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In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the
superfluid state of 4He belongs to the same three-dimensional (3D) O(2) universality class as the onset of ferromag-
netism in a lattice of classical spins with XY symmetry. Below the transition, the superfluid density rs and superfluid
velocity vs increase as a power law of temperature described by a universal critical exponent that is constrained to be
identical by scale invariance. As the dimensionality is reduced toward 1D, it is expected that enhanced thermal and
quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We havemeasured the flow rate of
liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single 30-nm-long nano-
pores with radii ranging down from 20 to 3 nm. As the pore size is reduced toward the 1D limit, we observe the fol-
lowing: (i) a suppression of the pressure dependence of the superfluid velocity; (ii) a temperature dependence of vs
that surprisingly can bewell-fitted by a power lawwith a single exponent over a broad range of temperatures; and (iii)
decreasing critical velocities as a function of decreasing radius for channel sizes belowR≃ 20nm, in stark contrastwith
what is observed in micrometer-sized channels. We interpret these deviations from bulk behavior as signaling the
crossover to a quasi-1D state, whereby the size of a critical topological defect is cut off by the channel radius.
INTRODUCTION

Motivation
Helium is the only known element in nature that becomes a superfluid,
with its small mass and weak polarizability cooperating to prevent solid-
ification at atmospheric pressure as the temperature approaches
absolute zero. For 4He, the ability to flow without viscosity below
the l-transition temperature, Tl, is a paradigmatic manifestation of
emergent phenomena and macroscopic quantum coherence, driven
by both interactions and bosonic quantum statistics. Its superflow
with velocity vs = (ħ/m)∇F is caused by a quantum-mechanical phase
gradient of the wave function and a priori should only be limited by
the Landau criterion of superfluidity. The existence of the roton mini-
mum in the excitation spectrum sets this value to be vL ≃ 60 m/s.
However, years of experiments (1) have shown that superfluid 4He ex-
hibits a critical velocity that is well below vL. Although there is consensus
that superfluid helium dissipates energy by creating vortex rings, the
exact microscopic dynamics that govern the nucleation of topological
defects remain an open problem in condensed matter physics.

At first glance, it would appear that this problem would only be
exacerbated as the number of spatial dimensions decreases because
enhanced thermal and quantum fluctuations should push Tl → 0.
However, in the one-dimensional (1D) limit, the universal quantum
hydrodynamics of Tomonaga-Luttinger liquid theory (2–4) should ap-
ply, providing a host of theoretical predictions including the simulta-
neous algebraic spatial decay of both density-density and superfluid
correlation functions. Although there is a body of evidence of this
exotic behavior in low-dimensional electronic systems (5–8) and ultra-
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cold low-density gases (9), the analogous behavior has yet to be con-
firmed experimentally in a highly correlated bosonic liquid. Here, the
physics of superflow should be qualitatively altered, with the superfluid
density rs acquiring system size and frequency dependence (10). Fur-
thermore, neutral mass flow transport properties should be strongly
modified in 1D, with the superfluid velocity vs exhibiting non-universal
power law dependence on temperature and pressure. This crossover
toward 1D is manifest in the main findings of our work: (i) a suppres-
sion of the pressure dependence of vs for R ≃ 3 nm indicative of en-
hanced dissipation via phase slips, (ii) a temperature dependence for vs
that can be described by a power law with a single exponent over a
broad range of temperatures, and (iii) decreasing critical velocities as
the radius decreases for channel sizes below R ≃ 20 nm, behavior
strongly deviant from what is observed in micrometer-sized channels.

