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Functional near infrared spectroscopy (fNIRS) is a neuroimaging technology that enables

investigators to indirectly monitor brain activity in vivo through relative changes in the

concentration of oxygenated and deoxygenated hemoglobin. One of the key features

of fNIRS is its superior temporal resolution, with dense measurements over very short

periods of time (100 ms increments). Unfortunately, most statistical analysis approaches

in the existing literature have not fully utilized the high temporal resolution of fNIRS. For

example, many analysis procedures are based on linearity assumptions that only extract

partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories.

The main goal of this article is to assess the ability of a functional data analysis (FDA)

approach for detecting significant differences in hemodynamic responses recorded by

fNIRS. Children with and without SLI wore two, 3×5 fNIRS caps situated over the

bilateral parasylvian areas as they completed a language comprehension task. FDA was

used to decompose the high dimensional hemodynamic curves into the mean function

and a few eigenfunctions to represent the overall trend and variation structures over

time. Compared to the most popular GLM, we did not assume any parametric structure

and let the data speak for itself. This analysis identified significant differences between

the case and control groups in the oxygenated hemodynamic mean trends in the

bilateral inferior frontal and left inferior posterior parietal brain regions. We also detected

significant group differences in the deoxygenated hemodynamic mean trends in the

right inferior posterior parietal cortex and left temporal parietal junction. These findings,

using dramatically different approaches, experimental designs, data sets, and foci,
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were consistent with several other reports, confirming group differences in the importance

of these two areas for syntax comprehension. The proposed FDAwas consistent with the

temporal characteristics of fNIRS, thus providing an alternative methodology for fNIRS

analyses.

Keywords: fNIRS, hemodynamic response curve, functional data analysis, specific language impairment, sentence

comprehension

1. INTRODUCTION

Functional near infrared spectroscopy (fNIRS) is a non-invasive
method for measuring near-infrared light absorption through
the skull, enabling researchers to speculate a close proxy to
neural activation that results from relative changes of the
cerebrovascular alterations in oxygenated and deoxygenated
hemoglobin concentrations in cortical structures (Villringer and
Dirnagl, 1994; Boas et al., 2014; Tak and Ye, 2014). Since light
between 650 and 950 nm is weakly absorbed by biological
chromophores (Hoge et al., 2005), the relatively deep penetration
of NIR light makes it an effective research tool in neuro-
imaging studies. Compared to other imaging technologies such
as functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET), fNIRS has a few advantages such
as low cost, high flexibility, portability, and the ability to
accommodate young children and patients with psychological
issues (Arenth et al., 2007; Ye et al., 2009). fNIRS offers
superior temporal resolution with dense measurements over
time and provides data for a wide range of functional contrasts
such as oxygenated (1HbO), deoxygenated (1HbD), and total
hemoglobin (1HbT) simultaneously as participants perform
functional tasks in naturalistic environments (Kozel et al., 2009;
Ye et al., 2009; Hall et al., 2013; Tak and Ye, 2014). Despite the
extensive study of fNIRS data, little has been done to study the
mean and variation trends of hemodynamic curves as individuals
complete language processing tasks. Indeed, analysis approaches
that truly utilize the superior temporal characteristics of fNIRS
are rare in the existing literature. Even rarer are studies of
concomitant behavioral and neural differences between children
with specific language impairment (SLI) and typically developing
control children as they complete language comprehension
tasks.

In this article, we introduce a functional data analysis (FDA)
methodology with a goal of addressing several challenging
questions: (1) how to best utilize the superior temporal
resolution of fNIRS; (2) how to model its hemodynamic
trends for syntax-related stimuli; (3) how to connect light
optodes with brain regions without anatomy information; (4)
how to speculate the differences in brain activities between
case and control in reaction to the same stimuli. FDA is a
nonparametric data-driven statistical technique that does not
make any parametric assumptions such as linearity or normality.
Our main objective was to model the overall hemodynamic
trends from a functional perspective as opposed to individual
discrete points that are considered using existing analysis
approaches. Although the modeling goal of FDA conforms
to the temporal hemodynamic signals of the fNIRS context

(Barati et al., 2013), it has seldom been applied in the fNIRS
literature.

