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Abstract: In this paper, we introduce a novel approach to estimate the illumination and
reflectance of an image. The approach is based on illumination-reflectance model and
wavelet theory. We use a homomorphic wavelet filter (HWF) and define a wavelet quotient
image (WQI) model based on dyadic wavelet transform. The illumination and reflectance
components are estimated by using HWF and WQI, respectively. Based on the illumination
and reflectance estimation we develop an algorithm to segment sows in grayscale video
recordings which are captured in complex farrowing pens. Experimental results demonstrate
that the algorithm can be applied to detect the domestic animals in complex environments
such as light changes, motionless foreground objects and dynamic background.
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1. Introduction

Foreground detection is an important preliminary step of many video analysis systems. Many
algorithms have been proposed in the last years, but there is not yet a consensus on which approach
is the most effective, not even limiting the problem to a single category of videos. A common approach
for foreground detection is background subtraction. There are many background removal methods
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available and the most recent surveys on the methodologies can be found in [1–7]. It is well known
that background subtraction techniques are sensitive two problems [6]: the first is the foreground
capturing upon light changes in the environment and the second is motionless foreground objects.
Li et al. [8] have proposed a method that utilizes multiple types of features (i.e., spectral, spatial and
temporal features) for modelling complex background. Unfortunately, this method wrongly integrated
a foreground object into the background if the object remained motionless for a long time duration [8].
Also, there are some foreground detection methods based on wavelet such as [9,10]. In [9], the authors
proposed a discrete wavelet transform based method for multiple objects tracking and identification.
Khare et al. [10] introduced a method for segmentation of moving object which is based on
double change detection technique applied on Daubechies complex wavelet coefficients of three
consecutiv frames.

In order to reduces the above problems (i.e., light changes and motionless foreground objects)
in foreground detection, in this paper, we introduce a method to estimate illumination and
reflectance components of grayscale images in video recordings. The method is related to the
illumination-reflectance model (IRM) [11] for illumination and reflectance estimation from an observed
image. In general, it is difficult to calculate the two components from a real image, since it involves many
unknown factors such as description of the lighting in the scene. For any image, Chen et al. [12] showed
that there are no discriminative functions which are invariant to the illumination. In image processing,
the realistic simplified IRM [11] in literature explains an image f at a pixel as:

f(x, y) = i(x, y) · r(x, y) (1)

where i(x, y) and r(x, y) stand for the illumination and reflectance components, respectively. (x, y)

is the pixel position. Normally, to eliminate the unwanted influences of varying lights, applying
a Fourier transform to the logarithmic image, multiplying by a highpass filter, this processing is
called homomorphic filtering [13]. When an image is transformed into the Fourier domain, the
low frequency component usually corresponds to smooth regions or blurred structures of the image,
whereas high-frequency component represents image details, edges and noises. However, it is obvious
that any low frequency data in the reflectance will also be eliminated [13]. More recently, many
methods have been proposed to improve homomorphic filters such as [14,15] and used for various
practical applications. Toth et al. [16] presented a method for motion detection, which is based on
combining a motion detection algorithm with a homomorphic filter which effectively suppresses variable
scene illumination.

In order to estimate the illumination component of an image, we use a homomorphic wavelet filter
(HWF) that is based on dyadic wavelet transform (DWT) [17]. Our HWF is applied to improve the
accuracy of the illumination estimation which is estimated by the inverse DWT in logarithmic space.
To estimate the reflectance component, we define a wavelet-quotient image (WQI) model in intensity
space. The WQI model parallels the former idea of a self-quotient image (SQI) model [18]. In the SQI
model, the illumination is eliminated by division over a smoothed version of the image. This model is
very simple and can be applied to any single image [18]. In the WQI model, the numerator is calculated
based on a feature preserved anisotropic filter applied on the original image and the denominator is the
coarse image of DWT.
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Based on HWF and WQI, we develop an algorithm to segment sows in grayscale video recordings of
farrowing pens. The algorithm has five stages: (1) estimate the illumination component of the reference
(i.e., background) and current images; (2) estimate the reflectance component of the current image;
(3) measure the local texture differences between the reference and current images; (4) synthesize a new
image based on the above estimating components and the local texture differences, so that background
objects are much darker than foreground objects; (5) detect the foreground object (i.e., the sow) based
on the synthesized image.