Length scales
In this work, the mass flow rate of superfluid helium is measured in a
capillary experiment through channels with radii as small as R ≃ 3 nm
and length L = 30 nm. To determine the effective dimensionality of
this geometry, it is imperative to perform a comparative analysis of all
possible relevant length scales. Unlike superconductors and superfluid
3He, which undergo BCS pairing, 4He has a very small coherence
length on the angstrom scale: x4(T) ≃ x0(1 − T/Tl)

–v, with x0 ≃
3.45 Å and v ≈ 2/3, making it technically difficult to fabricate a trans-
verse confinement dimension with R ≪ x4 approaching the truly 1D
limit, as, for example, x4 ~ 0.5 to 1.5 nm in the temperature range con-
sidered here. For T = 0.5 to 2 K, R can also be compared to the thermal

de Broglie wavelength, L Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pℏ2=mkBT

q
~ 1 nm and a thermal

length LT = ℏc1/kBT ~ 1 nm, where c1 ≃ 235 m/s is the first sound
velocity of 4He. Another estimate of the effective dimensionality can
be obtained by considering helium atoms confined inside a long cylin-
der of radius R with hard walls. In analogy with electrons confined
in quantum wires, we compute the energy needed to populate excited
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single-particle transverse modes, and find that to fill the lowest excited
transverse angular momentum state for a single helium atom, a tem-
perature T ~ D⊥/kB ≃ 3.5/R2 nm2 ⋅ K ~ 0.4 K for R = 3 nm is needed.
These estimates, which mostly neglect interaction effects, would place
our flow experiments in a mesoscopic regime, with confinement length
and energy scales on the order of the intrinsic ones in the problem. How-
ever, recent ab initio simulations of 4He confined inside nanopores
(11, 12) have demonstrated that classical adsorption behavior leads to
an effective phase separation between a quasi-1D superfluid core of
reduced radius and concentric shells of quasi-solid helium near the
pore walls. This effect, which is likely also present in our channels,
would tend to provide additional confinement, allowing us to investi-
gate a nontrivial dimensional crossover.

Previous investigations of helium confined at the nanometer scale
have focused on porous media such as in Vycor (13) and more recent-
ly in the zeolites and other mesoporous media. These studies have
shown a possible new thermodynamic phase of 4He stabilized at low
temperature (14) as well as a nuclearmagnetic resonance (NMR) signa-
ture of a 1D crossover for 3He (15). Although these advances are certainly
considerable in the search for a strongly interacting 1D neutral quantum
liquid, our approach differs much in spirit from those cited above. In our
experiment, the helium atoms are confined inside a single, nearly cylin-
drical pore, rather than in an extremely large number of them necessary
to gain a signal for a macroscopic probe. This lone pore, or channel, is
tailor-made from a pristine Si3N4 membrane that can be fabricated with
radii ranging from R~ 1 to 100 nm. Themain advantage of our approach
is that there is no ensemble averaging over pore distributions and/or
potential defects of the sample. Its main drawback, however, is that tra-
ditional bulk measurement techniques, such as specific heat or NMR,
most likely cannot be performed in a single nanopore containing only
~104 to 105 helium atoms. Taken as a whole, these two approaches are
complementary to one another and similar in spirit to “bottom-up ver-
sus top-down” or “single-molecule versus ensemble-averaged” studies in
other fields, such as nanoelectronics or molecular biology.
RESULTS

Mass flow measurements
Above Tl, in the normal phase of helium, the flow through the na-
nopore is viscously dissipative and expected to follow the model
developed for a short pipe by Langhaar (16). In this phase, we con-
ducted pressure sweeps at constant temperature while monitoring the
mass flow rate Qm, as shown in Fig. 1 (A and B). In the absence of a
chemical potential difference, the mass flow rate should go to zero. How-
ever, we observe a spurious signal as DP → 0 arising from evaporation
at the walls of the channel. To determine this offset, the data were
fitted with the flow equation for short pipe,

