figure 4B,C). Furthermore, we analyzed the ROC curves of the
training and validation cohorts (Figure S1). Finally, PCA analysis was used to analyze
the high-risk and low-risk of the training and validation groups, which indicated that the
model could better group the GBM patients. (Figure 4D,E).
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Figure 4. Multivariate Cox and survival analysis. (A) Hazard ratio and p-value of constituents
involved in multivariate Cox regression and some parameters of the signature. (B) Survival analysis of
TCGA cohort. The prognosis was significantly worse in the high-NCPS group (p < 0.001). (C) Survival
analysis of CGGA cohort. The prognosis was significantly worse in the high-NCPS group (p < 0.01).
(D,E) PCA analysis in TCGA cohort and CGGA cohort. It was found that the model could group
GBM patients well in both the training cohort and the validation cohort. * p < 0.05; ** p < 0.01.
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3.5. Immune Infiltration and Mutation Landscape

The above findings demonstrated that there was a significant difference in NCPS
survival between different groups of GBM patients. To explore the degree of immune
infiltration and its causes between the high-risk and low-risk groups, and to provide a
basis for clinical application, we performed immune infiltration and mutation analysis
(Figure 5A). Patients in the high NCPS group had a large infiltration of macrophages, with
M1 and M2 types predominating. Next, the results of the analysis of genes related to
immune checkpoints showed that genes such as LAIR1 and CD28 showed high expression
in patients with high NCPS (Figure 5B). It can then be conjectured that patients with high
NCPS have a higher degree of immune infiltration, and then patients in the high NCPS
group are more likely to benefit from inhibitors of immune checkpoints due to the low
response status caused by high immune checkpoint genes. Then, we analyzed the top 20
mutated genes between the different groups (Figure 5C,D). It was found that the percentage
of top 20 mutations was 92.75% in high NCPS and 87.14% in low NCPS. The main mutation
type at both groups of base sites was a mutation from cytosine to thymine. In patients with
high NCPS, the PTEN gene was most prominently mutated, while the TP53 gene was the
most notably mutated in patients with low NCPS.
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Figure 5. Immune infiltration analysis and mutation landscape. (A) Heat map of immune cell
infiltration in the high NCPS group and low NCPS group. (B) Expression of immune checkpoint-
related genes in the high NCPS group and low-NCPS group. The results showed that the expression
trend of immune checkpoint-related genes was higher in the high NCPS group. (C) Mutation
landscape of TCGA cohort in the high-NCPS group. (D) Mutation landscape of TCGA cohort in the
low-NCPS group. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.



Brain Sci. 2022, 12, 988 10 of 16

3.6. Cell Localization of Four Modeling Genes

After constructing the model, we tried to obtain more insight into the expression
of the screened NCPS-related genes in different cell types, which we explored in single-
cell sequencing analysis. As shown in Figure 6A–F, CTSD expression was highest in
myeloid cells, high expression of AP1S1 was shown in glioblastoma cells, and YWHAG
was mainly expressed in glioblastoma cells, oligodendrocytes, and myeloid cells, and IER3
was predominantly expressed in myeloid cells.
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location of different cell types in GBM. (B–F) CTSD expression was highest in myeloid cells, high
expression of AP1S1 was shown in glioblastoma cells, YWHAG was mainly expressed in glioblastoma
cells, oligodendrocytes, and myeloid cells, and IER3 was predominantly expressed in myeloid cells.

3.7. The Construction of a Nomogram

By analyzing the clinical data and NCPS values, a nomogram was constructed to
better evaluate the risk of GBM patients (Figure 7A). The mortality rates at 1, 2, and 3 years
were estimated from the “TCGA-02-0047” patients by gender, age, race, and NCPS scores
of 0.369, 0.781, and 0.931, respectively. The nomogram can better evaluate the patient’s risk
and guide future clinical decisions. This method was analyzed using the ROC method to
evaluate its model accuracy (Figure 7B). The AUC values were found to be 0.74, 0.76, and
0.78 for 1, 2, and 3 years. In addition, a decision curve analysis was also performed based
on the area of 1, 2, and 3 years and the horizontal axis of None. The results indicate that
this method is effective in predicting the prognostic survival time of patients and has some
reference value for clinical treatment decisions (Figure 7C).
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Figure 7. The construction of a nomogram. (A) Nomogram of patient “TCGA-02-0047”. The mortality
rates at 1, 2, and 3 years were estimated from the “TCGA-02-0047” patients by gender, age, race, and
NCPS scores of 0.369, 0.781, and 0.931, respectively. (B) ROC curve of the nomogram. The area under
the curve (AUC) in 1, 2, and 3 years were 0.76, 0.74, and 0.78, respectively. (C) Decision curve analysis.
This method is effective in predicting the prognostic survival time of patients. ** p < 0.01; *** p < 0.001.