Some methods for detecting pigs have been presented in the literature such as [19–26]. But the
results for most of these methods have not been discussed in relation to complicated scenes (e.g., light
changes and motionless foreground objects). For example, in [19], the major problem during tracking
was the loss of tracking due to large, unpredictable movements of the piglets, because the tracking
method required the objects to move [19]. Our experimental results demonstrate that our algorithm can
be applied to detect the domestic animals in complex environments such as light changes, motionless
foreground objects and dynamic background.

The rest of this paper is organized as follows. Section 2 presents the five stages. The proposed
algorithm is described in Section 3. Section 4 describes the data that is used in this study. The
experimental results are contained in Section 5, and the paper is concluded in Section 6.

2. Methodology

The discrete DWT [17] has proved very useful when analysis of multiscale features is important. It
can provide a coarse and two detail representations of an image f through different scale independent
decomposition. The DWT is implemented using halfband lowpass and highpass filters forming a
filterbank together with downsamplers. The filterbank produces two sets of coefficients: (1) the
orthogonal detail coefficients W 1

2jf and W 2
2jf that are the even outputs of the highpass filter; (2) the

coarse/approximation coefficients S2jf which are the even outputs of the lowpass filter, where j is the
multi-resolution level and j ∈ Z. For a J-level, the following collection is called the 2D discrete DWT:{

S2jf, {W1
2jf, W2

2jf}
}
1≤j≤J (2)

S2j is defined by S2jf(x, y) := f ∗ φ2j(x, y), where (x, y) is the pixel position and ∗ is the standard
convolution, φ2j is given by φ2j(x, y) := 1

2j
φ
(

x
2j

y
2j

)
, where φ is a scaling function. W1

2j and W2
2j are

defined by: W i
2jf(x, y) = f ∗ ψi

2j(x, y) (i = 1, 2). ψi
2j(x, y) := 1

2j
ψi
(

x
2j
, y
2j

)
, where ψi is a wavelet

function. The modulusM2j of the wavelet transform is given:

M2jf(x, y) =
√
|W1

2j
f(x, y)|2 + |W2

2j
f(x, y)|2 (3)

The reconstructed image is gotten by using the three decomposition components. At each scale 2j ,
S2j−1f is reconstructed from S2jf ,W1

2jf andW2
2jf . The reconstructed image f̃ is S20f . For the details

2D discrete DWT, we refer to [17].
The rest of this section will present the five stages that will be used in our proposed algorithm:

Homomorphic wavelet filter; Wavelet-quotient image model; Texture difference measure; The
synthesizing image and Foreground detection.
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2.1. Homomorphic Wavelet Filter

In logarithmic space, the IRM in Equation (1) can be rewritten F = I + R, where the symbols are
defined as below:

F (x, y) = log f(x, y) (4)

I(x, y) = log i(x, y), R(x, y) = log r(x, y) (5)

where log means logarithmic. In general, the illumination of a scene varies slowly over space, whereas
the reflectance component contains mainly spatially high-frequency details.

DWT

Coarse Image

High Pass

Detailed V High Pass

IDWT

Detailed H

Homomorphic Wavelet Filter

Illumination

Estimating
I

F = Log(f)

Figure 1. The flow chart of our homomorphic wavelet filter. DWT: dyadic wavelet transform
analysis; IDWT: inverse dyadic wavelet transform; Detailed H: W1

2j and Detailed V: W2
2j ;

High Pass: Butterworth filterH; Log means logarithmic.

In this paper, we use a homomorphic wavelet filter (HWF), which is used to estimate the illumination
component I in logarithmic space. In our HWF, the discrete DWT takes the place of Fourier
transform. Our HWF is somewhat similar to [27] and its flowchart is shown in Figure 1. During DWT
decomposition process across different scales, the illumination component of an image is well preserved
while the shape variation against other individuals is largely reduced. Therefore, the approximation
coefficients S2JF in the scale gives a good approximate of the illumination component I (i.e., the coarse
coefficients S2JF contains almost all the illumination component of the image F ). Then a homomorphic
filtering procedure is performed to filter out the small amount of illumination component distributed in
all the detail coefficientsW1