Tak and Ye (2014) reviewed currently existing statistical
models in fNIRS data. The most well-known and widely used
method was the GLM (Schroeter et al., 2004; Plichta et al.,
2007), which has been integrated into numerous fNIRS analysis
tools (Shimada and Hiraki, 2006; Koh et al., 2007; Abdelnour
and Huppert, 2009; Huppert et al., 2009; Strangman et al.,
2009; Ye et al., 2009; Custo et al., 2010; Penny et al., 2011).
As a multivariate statistical model, GLM works well, but FDA
differs in important ways. First, GLM is a traditional parametric
model that assumes a linear combination structure. Assuming
a parametric form would likely be misleading if the underlying
data did not satisfy the main linear assumptions. Therefore,
nonparametric modeling without any assumptions should be
more flexible. Second, as a multivariate model, GLM does not
utilize the time course of the data and hence can not capture the
overall trends of the hemoglobin concentration in the dynamic
or functional sense (Barati et al., 2013). Third, GLM does not
provide a relevant hypothesis test approach to compare the
differences in the overall hemodynamic trends between case and
control groups due to its model structure restrictions.

Comparing which brain regions are significantly involved in a
task performed by two groups requires formal hypothesis testing.
Unfortunately, many of the current statistical approaches used
to perform hypothesis tests for fNIRS data may not be optimal
in the functional sense. Simple statistics such as t-test have
been performed to statistically compare single-value differences
between different groups (Aldrich et al., 1994; Germon et al.,
1994, 1999; Young et al., 2000; Hoshi et al., 2001; Isobe et al.,
2001; Kennan et al., 2002; Schroeter et al., 2002; Hoshi, 2003;
Matsuo et al., 2003; Tachtsidis et al., 2004; Tsujimoto et al.,
2004; Shibuya-Tayoshi et al., 2007; Kim et al., 2010). Multi-way
ANOVA has also been employed in fNIRS studies (Fallgatter
and Strik, 1998; Bartocci et al., 2000; Fallgatter and Strik, 2000;
Herrmann et al., 2003; Hoshi, 2003; Suto et al., 2004; Folley and
Park, 2005; Kameyama et al., 2006; Arenth et al., 2007; Irani et al.,
2007). Although these methods were able to evaluate differences
in hemoglobin observations, information was lost because only
partial measurements were considered. Using FDA to compare
the overall temporal mean and variation trends of hemodynamic
response functions rather than simply defining a magnitude may
be more informative and robust, especially in a context in which
optical signal attenuation or motion artifacts cause noise (Ye
et al., 2009).

When repeated measurements are recorded over a dense grid
of time points, often by machine, they are typically termed as
functional or longitudinal data, with one observed curve per
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subject. Formally, FDA models each hemodynamic response
curve as a continuum function over time, thus capturing the
overall dynamic trajectories of the function over time, even
though the measurements are collected discretely (Ramsay
and Silverman, 2002; Ferraty and Vieu, 2006; Ramsay, 2006;
Barati et al., 2013). Although some experimental errors are
generally unavoidable, nonparametric kernel smoothing captures
the underlying mean function and hence greatly reduces the
effects of noise. The functional principal component analysis
(FPCA) based on the Karhunen-Loeve theorems decomposes
the high dimensional auto-covariance matrix extracted from
fNIRS data to a few important orthogonal eigenfunctions. The
first few eigenfunctions explaining the majority of variation are
likely induced by cognitive related tasks, with the remaining
eigenfunctions explaining only a very small percentage of
variation that may be caused by nuisance factors such as
breathing, vasomotor, measurement error, movement artifacts,
and other unaccounted activities (Akgül et al., 2006). To
perform comprehensive comparisons on the hemodynamic
curves between case and control groups, we tested the equality
of mean functions and eigenfunctions and eigenvalues of the
auto-covariance functions using two-sample FPCA approaches.
Bootstrap sampling was used to determine the threshold of the
significance of the tests because the distributions of the test
statistics were unknown (Benko et al., 2009). Importantly, FDA
is inherently nonparametric and does not assume any parametric
structure or distributions within the hemodynamic curve
data.

Some researchers have investigated the functional relationship
between fNIRS and fMRI and their correlation over time
(Mandeville et al., 1999; Siegel et al., 2003; Fujiwara et al., 2004;
Okamoto et al., 2004; Steinbrink et al., 2006). Although many
common properties exist between fNIRS and fMRI, functional
curve based modeling, which is mature in fMRI research
(Grodzinsky, 2000; Ben Schachar et al., 2003; Müller et al.,
2003; Ben-Shachar et al., 2004; Weismer et al., 2005; Binder
et al., 2009; Seghier et al., 2010; Seghier, 2013), has rarely been
used for fNIRS stand-alone experiments. The progress achieved
in fMRI analyses paves the way for improvements on fNIRS
approaches. We believe that the FDA approach could promote
breakthroughs in fNIRS research, similar to the way it did
for fMRI.