4. Discussion

Despite partial clinical advances, GBM remains the most aggressive and common
malignancy of the brain [35]. Due to heterogeneity, rapid appreciation, and aggressiveness,
patients often have a low average survival of 12–15 months [36]. An increasing number of
patients with advanced solid tumors have seen some improvement in prognosis, stemming
from the translation of immunotherapy to clinical oncology. GBM is unlike other extracra-
nial solid tumors, as peripheral conventional immune cells seem to be less appreciated
intracranially and the brain is mostly in a state of immune quiescence; on the other hand,
the brain becomes very poorly tolerated when an intracranial lesion arises, especially when
an immune attack from a tumor-like GBM occurs, making it fascinating to explore the
immune microenvironment of GBM [37]. In the current study, we constructed a prognostic
signature associated with NCPS based on machine learning algorithms through extensive
analysis of GBM in single-cell sequencing data and TCGA transcriptome data. Four genes
were finally screened as having prognostic values, namely CTSD, AP1S1, YWHAG, and
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IER3. We then performed a risk score on their constructed models to classify GBM patients
into high- and low-risk groups. The results of the survival curves explicitly showed that
patients with NCPS-related high risk scores had a worse prognosis (p < 0.001).

NCPS plays a critical role in the regulation of cancer biology, including tumorigenesis
and cancer metastasis [38]. Therapeutic strategies targeting apoptosis resistance in tumor
cells have led to the increasing research status of NCPS in tumors. The specific process
of NCPS involves activation of RIP1 by TNF-α/TNFR1 when caspase-8 is cleared or in-
hibited by mutation or infection and the subsequent recruitment of RIP3 through the RIP
homotypic interaction motif (RHIM) [39]. The interaction of these two proteins results
in the phosphorylation of RIP3, which activates its kinase in proper sequence, resulting
in increased phosphorylation of RIP3 and downstream MLKL. The combinatorial inter-
action of RIP1–RIP3 and RIP3–MLKL collectively forms a necrosome complex to execute
NCPS [40,41]. Several studies have shown that the effect of NCPS on tumors appears to be
a double-edged sword: on the one hand, key molecules associated with NCPS promote
cancer progression and reduce patient survival [42,43], and on the other hand, several stud-
ies have demonstrated that promoting NCPS can effectively inhibit tumor growth [44–46].
Although studies on the effects of NCPS on CNS tumor processes are limited, the available
information suggests a possible link between genes related to the necroptotic pathway
and the clinical behavior of GBM. For example, a significant reduction in overall survival
(OS) in GBM under P53-induced inhibition is inextricably linked to the high expression
of RIPK1 [47]. Nevertheless, the effect of NCPS on GBM has not been fully elucidated. To
date, studies related to NCPS in GBM have been relatively scarce. In the current study, our
results showed that four NCPS-related genes have predictable value in the prognosis of the
GBM risk. The survival curves explicitly showed that patients with NCPS-related high risk
scores had a worse prognosis. This suggests that NCPS may play a pro-cancer role in GBM,
which is consistent with the results of other analyses [47,48]. Our study provided a basis
for the prediction of NCPS-related genes in GBM and lays a foundation for further study of
their prognosis.