2JF andW2
2JF . The three decomposed parts are combined together and the

inverse DWT (IDWT ) is performed to get the final estimate Ĩ of the illumination in the image F :

Ĩ = IDWT
(
S2JF + (W1

2JF ) · H + (W2
2JF ) · H

)
(6)

whereH is a high-pass Butterworth filter given by:

H(u, v) =
1

1 +

[
D0

D(u,v)

]2n (7)

where D0 is the cutoff amplitude in wavelet domain, n is the order of filter and D(u, v) is the amplitude
at location (u, v):

D(u, v) =

√
(u− M

2
)2 + (v − N

2
)2 (8)
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where M × N is the size of image. We use J = 3, D0 = 0.95 and n = 2 as default setting in
our experiments.

2.2. Wavelet-Quotient Image Model

In order to extract the reflectance component from an image, we define a wavelet-quotient image
(WQI) model that is similar to a self-quotient image (SQI) model [18,28], which is proposed based
on the basic conception of the quotient image model [29]. The SQI implements the normalization
by dividing the low-frequency part of the original image and generates the reflectance component
(i.e., illumination invariant) features:

SQI(x, y) =
f(x, y)

S(x, y)
=

f(x, y)

L(x, y) ∗ f(x, y)
(9)

where S(x, y) denotes the low-frequency component, which is computed as the convolution between
a smoothing filter L(x, y) and the original image f(x, y). Since the features belonging to the
low-frequency bands are removed, then SQI contains the illumination invariant features. The SQI

method neither uses the information about the lighting source, nor needs a training set, and directly
extracts the illumination invariant features. It is a very simple model and can be applied to any
single image.

In our WQI model, the numerator image should be smoothed by a feature preserved anisotropic filter
that can extract features effectively, since an anisotropic filter smooths the image in homogeneous area
but preserves edges and enhances them. In this paper, the Perona-Malik diffusion model [30,31] is used,
because this diffusion model is a method aiming at reducing image noise without removing significant
parts of the image content, typically edges or other details that are important for the interpretation of
the image.

The denominator of WQI is the coarse coefficients S2Jf(x, y) of the DWT at final level J which
correspond to the low-frequency of the image f (see Equation (2)). The DWT allows the image
decomposition in different kinds of coefficients, while preserving the image information without
any loss.

Definition: The wavelet-quotient image WQI of a gray-level image f is defined by:

WQI(x, y) =
Diffuse

(
f(x, y)

)
S2Jf(x, y)

=
Diffuse

(
f(x, y)

)
φ2J ∗ f(x, y)

(10)

where φ2J is given above and ∗ is the standard convolution; Diffuse
(
f(x, y)

)
is the diffused image of

f by using the Perona-Malik diffusion model. In the DWT schema, the decomposition is recursively
performed over the coarse image.

2.3. Texture Difference Measure

In order to measure texture differences between two images, we use the idea which is proposed
in [32]. This idea is based on the gradient value of each pixel. A good texture difference measure should
be able to represent the difference between two local spatial gray level arrangements accurately [32].



Sensors 2015, 15 21412

Since the wavelet detail coefficients (see Equation (2)) are a good measure to describe how the gray level
changes within a neighbourhood [17], so it is less sensitive to light changes and can be used to derive an
accurate local texture difference measure. Therefore, the gradient vector f ′(p) in this paper is defined
as below:

f
′
(p) =

(
W1

2Jf(p),W2
2Jf(p)

)
(11)

where the position of the pixel p is (x, y).
The module magnitude difference (MMD) of the images f1 and f2 at point p can be defined:

MMDf1,f2(p) = |M2Jf1(p)−M2Jf2(p)| (12)

whereM2Jf1(p) andM2Jf2(p) are given by Equation (3). The cross correlation (CC) of gradient vector
of images f1 and f2 at each point p can be defined:

CCf1,f2
(
p
)

= f1
′(p) · f2′(p) =M2Jf1(p) · M2Jf2(p) · cos θ (13)

where θ is the angle between the two vectors f1′(p) and f2′(p) that are defined in Equation (11). The
texture difference rate (T DR) of the two images at point p can be defined:

T DRf1,f2(p) = 1−
2 ·
∑

q∈Np
CCf1,f2

(
q
)∑

q∈Np

(
M2

2J
f1(q) +M2

2J
f2(q)

) (14)

where Np denotes the 3 × 3 neighbourhood centred at p. As discussion in [32], T DRf1,f2(p) ≈ 0 when
the texture of point p doesn’t change between the two corresponding images.