To test the potential of FDA to analyze fNIRS data, we
used fNIRS to asssess differences in neural activation between
children (case: children with SLI; control: age-matched, typically-
developing children) as they engaged a language comprehension
task that is known to favor the children in the control group.
SLI is a developmental language disorder of unknown origin
that is characterized by significant deficits in the acquisition
and use of spoken and written language in the absence
of hearing, intellectual, emotional, or acquired neurological
impairments (Bishop, 2014; Leonard, 2014). This disorder
affects approximately 7% of the school-age population (Tomblin
et al., 1997). If FDA is a promising statistical approach
for fNIRS, it should reveal group differences in parasylvian
(language related) neural regions as children perform the
task.

2. MATERIALS AND METHODS

2.1. Participants
Thirty children (15 children with SLI and 15 age-matched,
typically developing control children) between the ages of 8
and 12 participated in the study. There were eight males in
each group. The children in the SLI group met the standard
classification criteria of performance on multiple language
measures that was one or more standard deviations below
the mean. The typically-developing controls performed above
one standard deviation from the mean on multiple language
measures. All the children in both groups were right-handed,
monolingual English speakers. All the children in the SLI group
were receiving special education services in the public schools.
In addition, we provided independent testing to insure that the
children in the SLI group met our identification criteria.

2.2. Sentence Comprehension Task
The children completed a language comprehension task in which
they listened to a sentence and then selected a picture (from
three choices) that depicted the agent (actor) in the sentence.
There were 60 total sentences with 15 sentences representing
each of four sentence types: subject-verb-object (“The ring had
moved the square behind the very bright cold bed”), subject
relatives (“The watch that had hugged the truck behind the kite
was bright”), passives (“The shoe was hugged by the clock under
the very cold box”), and object relatives (“The book that the
shirt had hugged under the kite was new”). The sentences were
controlled for length, vocabulary complexity, and vocabulary
imageability (Montgomery et al., 2015). Similar to Dick et al.
(2004), noun animacy and noun affordance cues were removed,
making the sentences semantically implausible. This was done
so that the children’s decisions about the agent of the sentence
would be based primarily on syntactic knowledge or word order
rather than semantic plausibility. Children saw three pictures
on a computer screen as they listened to each sentence. They
were asked to point to the picture of the agent of the sentence
(the thing doing the action) as quickly as possible after hearing
each sentence. All children completed eight training items before
fNIRS scanning began. See Montgomery et al. (2015) for a
complete description of the stimuli.

2.3. Functional Near Infrared Spectroscopy
Procedures
Data was collected with the Hitachi ETG-4000 (Hitachi Medical
Co., Japan) with 44 channels divided across two 3 × 5 probe
caps. The channels were determined by bilateral placement of
the optode caps such that the middle detector in the lowest
row of optodes was placed over T3 or T4. The measurement
patches covered the majority of the right and left parasylvian
regions including inferior frontal cortex, inferior parietal lobule
(including the temporal parietal junction and inferior posterior
parietal cortex), and superolateral temporal cortex. The channel
locations are depicted in Figure 1.

The fNIRS scan began with a 30 s rest period in which
children were instructed to focus on a “+” in the middle of the
computer screen and to “relax” their mind. After the first rest
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FIGURE 1 | Display of the 44 channels divided across two 3 × 5 probe caps. The channels 1–22 belong to the left brain hemisphere and the channels 23–44

belong to the right brain hemisphere.

period, children listened to 60, 12-word sentences representing
four different syntax types (15 subject-verb-object sentences, 15
subject relative clause sentences, 15 passive sentences, and 15
object relative clause sentences). E-prime software was used to
present the stimuli in a pseudo-random order and to record the
accuracy and speed of the children’s responses. The sentences
were presented in three blocks of 20 items, presented in a
psudorandom order, with each item being separated by a jittered
rest interval that varied between 2 and 6 s. Each block was
separated by a 25 s rest period. The stimuli onsets for each
participant were consistently predefined and each participant was
given 8 s to think and respond.

Throughout the fNIRS scan, near-infrared light from the
source optodes travels approximately 1–1.5 cm into the cortex
where it is absorbed by oxygenmolecules attached to hemoglobin
in the blood in the brain (Dehghani and Delpy, 2000). The
amount of light that is not absorbed is measured by the detecting
optodes. The relative changes in the concentration of oxygenated
hemoglobin (1HbO), deoxygenated hemoglobin (1HbD), and
total hemoglobin (1HbT) were estimated according to changes
in the optical properties of the light using the Beers-Lambert
conversion (see Plichta et al., 2007 for a detailed description).
A length of 8521 and a frequency of 10 Hz time series was
collected within a duration of 851 sec for each channel of
each participant. Figure 2A displays one example of original
1HbO time series at channel 31 (mainly overlapped in
the right inferior frontal cortex) for a child in the SLI
group.