Qn ¼
8phL
ã

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ãrR4

32h2L2
DP

s
− 1

0@ 1A ð1Þ

where h is the viscosity, r is the density, and ã is a coefficient to take into
account the acceleration of the fluid at the pipe end (see the Supplementary
Materials). In Fig. 1 (A and B), the solid line is a fit to the data with a
radius of R = 7.81 ± 0.15 nm and 3.14 ± 0.11 nm. The mass flow was
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then measured as a function of temperature across the superfluid phase
transition Tl at several pressures for both pores. These data are dis-
played in Fig. 1 (C and D), with the offset previously discussed sub-
tracted. Previous work in Vycor (13) has found the superfluid transition
to be suppressed to 1.95 K; however, the superfluid transition in our
channels is observed at the temperature corresponding to the bulk val-
ue, 2.17 K. This is not surprising because we measure the total conduct-
ance of the nanopore channel and of the source reservoir in series, so
the onset of superfluidity in the bulk is first observed at Tl. Considering
only data below Tl, we can extract the superfluid velocities using the
two-fluid model, where we assume Qtot = Qn + Qs = (rnvn + rsvs)pR

2

with the n and s subscripts denoting the normal and superfluid com-
ponents of the fluid, respectively. Subtracting Qn from the total mass
flow using Eq. 1 yields the superfluid portion of the flow with a veloc-
ity vs = Qs/pR

2rs. The superfluid density is taken from the bulk, as
justified by previous work in Vycor (with a similar network pore size),
albeit with a lower transition temperature (13). The extracted superfluid
velocities are shown in Fig. 2A for the lower-pressure data sets, where
linear response is expected to be a better approximation and where the
data sets were taken over a large range of temperatures. An inspection by
eye readily shows that the superfluid velocities are smaller in the R ≃ 3
nm pore at similar pressures and temperatures. Such suppression of the
flow velocity as the radius is decreased is in stark contrast with the
bulk behavior and shows that dissipation is increasing as the radius of
the pore approaches a few nanometers.

Near the bulk superfluid transition, it is well established that the super-
fluid density follows a universal power law form rs ~ (1 − T/Tl)

v,
Fig. 1. Flowmeasurements raw data. (A and B) Mass flowmeasurements
as a function of pressure for (A) a 7.81-nmand (B) a 3.14-nmpore radius in the
normal state. The blue line is a fit of the data using Eq. 1, and the dashed and
dash-dotted lines are 1 SD from the mean value for the radius, with all
other parameters kept constant. The finite intercept value at zero pres-
sure is a spurious signal (see the text). (C andD) Temperature dependence of
themass flow at several pressures. The dashed line shows the known super-
fluid transition temperature (Tl) at saturated vapor pressure.
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where v is a correlation length critical exponent found experimentally
to be close to 2/3. Considering a slowly varying quantum-mechanical
wave function with a phase F, the kinetic energy of the superfluid
is given by rsv

2
s=2 ¼ rs ℏ2=2m2

� �j∇Fj2. From scale invariance, we
expect that near Tl, the mean square of the superfluid velocity should
scale with the correlation length x4(T) as v2s ~ 1/x4(T)

2 ~ (1 − T/Tl)
2v.

This result is, strictly speaking, valid only at temperatures very close to
Tl, (1 − T/Tl) ≲ 0.1. From this hyperscaling analysis, there is no rea-
son to expect power law behavior in the superfluid velocity over a
wide range in temperature away from Tl. However, in the data shown
in Fig. 2A, a power law vs(T) = vc0 (1 − T/Tl)

a, where vc0 is the super-
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fluid critical velocity at T = 0 K, was used to fit all the data. A log-log
plot of vs versus the reduced temperature is shown in Fig. 2B for the
3.14-nm pore. For this radius, where very little pressure dependence
on the flow is observed, the power law yields an exponent 0.53 ± 0.04
and 0.47 ± 0.06 for the low-pressure (482 mbar) and higher-pressure
(827 mbar) data set, respectively, and their critical velocities at zero
temperature are vc0 = 15.2 ± 1 m/s and 16.6 ± 1 m/s. In contrast, the
larger pore (7.81 nm) displays a significantly distinct exponent 0.66 ±
0.05 and zero-temperature critical velocity vc0 = 30.1 ± 2.4 m/s. Although
not a proof, given the limited range in temperature explored, the appear-
ance of a smaller non-universal exponent as the dimensionality is re-
duced is consistent with expectations from quantum hydrodynamics
in 1D where increased fluctuations should prohibit long-range order.