2.4. The Synthesizing Image

After the illumination components of both the current (subscript c) and reference (subscript r) images
are estimated by using the HWF, we need to synthesize a virtual image f syn

c by using the estimating
illumination Ĩr of the reference image, and the estimating illumination Ĩc and reflectance r̃c of the
current image:

f syn
c = exp

(
Mapping(Ĩc, Ĩr) + log(r̃c)

)
(15)

where exp is exponential function, Ĩc and Ĩr are given by Equation (6), and r̃c is the corresponding WQI

which is given by Equation (10). The “Mapping” function is defined by:

Mapping(Ĩc, Ĩr)(p) = αĨc(p)− Ĩr(p) (16)

where α is given by:

α =

{
c, if T DRfc,fr(p) > γ

1, otherwise
(17)

where c > 1 and T DRfc,fr(p) is given by Equation (14). In our implementation, c = 2. Based on [32],
we choose the threshold γ as 0.5 that corresponds to the texture change (i.e., T DRfc,fr(p) ≤ 0.5, the
texture does not change). According to the above definitions, the synthesizing image f syn

c will give the
foreground objects more brightness, i.e., the background objects will be much darker than the foreground
objects in f syn

c .
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2.5. Foreground Detection

In order to detect the foreground objects, we use a simple k-means [33] technique on the synthesize
image (i.e., Equation (15)) to classify the pixels into three clusters (i.e., k = 3). The foreground objects
are extracted by using

f fg
c (p) =

{
1, if p belongs to the highest level of the clusters (i.e., p is the foreground object)
0, otherwise

(18)

Since the textures of foreground and background objects have a significant difference in our
application, so it is easy to extract the boundaries f bou

c of foreground objects by using MMD which
is calculated by Equation (12):

f bou
c (p) =

{
1, if MMDfc,fr(p) > Mth

0, otherwise
(19)

where Mth is a threshold.
In order to segment the sow, we combine the two binary images f fg

c (Equation (18)) and f bou
c

(Equation (19)). We do the following steps using the two binary images:

1. A morphological close filtering is performed on the image f bou
c using a circular structuring element

of 3-pixel diameter to fill the gaps and smooth out the edges.
2. To separate the piglets and the sow, we subtract the two images: f sub

c = ‖f fg
c − f bou

c ‖. After
subtracting, the piglets and the sow are separated if they connect together. We remove the small
areas in the image f sub

c , so the piglets are eliminated. Then, the area of the foreground object,
which is a total number of pixels of the sow in the image f sub

c , is extracted.
3. Now we combine the images f sub

c and f bou
c : f com

c = f sub
c + f bou

c . After combining, again, in order
to eliminate the boundaries of the piglets, we remove the small areas in the image f com

c .
4. The connected components algorithm and some other post-processing operations are performed in

the combined image f com
c to extract the shape of the sow.

3. The Proposed Algorithm

Now we are ready to describe our algorithm using the methods which are presented in the previous
section. The flowchart and pseudocode of the algorithm are shown in Figure 2 and Table 1, respectively.
In Table 1, the illumination component is estimated in logarithmic space and the reflectance component
is estimated in intensity space.

It is observed that a large amount of computation for the proposed algorithm (see Figure 2).
The complexity for the 2D-discrete DWT and its inverse are highest in our algorithm. Although
the filters of the spline wavelet are short, the complexity for decomposition and reconstruction
require O

(
N2log(N)

)
[17] for an image of size N × N . Hence, the 2D-discrete DWT is still very

computing intensive. Moreover the representation has (2j + 1)N2 values, which must be stored in
memory. With a 3.0-GHz Pentium CPU PC, real-time processing of image sequences is achievable at a
rate of about 1 frames per second for gray images sized 768 × 576. In our implementation, all codes are
implemented using Matlab. If it is implemented by C++, the speed will be improved.
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Table 1. The pseudocode of our algorithm.