2.4. Data Preprocessing
There were a total of 3960 individual time series collected from
three hemoglobin categories (1HbO, 1HbD, and 1HbT), 44
channels, and 30 participants (15 cases and 15 controls). Each
time series contained 8521 measurement units consisting of 4800
intermittent task measurement units and 3721 rest measurement
units. The active periods represented 15 stimuli segments for each
of the four syntax types. The following preprocessing steps were
designed to extract the most important information from such a
large amount of data.

The first step of data preprocessing was to group channels
based on regions of interest (ROIs). The global alignments
of the channel positions between individuals were difficult
because fNIRS has the shortcoming of weak spatial anatomical
representation. The ROIs for the current project were derived a
priori based on previous findings in both the fMRI and fNIRS
literature demonstrating changes in cortical activation during
language processing tasks. Four areas within the parasylvian
region, inferior frontal cortex (Broca’s area), superolateral
temporal cortex, the temporal parietal junction and posterior
inferior parietal cortex (Angular Gyrus) are frequently implicated
in verbal tasks (Rossi et al., 2012; Scherer et al., 2012; Petrides,
2013). A Polemus system was used for 3D digitization of
head size and optode location following testing. This provided
standardized Montreal Neurological Institute coordinates and
anatomical labels that related to each participant individually.
We determined the corresponding channel for each monitored
brain region based on the largest percentage of overlapping
rate between the channel and the brain ROI for each
participant.

The second step of data preprocessing was to extract only
stimulus-related active units from the original time series and
focus only on the segments associated with cognitive activity
during the target stimulus comprehension tasks. There were
60 such windowed segments, each lasting 8 sec (corresponding
to 80 units), and hence, a total 4800 units were extracted. As
an example, Figure 2B displays the stimulus- relevant 1HbO
extracted from the original time series at channel 31 (mainly
overlapping the right inferior frontal cortex) for a child (Sue) in
the SLI group. This process was repeated for all individuals.

Since the observations were collected very densely, we used
the average of the 10 units per second as the modeling target,
illustrated in Figure 2C. Comparing Figure 2B and Figure 2C,
notice that the two signals look almost the same, except Figure 2B
has length 4800 but Figure 2C is only of length 480 (1/10 of
original length). If there were any differences caused by averaging
the 10 dense units per second (Figure 2C), it would be smoother
and would capture the trend even better by removing more noise
or errors from averaging.
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FIGURE 2 | One example of 1HbO time series at channel 31 (mainly overlapped in the right inferior frontal cortex) for Sue, a child participant with

specific language impairment. (A) The original time series of 1HbO with length 8521; (B) the extracted stimulus-relevant 1HbO under 60 target stimuli instants

with length 4800; (C) the average version of (B) with length 480. By averaging the 10 measurements of each second, the curve maintains similar signal but only using

1/10 of original length.

The third step of data preprocessing related to selecting the
hemoglobin categories. It is not clear whether neuronal activation
is best represented by1HbO,1HbD, or1HbT. Researchers may
expect the deoxygenated hemoglobin to show opposite trends to
that of 1HbO because the 1HbO and 1HbD often complement
each other (Cui et al., 2010). However, comparing Figure 3A

with Figure 3B for one example of the same channel for the
same person, note that the deoxygenated hemodynamic trends
are flatter than the oxygenated hemodynamic trends, and there
does not appear to be opposite trends in most time segments.
This suggests that the oxygenated hemoglobin contains a more
rubust signal than the deoxygenated hemoglobin. In this article,
we mainly focused on modeling 1HbO and 1HbD because the
results of 1HbT (the sum of 1HbO and 1HbD) were highly
correlated with the other two.

The forth step of data preprocessing involved extracting the
syntax-relevant time course by locating the time onsets of the 15
questions for each syntax type. This yielded four different time
courses, each with 120 units. As an example, Figures 3, 4 display

one example of the four syntax-relevant 1HbO hemodynamic
curves extracted from the original time series at channel 31
(mainly overlapped in the right inferior frontal cortex) for a child
in the SLI group named Sue.