The tumor microenvironment plays a pivotal role in tumors. In addition to the process
of tumor development, it also has a remarkable impact on immunotherapy outcomes and
overall patient survival [49]. In addition to the influence of the tumor and its surrounding
microenvironment, the systemic immune-inflammatory status has also received increased
attention [50,51]. Studies have found that elevated neutrophils, lymphocytes, and platelets
in the blood of patients with tumors are associated with aggressiveness and poor prognosis
of solid tumors [52,53]. In studies related to GBM, systemic immune-inflammatory index,
which uses blood cells as a marker for detection, has been proven to be significantly
associated with patient prognosis [54]. Interestingly, this index can also assess the impact of
different types of surgery on the prognosis of GBM patients [55]. The complicated immune
environment, involving immune cell distribution within and around the tumor, immune
cell composition, and the overall immune environment of the GBM, can all have an impact
on the effectiveness of immunotherapy and even the malignancy of the tumor [56]. We
have researched the immune microenvironment of GBM and found that NCPS may be
associated with macrophage infiltration in GBM, particularly in the M1 and M2 subtypes.
Previous studies have also demonstrated the close association of macrophages not only
with glioma survival and prognosis but also with their role in apoptosis [57]. Furthermore,
in our follow-up study, we found that patients with highly expressed genes related to
immune detection sites are more sensitive to this immunotherapy. This indicates that
the model we made not only could determine the survival prognosis of patients but also
could reflect the immune infiltration of the tumor. In addition, the comparison results
between different risk groups showed that the number of mutated genes in the high-risk
group was significantly higher than that in the low-risk group. This may be due to the
deterioration of the microenvironment due to the mutation of immune-related genes, which,
in turn, promotes tumorigenesis. Therefore, our results may provide new evidence for the
immunotherapy of GBM.
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The CTSD gene, a member of the peptidase A1 family, has been shown to be highly
expressed in the breast cancer tumor microenvironment and is strongly associated with
the survival of breast cancer patients [58]. Recent experiments have identified a role for
CTSD in GBM: upregulation of CTSD expression contributes to enhanced radio-resistance
of GBM cells, while inhibition of CTSD significantly reduces the migration ability of GBM
cells [59]. As a member of the bridging protein (AP) family that coordinates various
transports in the intracellular membrane pathway, AP1S1 and its related genes were
shown to be associated with immune response, lysosomal vesicle transport, and protein
presentation [60]. In previous bioinformatics analyses, investigators found that AP1S1
was highly expressed in GBM and associated with survival prognosis [61]. Our findings,
which identified AP1S1 as an independent prognostic indicator in GBM, are consistent with
previous studies. YWHAG, one of the 14-3-3 family isoforms, is involved as a regulatory
molecule in a variety of cellular processes, including cell survival and apoptosis, protein
transport, and cell cycle regulation [62,63]. Researchers have found that YWHAG was
significantly overexpressed in GBM, head, and neck squamous cell carcinoma, and breast
and gastric cancer [64–66]. IER3 belongs to a stress-inducible gene, also known as IEX-1,
which is classified as a family of immediate early response genes. IER3 plays a complex,
and to some extent contradictory, role in cell cycle control and apoptosis [67]. Current
studies on IER3 in tumors have also confirmed that it is expressed in opposite ways in
different tumors [68,69], so the exact mechanism and function of this gene remains to
be explored. In this study, the results showed that CTSD and IER3 were predominantly
expressed in myeloid cells, high expression of AP1S1 was shown in glioblastoma cells,
and YWHAG was mainly expressed in glioblastoma cells, oligodendrocytes, and myeloid
cells. This corroborates our previous evidence of association of NCPS with macrophages
in immune infiltration. The value shown by these four genes in GBM patients deserves
deeper investigation.

The previously published GSE182109 dataset explored the heterogeneity and immune
infiltration of gliomas, including low-grade gliomas, and primary and recurrent glioblas-
tomas, by single-cell sequencing analysis. The investigators analyzed the GBM immune
microenvironment and classification of functional immune cell subtypes, on the basis of
which specific immune checkpoints were inspected and screened, and S100A4 was iden-
tified as a potential target for immunotherapy [31]. In this study, primary glioblastoma
data from the GSE182109 dataset were first subjected to further single-cell analysis, which
divided them into two groups with different NCPS states. This is a useful reference for
studying the heterogeneity of NCPS states in GBM. Afterward, a prognostic model was
constructed based on differentially expressed genes in the cell population. This model
was tested using TCGA survival data. One of the strengths of this model is its ability to
accurately assess the prognosis of GBM patients. This study is the first to apply single-cell
clustering analysis to predict the prognosis of GBM cell necroptosis, which may not only
provide a new perspective to study its regulated cell death different from transcriptome
analysis, but also provide a new angle for clinical treatment. Admittedly, there are certain
shortcomings in the present study. Due to the limitations of current technology, GBM
patients are still under-explored at the single-cell level on various immune cell subtypes
with NCPS. In addition, there is no standardized assay for clinical screening of the expres-
sion of the NCPS-related genes we obtained, and we know too little about the underlying
mechanisms of the complex functions of NCPS, which we hope will be investigated more
in the future scientific work.

5. Conclusions

In summary, we developed a predictive model for glioblastoma NCPS genes. These
genes may be closely related to the mechanism of NCPS in GBM. The expression of these
four genes in specific cells, such as myeloid cells and glioblastoma cells, makes us more
curious about the specific function of NCPS on immune cells and tumor cells. These results
contribute to further understanding of the molecular mechanisms of GBM regulation. The
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construction of this model allows us to evaluate GBM from a new perspective, in addition
to the tumor microenvironment of GBM, and to design effective combination therapies
based on cell type-specific expression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12080988/s1, Figure S1: ROC curves of the training and
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