0. Input the reference image (i.e., background);
Estimate the illumination of the reference image by using HWF (see Figure 1);
Estimate the coarse image and wavelet details of the reference image by using Equation (2);

1. repeat
2. Input the current image;
3. Estimate the illumination of the current image by using HWF (see Figure 1);
4. Estimate the coarse image and wavelet details of the current image by using Equation (2);
5. Estimate the reflectance of the current image by using WQI (i.e., Equation (10));
6. Synthesize an image by using Equation (15), the estimated illumination and reflectance of

the current image and the estimated illumination of the reference image are used
in the function;

7. Estimate the foreground objects based on the synthesizing image by using Equation (18);
8. Estimate the boundaries of the foreground objects by using Equation (19);
9. Detect the sow based on the foreground (i.e., step 7) and boundary (i.e., step 8) images,

the approach is described in Section 2.5.
10. end

+

TDR

MMD

Mapping

Wavelet Details

Wavelet Details

Wavelet Filter

Wavelet

Wavelet

Homomorphic
Wavelet Filter

Foreground
Detection

Decomposition

Decomposition

Using k−means

Texture Difference

Reference Image

Modulus Magnitude Difference

Current Image

Logarithmic Image

Coarse Image

Coarse Image

Estimating Illumination

Wavelet Quotient Image Synthesizing Image 

Foreground Boundaries

Logarithmic Image Estimating Illumination

Homomorphic

Texture Difference Rate

Foreground Image

Figure 2. The flowchart of our algorithm. Three images are used to synthesize: two
estimating illumination images and a wavelet quotient image (i.e., the reflectance component
of the current image).
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Especially in real-time applications, the general purpose processors could not deliver the necessary
performance for the computation of the 2D discrete DWT. A fast implementation is therefore obvious.
If the hardware of parallel architecture such as GPU is employed, the computation performance of the
DWT could be significantly improved [34]. Hence, our algorithm is able to run so fast in real-time. In
the further work, we will implement our proposed algorithm based on GPU.

4. Material Used in this Study

This study is a part of the project: “The Intelligent Farrowing Pen”, financed by the “Danish Advanced
Technology Foundation”. The aim of this project was to develop an IT management and surveillance
system for sows in farrowing pens. The system should be able to regulate the climate at farrowing pen
level according to the animals’ actual needs and notify the farmer of any critical situation for sows and
piglets in the farrowing pens.

All videos used were recorded at the experimental farm of Research Center Foulum, Denmark. The
farrowing house (consisting of a total of 24 farrowing pens) was illuminated with common TL-lamps
(i.e., Fluorescent lamps) which were hung on the ceiling, and the room lightning was always turned on.
In each pen, a monochrome CCD camera (Monacor TVCCD-140IR) was fixed and positioned in such a
way that the platform was located approximately in the middle of the farrowing pen. The cameras were
connected to the MSH-Video surveillance system [35], which is a PC based video-recording system.

Two distinct data types were used: training and test data, which were recorded by MSH-Video
surveillance system. The size of grayscale image (jpg) was 768 × 576. The training data sets were
captured as 6 frames per minute, and the images in test data sets were captured as 1 frame per minute.

4.1. Training Data

The two data sets were recorded during two days in the same pen (about 8 h for every day, from
08.00 o’clock to 16.00 o’clock). The recordings took place after farrowing under varying illumination
conditions. We used the training data sets to develop our algorithm.

In the beginning of the two sequences, about 200 consecutive images without the sow and piglets
were captured with 10 s interval. In this initialization phase, for each data set, the light was often
turned off/on in order to make it possible to update the background model in the Gaussian mixture
model [36] without foreground objects under different lights. In this phase, the amount of lighting
changes was about 15 times.

After about 40 min, the sow and piglets went into the pen and then the light was also often turned
off/on. We made the light changes about 1 h after the sow and piglets went into the pen. In this period,
the amount of lighting changes was about 30 times.

In the recordings, the nesting materials (i.e., straws) were moved around by the sow and piglets, and
the sow were not moving over a long time. The following three problems were identified in the test data
sets: sudden illumination changes, motionless foreground objects and dynamic background.
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4.2. Test Data

The test data sets: ten data sets were randomly selected and recorded before farrowing (i.e., without
piglets) from 0.00 o’clock to 24.00 o’clock in 6 different pens (one day for each set). They are used to
analyse the behaviour of sows under different treatments.