Factors such as breathing, vasomotor response, measurement
error, movement artifacts, and other unaccounted activities
(Akgül et al., 2006), may cause noise in fNIRS data. These four
preprocessing steps enabled us to extract the most important
signals and remove unavoidable confounding factors. Comparing
Figure 2A with Figure 4, notice that it is harder to recognize
patterns from Figure 2A due to many complex and sharp
fluctuations and strands. On the contrary, the patterns are
smoother and clearer in Figure 4. After these preprocessing steps,
our data were ready for the statistical models and hypothesis
tests.

2.5. Functional Data Analysis Structure
Let Yikc, i = 1, . . . , n; k = 1, . . . ,T; c = 1, 2,
denote the relative changes in the concentrations of oxygenated
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FIGURE 3 | One example of the four different stimulus-relevant hemoglobin categories at channel 31 (mainly overlapped in the right inferior frontal

cortex) for Sue. (A) The stimulus-relevant oxygenated hemodynamic curve 1HbO; (B) the stimulus-relevant deoxygenated hemodynamic curve 1HbD; (C) the

stimulus-relevant total hemodynamic curve 1HbT; (D) the stimulus-relevant absolute total hemodynamic curve 1|HbT|. 1HbT was computed by summing 1HbO and

1HbD. Absolute total 1|HbT| was computed by summing the absolute value of 1HbO and 1HbD.

FIGURE 4 | One example of extracted syntax-relevant 1HbO at channel 31 (mainly overlapped in the right inferior frontal cortex) for Sue under four

syntax types respectively, each with 15 target stimulus questions. The black dots are the original observation Yikc of oxygenated hemoglobin and the red

curves are smoothing hemodynamic trajectories Xic (t) estimated by nonparametric kernel smoother from model Equation (1). (A) Object relative clause sentences

(OR); (B) passive sentences (PAS); (C) subject relative clause sentences (SR); (D) subject-verb-object sentences (SVO).

or deoxygenated hemoglobin of the ith subject measured at
discrete time point tk for the cth group. Here c = 1
denotes the case group and c = 2 denotes the control
group, n is the number of subjects per group, and T
is the total time points measured for each subject. These
observed densely collected curves with noise can be modeled

as independent realizations of a stochastic process with smooth
trajectories.

Let X1c(t), . . . ,Xnc(t) denote random smooth trajectories of
the underlying stochastic process in L2(T ), t ∈ T , where T is
the time interval. Then we can reconstruct the smooth functions
X′
is from the original densely collected noisy observations Y ′

i s as
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(Müller, 2008)

Yikc = Xic(t)+ εikc, i = 1, . . . , n; c = 1, 2; k = 1, . . . ,T;

t ∈ T , (1)

where εikc are the experimental errors and assumed to be
independent, with E(εikc) = 0 and Var(εikc) = σ 2

kc
.

For each group c, the mean function of Xic(t) is µc(t) =

E(Xic(t)) and auto-covariance function of Xic(t) is

Gc(s, t) = cov{Xic(s),Xic(t)} = E{[Xic(s)− µc(s)][Xic(t)− µc(t)]},

for s, t ∈ T . Here µc(t) is interpreted as the mean function
of oxygenated or deoxygenated hemodynamic curves for group
c. Throughout this paper, it is assumed that µc(t) is a smooth
function of t, and Gc(s, t) is a positive definite and bivariate
smooth function of s and t, for s, t ∈ T . The “smooth” refers
to twice continuously differentiable. The idea of model Equation
(1) is that the observed noisy curve over time is described by an
underlying smooth function plus noise.

In order to model the auto-covariance function, functional
PCA interprets Gc(s, t) as the kernel of a linear integral operator
on the space L2(T ) of square-integrable functions on T , mapping
f ∈ L2(T ) to AGc f ∈ L2(T ) defined by

(AGc f )(t) =

∫

T

f (s)Gc(s, t)ds. (2)

An eigenfunction v of the auto-covariance operator AGc is a
solution of the equation (AGcv)(t) = λv(t), with eigenvalue λ. For
each c, we assume that the operatorAGc has a sequence of smooth
orthonormal eigenfunctions vlc satisfying

∫

T
vkc(t)vlc(t)dt = δkl

(here δkl is the Kronecker symbol), with ordered eigenvalues
λ1c ≥ λ2c ≥ . . . ≥ 0. By Mercer’s Theorem, applying a spectral
decomposition on the function Gc yields

Gc(s, t) =
∞
∑

l=1

λlcvlc(s)vlc(t). (3)

Since the eigenfunctions vlc’s form a complete orthonormal
sequence on L2(T ), the generalized Fourier expansion
(Karhunen − Loeve Theorem (Karhunen, 1946) or functional
principal component expansion) on Xic yields

Xic(t) = µc(t)+
∞
∑

l=1

ζilcvlc(t), c = 1, 2, (4)

where the sum is defined in the sense of L2 convergence and

ζilc =< Xic − µc, vlc >=

∫

T

(Xic(t)− µc(t))vlc(t)dt (5)

are uncorrelated random variables with E(ζilc) = 0, and
var(ζilc) = λlc, subject to the L2 convergence, i.e.,

6lλlc = E(||Xic − µc||
2) =

∫

Gc(t, t)dt < ∞.