Dissipation mechanisms
Other important features of the flow data not previously observed are
(i) the extremely weak pressure dependence below Tl for the smaller
pore, and (ii) an overall decrease in critical velocity as the channel size

is reduced, in contrast to the behavior vc e ℏ
mR ln

R
a0

� �
, with a0 the size

of the vortex core, predicted by Feynman and found in larger channels
(see the Supplementary Materials). The former is a hallmark of the
macroscopic phase coherence that exists in a superfluid phase, in
sharp contrast with the Euler prediction of a classical inviscid fluid,
vs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DP=rs

p
. Using the Gibbs-Duhem relation to convert a pressure

to chemical potential difference, energy conservation dictates that there
must exist a dissipation mechanism in the channel with a rate G such
that hG ¼ mDP

rs
− 1

2mv
2
s . From our data, it is clear that the dissipation

rate must be flow (pressure)–dependent. The question of how energy is
dissipated in superfluids has a long history, beginning with the proposal
of Anderson (17) that, in analogy with the Josephson effect in super-
conductors, a steady-state non-entropic flow may be achieved at a critical
velocity vc via a mechanism that unwinds the phase of the order param-
eter in quanta of 2p. Such “phase slips,” occurring at rate G, correspond
to a process whereby the amplitude of the order parameter is instantane-
ously suppressed to zero at some point along the channel and can be
driven by either thermal or quantum fluctuations. Momentum conserva-
tion dictates that such events can only occur in the presence of broken
translational invariance along the pore (18).

Microscopically, dissipation occurs through the creation of quan-
tized vortex rings, the topological defects of superfluid hydrodynamics.
In our experiments, the size of critical vortex ring Rc plays a crucial role,
and it is determined by the equilibrium condition between the relative
frictional force between the normal and superfluid component and the
hydrodynamic forces acting on the ring in the presence of flow. Ener-
getically, this manifests as a competition between a positive vortex
energy that scales linearly with radius and a negative kinetic core en-
ergy scaling like its area. Langer and Fisher (19) found Rc ~ 3 nm
below Tl, exactly the length scale of the smallest pore considered here.
When R < Rc, the maximum size of a vortex ring is constrained by
the radius of the channel, and thus the energy barrier for their cre-
ation is lowered, leading to increased dissipation and an upper
bound on vs set by the Feynman critical velocity. The suppression
in the observed critical velocity at T = 1.5 K as a function of de-
creasing radius shown in Fig. 2C can then be interpreted as a crossover
to a regime where flow is dominated by the physics of the channel. As
the channel radius continues to decrease further, it is expected that
backscattering of helium atoms at low temperature in the guise of
A

B

C

Fig. 2. Superfluid velocities. (A) The superfluid velocities are shown at
several pressures below 1 bar for three different nanopore radii. The filled

symbols refer to the 3.14-nm pore, the open symbols to the 7.81-nm pore,
and the half-filled symbols to a 20-nm pore from a previous study (21).
The dashed lines are fits using the power law vs Tð Þ = vc0ð1 − T

Tl
Þa (see

the text). (B) Log-log plot of the superfluid velocity versus the reduced
temperature for the 3.14-nm pore data. The data used for the power law
fit are highlighted with filled symbols. The fits are shown by a dashed line
(482 mbar) and a solid line (827 mbar). (C) Critical velocity in the nanopores
extracted at 1.5 K temperature (plotted at several pressures less than 1 bar)
to compare with previous work in much larger channels (see the Supple-
mentary Materials). The superfluid velocities are assumed to be reaching
the critical velocity. The dotted line is a blind linear fit shown here only
as a guide to the eye.
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quantum phase slips will increase, resulting in a continued suppression
of the critical velocity.