4.3. Evaluation Criteria

In order to test the effectiveness of our algorithm, we had made the following criteria to evaluate the
original and segmented images.

1. Criteria for original images:

We manually evaluated the area of the sow for all original images in the test data and some original
images in the training data. The evaluated area was used to compare with the corresponding shape
of the sow in the segmented binary image.
To demonstrate the segmentation efficiency under different illumination conditions, the original
images were evaluated within about 1 hour in the two training data sets after the sow and piglets
went into the pen, since the two periods contained different light conditions that were manually
made. The original images were manually classified into two illumination levels: Normal and
Change. The Normal level means that the lights were not or slowly changed and the Change level
means that the lights were changed (i.e., the lights were switched on or off at that moment).

2. Criteria for segmented images:

The segmented images were visually evaluated and classified into three scale groups. (1) Full
Segmentation (FS): the shape of the sow was segmented over 90% of the manually evaluated area;
(2) Partial Segmentation (PS): the shape of the sow was segmented between 80% and 90% of the
manually evaluated area; (3) Cannot Segment (CNS): (a) there were two or more separated regions;
(b) there were many false foreground pixels in the segmented image; (c) the shape of the sow was
segmented below 80% of the manually evaluated area.
The classification was based on a comparison (i.e., ratio) between the manually evaluated area
and the corresponding area of the shape of the sow in the segmented image. The corresponding
segmented images that represent the three scale groups are shown in Figure 7.

5. Experimental Results

5.1. HWF Evaluation

To evaluate our HWF, the mean square error (MSE) and peak-signal-to-noise ratio (PSNR) are chosen.
The measured results for our HWF are compared to the measurements of the homomorphic filtering with
the Butterworth high-pass filter (BHPF). The best filter must give its performance high in PSNR value
and low MSE value [37]. The BHPF is given by [13]:
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h(ω) = gl +
gh − gl

1 + (d0/
√
ω2
1 + ω2

2)2n
(20)

where ω is a complex frequency variable, n = 2 is the order of the filter, d0 = 0.95 is a cutoff frequency;
gh = 2.0 and gl = 0.5 are maximal and minimal amplitudes of the BHPF corresponding to very high
and low frequencies, respectively.

The MSE is the cumulative squared error between the filtered and original images, whereas PSNR is
a measure of the peak error. The MSE and PSNR are given by:

MSE =
1

mn

m∑
x=1

n∑
y=1

[f(x, y)− f̃(x, y)]2, PSNR = 20 · log10

(
255√
MSE

)
(21)

where f and f̃ are the original and filtered images, respectively. The size of the image is m × n. The
filtered image f̃HWF for our proposed HWF is given f̃HWF = exp(Ĩ), where Ĩ is given in Equation (6).
The filtered image f̃BHPF (i.e., the transforming back to image intensity space) is gotten by using the
homomorphic filtering with the BHPF.

We randomly chose 500 consecutive images from the training data to compare our proposed HWF
and the filtering BHPF. The comparison for MSE is shown in Figure 3. The red and blue lines show the
MSE values for our HWF and the filtering BHPF, respectively. The comparison for PSNR is shown in
Figure 4. The red and blue lines show the PSNR values for our proposed HWF and the filtering BHPF,
respectively. The comparisons demonstrate that our HWF gives a better result than the BHPF.

Figure 3. Mean square error (MSE) values for our homomorphic wavelet filter (HWF) and
the filtering Butterworth high-pass filter (BHPF). The red line is for the HWF and the blue
line is for the BHPF. The 500 consecutive images from our training data are selected in
this evaluation.

Figure 4. Peak-signal-to-noise ratio (PSNR) values for our HWF and the filtering BHPF.
The red line is for the HWF and the blue line is for the BHPF. The 500 consecutive images
from our training data are selected in this evaluation.



Sensors 2015, 15 21418

5.2. WQI Evaluation

Figure 5 illustrates visually an example for the diffusion, coarse and wavetlet-quotient images which
are presented in Section 2.2. Figure 5d is the reflectance component, which is estimated by our proposed
WQI model.

Figure 5. The wavelet quotient image (WQI) model evaluation: (a) the original image;
(b) the diffusion image; (c) the coarse image; (d) the wavelet-quotient image (i.e., the
reflectance image).