ζlc are frequently referred to as the lth functional principal
component score or the lth dominant modes of random effects.

By way of Equation (4), the dynamic trends of random
function Xic(t) can be modeled by the mean trend function µc(t),
the eigenfunction vlc, and the distribution of functional principal
component scores ζilc. The first L principal components were
used to approximate Equation (4) to capture the most important
variations, remove the noise effects, and estimate themain signals
of the trajectories of Xc(t) effectively (Ramsay and Silverman,
2002).

2.6. Parameter Estimates
Using the observed data set D = {Yikc, i = 1, . . . , n; k =

1, . . . ,T; c = 1, 2}, we were able to estimate all unknown
parameters µ̂c(t), Ĝc(s, t), and σ̂ 2

kc
from Equations (1) and (5).

The smooth function Xic(tk) and σ̂ 2
kc

of each discrete noisy
observation (tik,Yikc) were estimated by model Equation (1) via
nonparametric kernel smoothing. Then the unbiased estimator
of µc(t) was easily obtained from the sample mean of Xic(t).

Once the estimator µ̂c(t) was obtained, we computed the
sample estimate of auto-covariance matrix by

Ĝc(t, s) = n−16n
i=1{Xic(s)− µ̂c(s)}{Xic(t)− µ̂c(t)}.

The estimate of eigenfunctions were obtained by the
corresponding spectral decomposition on Ĝc(s, t). To be
more specific, λ̂qc are eigenvalues of Ĝc, given by

∫

T

Ĝc(s, t)v̂lc(s)ds = λ̂lcv̂lc(t).

And v̂lc is the eigenfunction corresponding to λ̂lc, satisfying
∫

T
v̂2
lc
(t)dt = 1 and

∫

T
v̂kcv̂lc(t)dt = 0 if k 6= l. The signs of v̂lc

were not uniquely determined. In order to ensure the closeness of
v̂lc from two groups of c = 1, 2, we allowed the signs of v̂lc to be
chosen arbitrarily as long as < v̂l1, v̂l2 > ≥ 0 for l = 1, . . . , L.

Ĝc also presents an empirical version of the
expansion (Equation 3)

Ĝc(s, t) =
L

∑

l=1

I(λ̂lc > 0)λ̂lcv̂lc(s)v̂lc(t), (6)

where I is the indicator function used to only keep the terms
with positive eigenvalues. From the percentage of variation
explained by the first few eigenfunctions, the first L largest
eigenvalues λ̂1c, . . . , λ̂Lc were chosen. The positive definiteness
of the estimated auto-covariance matrix Ĝc(s, t) was not always
guaranteed, which might be a problem in practical applications.
Once λ̂lc and v̂lc were obtained, we checked whether or not
λ̂lc > 0 (Müller, 2008). If λ̂lc was negative, then we dropped
this negative eigenvalue and its corresponding eigenfunction,
and reconstituted the estimate from remaining eigenvalues and
eigenfunction estimates.

Once eigenvalues λ̂1c ≥ . . . ≥ λ̂Lc and orthonormal
eigenfunctions v̂1, . . . , v̂L were obtained, the fitting of
individual trajectories required estimation of functional principal
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component scores. By the discretization on the Equation (5),
plugging µ̂c and v̂lc into a Riemann sum approximation of the
integral, we have

ζ̂ilc = 6T
k=1(Xic(tk)− µ̂(tk))v̂lc(tk)(tk − tk−1), (7)

setting t0 = 0 (Müller, 2008). We assured that n−16ζ̂ilc = 0,
n−16ζ̂ilcζ̂iwc = 0 for l 6= w; l,w = 1, . . . , L, and n−16ζ̂ 2

ilc
=

λ̂lc. This approximation method by sum worked well because
our observations were collected densely and consistently for all
subjects without missing values.