This argument does not address the actual rate, or probability per
unit space time that topological defects are created, and experimental
estimates of G were first made by Trela and Fairbank (20), who found
G ~ 1 Hz for superfluid flow through constrictions with R ~ 10–4 m. For
the nanoscale pores considered here, we estimate that G ~ 3 to 5 GHz,
well below the flow rate of 7.5 × 1012 atoms/s measured in our smaller
pore, yet approaching the quantum of mass flow q =m2/h ~ 1010 atom/s at
1 bar differential pressure and fluid density taken at saturated vapor pressure.
CONCLUSION

The behavior of superfluid helium flow was studied in capillary chan-
nels down to ~3-nm radius. For the smaller pore, the superfluid ve-
locity can be well described by a power law, and it was found to be
significantly smaller than in larger channels. This likely signals the
crossover to a quasi-1D state whereby increased fluctuations and in-
teraction renormalization are modifying superfluidity. As the channel
size is reduced even further, near, or into the subnanometer range, we
expect to observe physics characteristic of the truly 1D limit. Here, the
algebraic decay of the superfluid order parameter will manifest itself as
a reduction of the superfluid density as a function of channel length L
and the appearance of non-universal power laws in the mass flow de-
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pendence on pressure (Q1D ~ ∆Pb) and temperature (Q1D ~ Tg). Ad-
ditionally, the ratio of the length of the channel to a 1D phase coherence
length ‘F ~ 1/T will play an important role in the quantitative theore-
tical description of our data. Such observations would be markedly dif-
ferent than that seen due to the macroscopic quantum coherence of
bulk helium and would signal the experimental discovery of a 1D bo-
sonic quantum liquid.
MATERIALS AND METHODS

The experiment is configured in a similar fashion and follows the same
procedure as previously reported in (21, 22). However, the present work
is performed in a newly designed experimental cell made out of coin
silver and shown in Fig. 3A. The single nanopores were fabricated in
the Si3N4 membrane using an electron beam from a field effect trans-
mission electron microscope (FE-TEM), with images taken shortly after
fabrication shown in Fig. 3 (B and D). Although the single pores have a
well-defined diameter, we have observed in previous work that their
structure has a tendency to relax at room temperature, with the pore
radius decreasing as a function of time (see the Supplementary Mate-
rials). To circumvent the uncertainty in the pore dimension, Knudsen
effusion measurements in the gas phase of helium were conducted at low
temperature (77 K) using the protocol discussed in (23). The respective
values obtained for each of the pores were determined to be RKn = 8.2 ±
0.5 nm and 3.10 ± 0.35 nm (see the Supplementary Materials).

In a second step, the experimental cell was cooled down to liquid
helium temperature (below 4.5 K). Above Tl, in the normal phase of
helium, the flow through the nanopore is viscously dissipative and
expected to follow the model developed for a short pipe by Langhaar
(16). In this phase, we conducted pressure sweeps at constant temperature
while monitoring the mass flow rateQm, as shown in Fig. 1 (A and B). In
the absence of a chemical potential difference, the mass flow rate should
go to zero. However, we observe a spurious signal as DP → 0 arising
from evaporation at the walls of the channel. To determine this offset,
the data were fitted with the flow equation for short pipe (Eq. 1). In Fig.
1 (A and B), the solid line is a fit to the data with a radius of RHeI = 7.81
± 0.15 nm and 3.14 ± 0.11 nm. These values are in excellent agreement
with those determined independently via Knudsen effusion measure-
ments. It demonstrates de facto that our experiment can quantitatively
determine the mass flow near the l-transition in very small channels.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/
full/1/4/e1400222/DC1
Text
Fig. S1. Flow measurements.
Fig. S2. Nanopore structural stability.
Fig. S3. Determination of the radius by Knudsen effusion.
Fig. S4. Critical velocities versus channel size.
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