5.3. Detection Evaluation

We both qualitatively and quantitatively evaluate the segmented images in this subsection. The
evaluation criteria for three scale groups of segmented images is described in Section 4.3.

5.3.1. Qualitative Evaluation

Figure 6 represents an example of the general segmented results under varying illumination
conditions in the training data. Obviously, the synthesized image (i.e., Figure 6f) shows that the
homogeneous regions are accurately classified as either foreground objects or background objects by
using Equation (15).

In our application, there were some nesting materials (e.g., straws) in the farrowing pen, which were
often moved by the sow and the piglets. In these regions, the background was dynamic, the coarse
coefficients of the dynamic background could be relatively regularized by the DWT, and the coarse
coefficients were used in our HWF to estimate the illumination component. This means that the dynamic
background became a relatively static background by the HWF. This demonstrates that our approach is
less sensitive to the dynamic background. Since the sow and piglets in the current image were the actual
motions w.r.t. the reference image, therefore, a foreground object in the current image that becomes
motionless can be distinguished from the background objects.

Figure 7 represents the general segmented images of the three scale groups in the test data. The
segmented images in FS and PS scale groups can be used to track the simple behaviour of sows, such as
their position (i.e., center of mass of the segmented sow shape) and orientation (i.e., the angle between
the x-axis and the major axis of the ellipse (i.e., the sow shape)). As shown in Figure 7d, the most
segmented images in CNS scale group are because the sows are dirty with caked mud and manure
(i.e., the caked mud and manure on the sow). In fact, the caked mud and manure are the background
objects in our application.
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Figure 6. The general segmented result under light changes in the training data: (a) the
current image; (b) the estimated illumination of the current image in logarithmic space;
(c) the estimated reflectance of the current image in intensity space; (d) the reference image;
(e) the estimated illumination of the reference image in logarithmic space; (f) the synthesized
image; (m) the boundaries of the foreground objects; (n) the binary image after k-means on
the synthesized image (i.e., image f); (k) the foreground object (i.e., the sow) is obtained by
using the images m and n.

Figure 7. The general segmented results of the scale groups in the test data: (a) FS: under
slow changes of illumination; (b) FS: under sudden changes of illumination; (c) PS; (d) CNS.

5.3.2. Quantitative Evaluation

In addition to the qualitative evaluation, we provide a quantitative evaluation. Table 2 shows the
results of the evaluation for the segmented images in the test data. Over 98.5% of the segmented images
can be used to track the behaviour of sows.
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Table 2. The segmented binary images are manually classified into the three groups in the
test data. FS: Full Segment; PS: Partial Segment; CNS: Cannot Segment. N: number of
images; %: percentage of total images.

Data Set Total Images
FS PS CNS

N % N % N %
1 1435 1372 95.61 43 2.99 20 1.39
2 1434 1370 95.54 46 3.21 18 1.26
3 1437 1369 95.27 51 3.55 17 1.18
4 1435 1374 95.75 42 2.93 19 1.32
5 1436 1375 95.75 41 2.86 20 1.39
6 1435 1367 95.26 43 2.30 25 1.74
7 1436 1369 95.33 45 3.13 22 1.53
8 1433 1372 95.74 41 2.86 20 1.40
9 1438 1375 95.19 48 3.34 15 1.04
10 1435 1369 95.40 43 3.00 23 1.63

Average 95.48 3.02 1.39

5.4. Comparison

In order to demonstrate that our algorithm can efficiently detect the foreground objects, we compare
our algorithm with the Gaussian mixture model (GMM) [36] by using the training data.

In the GMM-based method, the first 200 images (without foreground objects, see Section 4.1) of
each data set were the recent history data for the GMM-based method. The foreground objects f fg

c of
the current image that are detected by using the GMM-based method combines with the foreground
boundaries f bou

c of the current image which are calculated by Equation (19). The combination between
the two binary images f fg

c and f bou
c is presented in Section 2.5.

We manually evaluated the first 360 (with foreground objects, i.e., the sow and piglets went into the
pen) original and segmented images of each set in the training data, since the two periods contained
light changes which were manually made. The evaluation criteria for two levels of lights and three scale
groups of segmented images is described in Section 4.3.