2.7. Nonparametric Kernel Smoothing
The nonparametric regression kernel smoothing was a
traditional approach to capture the curve trends without
making assumptions about the error distributions. The goal of
smoothing was to model the underlying function by estimating
X(t) = E(Y|t) from the original discrete measurement and
removing the noisy observations caused by measurement errors.
To define a kernel smoother, we need a bandwidth h and a kernel
function K.

The Nadaraya-Watson Estimator (NW), a basic framework
for kernel estimators (Nadaraya, 1964; Watson, 1964; Cai, 2001;
Racine and Li, 2004; Bailey and Addison, 2010; Demir and
Toktamiş, 2010; Kato, 2012; Simonoff, 2012), was defined by

∑n
i=1 Kh(t − ti)Yi

∑n
j= 1 Kh(t − tj)

, (8)

where Kh(t) = 1/hK(t/h). The kernel function K(t) was a non-
negative symmetric real valued integrable function satisfying
∫ ∞
−∞ K(t)dt = 1,

∫ ∞
−∞ tK(t)dt = 0, and

∫ ∞
−∞ t2K(t)dt > 0.

The Epanechnikov kernel K(t) = 3/4(1 − t2)I(|t| < 1) was
used. The bandwidth h controled the number of points that
neighbored each ti and hence determined the weight of each
point contributing to the estimator. The choice of bandwidth
was crucial in changing the result because it served as a
smoothing parameter and determined the trade-off between the
variance and bias of the resulting nonparametric regression
estimates. Typically, smaller h decreases the bias but increases
the estimation variance. We chose the optimal bandwidth that
minimized the Generalized Cross Validation (GCV).

GCV(h) =
1

T(1− ν/T)2

T
∑

k=1

(Yikc − Xic(tk))
2,

for each subject i and group c. Here ν is the trace of matrixM

M =











l1(t1) l2(t2) . . . lT(t1)
l1(t2) l2(t2) . . . lT(t2)
...

...
...

...
l1(tT) l2(tT) . . . lT(tT)











,

with

li(t) =
Kh(t − ti)

∑n
j= 1 Kh(t − tj)

Once the smooth trajectory of each Xi, i = 1, . . . , n was
estimated from the NW nonparametric kernel smoother with
the optimal bandwidth, we estimated the mean µ̂c(t) for each
group directly from the sample mean, which was a consistent and
unbiased estimator.

2.8. Hypothesis Tests
The main goal of this article was to determine whether FDA
applied to fNIRS data would reveal significant differences in
the hemodynamic function curves between the case and control
groups as they processed syntax-related stimuli. We examined
eight parasylvian brain regions: left and right inferior frontal
cortex, the temporal parietal junction, inferior posterior parietal
cortex, and superolateral temporal cortex. Statistically, we used
formal hypothesis tests to judge the extent to which the
distributions of the random functions X1c, . . . ,Xnc differed for
case and control groups. By way of the empirical Karhunen-Loeve
decompositions Equation (4), we approximated the functions of
Xic(t) as

Xic(t) = µ̂c(t)+
L

∑

l=1

ζ̂ilcv̂lc(t), c = 1, 2; i = 1, . . . , n. (9)

As a result, the possible differences of the hemodynamic signals
between the case and control group could be tested from the
following three steps.

The first test was whether or not significant differences existed
for the overall mean trends between case and control group for
each syntax type at each brain area of interest:

H01 : µ1(t) = µ2(t), t ∈ T .

If H01 failed to be rejected, it would mean that the overall mean
trends of hemodynamic curves were similar between the case and
control groups. The second test was whether or not significant
differences existed for the variation trends between case and
control groups for each syntax type at each brain area of interest:

H0,2l : vl1(t) = vl2(t), t ∈ T ; l = 1, . . . , L.

If H0,2l failed to be rejected, it would mean that the lth variation
mode had similar trends between the case and control groups.
The third test was whether or not significant differences existed
for the variance of principal component scores for each syntax
type at each brain area of interest:

H0,3l : λl1 = λl2, l = 1, . . . , L.

If H0,3l failed to be rejected, it would mean that distribution of
the lth principal component scores were similar between the case
and control group.

The first two tests, H01 and H0,2l were challenging because
they were based on high dimensional curves, and both the
test statistics and the distribution were unknown. The most
traditional approach involves judging the similarity of two curves
by measuring how far the norm of the differences of the two
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vectors is away from zero. Define the following measures (Benko
et al., 2009):

D1 = ||µ̂1(t)− µ̂2(t)||
2,

D2,l = ||v̂l1(t)− v̂l2(t)||
2, l = 1, . . . , L,

D3,l = |λ̂l1 − λ̂l2|
2, l = 1, . . . , L.