Table 3 shows the manually evaluated results. For the Change level, the rates of CNS for our algorithm
and GMM-based method are 2.4% and 82.5%, respectively. This evaluation demonstrates that our
algorithm is able to deal with sudden light changes.

Figure 8 gives an example while the GMM-based method fails under the sudden illumination change,
but the foreground objects can still be successfully detected by our algorithm.



Sensors 2015, 15 21421

Table 3. The visual evaluation for the light changes by using 720 images in the training data
sets. The original images are classified into two illumination levels: Normal and Change.
The corresponding segmented binary images are manually classified into three groups.
FS: Full Segment; PS: Partial Segment; CNS: Cannot Segment; N: number of images;
%: percentage of total images.

Illumination
N

Our Algorithm GMM-Based Method
FS PS CNS FS PS CNS

Level N % N % N % N % N % N %
Normal 594 589 99.15 4 0.67 0.17 0.27 544 91.58 42 7.07 8 1.34
Change 126 117 92.9 6 4.7 3 2.4 9 7.2 13 10.3 104 82.5

Figure 8. Sudden illumination changes: (a) the original image; (b) the segmented
result based on the GMM model; (c) the segmented result by using our algorithm. The
example shows that the Gaussian mixture model (GMM)-based method fails under sudden
light change.

In order to evaluate the performance of our algorithm more quantitatively, we compare the receiver
operating characteristic (ROC) curves between the algorithm and the GMM-based method. The true
positive fraction (TPF) and the false positive fraction (FPF) that construct a ROC curve are calculated
as following:

TPF =
FP

FP + TN
and FPF =

TP

TP + FN
(22)

where FP (false positive) indicates pixels falsely marked as the foreground, TN (true negative) the
number of correctly identified background pixels, TP (true positive) the number of correctly detected
foreground pixels, FN (false negative) pixels falsely marked as the background.

We have randomly selected 12 images to plot the ROC curve. The selected 12 images were classified
into the Change level in Table 3: 9 images were randomly chosen from the FS group, 2 images
were randomly chosen from the PS group and 1 image was randomly chosen from the CNS group.
For example, the image in Figure 8 was one of our choices. The corresponding original image was
manually segmented to generate the ground-truth (only the sow). Figure 9 shows the comparison of two
ROC curves of our algorithm and GMM-based method.
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Figure 9. The receiver operating characteristic (ROC) curves: the dashed line is ROC curve
of our method, the other one is ROC curve of the GMM-based method.

5.5. The Publicly Available Data

We also apply our algorithm on a publicly available dataset: /dataset2014/thermal/library to detect the
foregrounds. The dateset is downloaded from the website: http://changedetection.net and has two main
parts: the original frames and their corresponding ground truth. It contains 4900 frames of frame size
320 x 240. Since the beginning and ending frames are the background frames in the dataset,
therefore 3340 frames (i.e., the frame numbers ranged from 860 to 4200) are selected to detect the
foreground objects.

In order to detect the foreground objects, the original frames (colour) are converted to grey images
and then the first 7 steps of our algorithm (see Table 1) are performed, i.e., the foreground objects are
extracted on the synthesizing image (i.e., Equation (15)) by using Equation (18).

Figure 10 shows the general segmented results. The precision is 0.9939 for the 3340 frames and
defined as the proportion of the TP against all the positive results (both TP and FP):

Precision =
TP

TP + FP
(23)
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Figure 10. The general segmented result in the publicly available data: first row - the original
frames; second row-our results; third row-the ground truths. Frame number in the dataset:
(a) number 904; (b) number 1030; (c) number 2709; (d) number 3340; (e) number 4118.

6. Conclusions

We have presented an approach to estimate the illumination and reflectance components of an image.
A homomorphic wavelet filter is used to estimate the illumination component. A wavelet-quotient image
model which is used to estimate the reflectance component is defined.

Based on the approach, we have developed an algorithm to segment the sows in the complex farrowing
pens. The experimental results have demonstrated that the algorithm can be applied to detect the
domestic animals in complex environments such as light changes, motionless foreground objects and
dynamic background.

The proposed approach is sensitive if the textures of foreground and background objects are very
similar. Also, the high computational cost is the drawback of our approach and in the further work we
will implement it using data parallel computing based on GPU.
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