The three null-hypotheses would be rejected respectively, if

D1 ≥ 11;1−α; D2,l ≥ 12,l;1−α; D3,l ≥ 13,l;1−α,

where 11;1−α , 12,l;1−α , and 13,l;1−α denotes the α-level critical
values of the distributions of

11 = ||(µ̂1(t)− µ1(t))− (µ̂2(t)− µ2(t))||
2,

12,l = ||(v̂l1(t)− vl1(t))− (v̂l2(t)− vl2(t))||
2, l = 1, . . . , L,

13,l = |(λ̂l1 − λl1)− (λ̂l2 − λl2)|
2, l = 1, . . . , L.

We decided to use 1s as the primary test because Ds were equal
to 1s under the null hypotheses and the values of Ds were
shifted by the difference in the true means, eigenfunctions, and
eigenvalues under the alternative hypotheses. However, because
the true population mean, eigenvalues and eigenfunctions were
unknown, above 1s can not be accessed directly. Therefore, we
used the bootstrap sampling to determine the threshold (Benko
et al., 2009).

1∗
1 = ||(µ̂1(t)− µ̂∗

1(t))− (µ̂2(t)− µ̂∗
2(t))||

2,

1∗
2,l = ||(v̂l1(t)− v̂∗l1(t))− (v̂l2(t)− v̂∗l2(t))||

2, l = 1, . . . , L,

1∗
3,l = |(λ̂l1 − λ̂∗l1)− (λ̂l2 − λ̂∗l2)|

2, l = 1, . . . , L,

where µ̂∗
1(t), v̂

∗
l1(t), λ̂

∗
l1(t), as well as µ̂∗

2(t), v̂
∗
l2(t), λ̂

∗
l2(t)

were estimated from each independent bootstrap samples
X∗
11(t), . . . ,X

∗
n1(t) and X∗

12(t), . . . ,X
∗
n2(t), respectively. We

performed 1000 nonparametric bootstrap samples for both case
and control group and we repeated the nonparametric kernel
smoothing for each sample. Finally the 1 − α percentiles were
used to determine the thresholds of the tests.

3. RESULTS

3.1. Real NIRS Data Analysis
Behaviorally, the case (SLI) group identified the agents of subject-
verb-object and subject relative clause sentences as well as
their age-matched, typically developing controls. However, the
children in the case group were significantly less accurate than the
children in the control group on the passive and object relative
clause sentences.

The goal of statistical modeling was to determine whether
there were significant differences in the hemodynamic trends
between the case and control groups. Additionally, we speculated
which brain regions were associated with children’s syntax
comprehension ability from the significant group differences. For
each hemodynamic category (1HbO and 1HbD), we performed

32 tests to consider all combinations of four different syntax types
and eight different brain regions.

Using the FDA approaches described in Sections 2.5 and 2.6,
we first estimated the mean function µ̂c(t), eigenfunctions v̂lc(t),
and eigenvalues λ̂lc for each group, with c = 1 corresponding
to case group and c = 2 for control group. During the analysis,
we kept the first two eigenfunctions (i.e., L = 2) because they
explained 90% of the overall variations, and the remaining
eigenfunctions explained only a very small percentage of the
variations.

With respect to potential group differences in mean trends
of 1HbO, H01 was rejected at the significance level of 0.1 at
two brain regions: right inferior frontal cortex brain region for
subject-verb-object, subject relative clause, and object relative
clause sentences, and at the left inferior posterior parietal cortex
brain region for object relative clause and passive sentences.
Therefore, we concluded that the right inferior frontal cortex
and left inferior posterior parietal cortex were associated with
the control group’s syntax comprehension processing ability
to a greater extent than the SLI group’s. Figure 5 displays
the estimated mean trajectories µ̂c(t) of 1HbO in these two
brain regions with corresponding significant syntax types. A
close inspection of Figure 5 reveals that the mean trajectories
of case and control groups have different dynamic trends
(different shape and magnitude) for each syntax type, with
opposite fluctuate oscillations at some time segments but similar
directions at other time segments. The mean trajectories of the
control group were always above those of the case group in these
two brain regions. In the right inferior frontal cortex brain region,
the mean oxygenated hemodynamic trajectories of the control
group were always above zero, while those of the case group were
below zero. In the left inferior posterior partietal cortex, the mean
oxygenated hemodynamic trajectories of both case and control
groups were below zero.

The hypothesis test H01 for 1HbD was rejected at the right
inferior posterior parietal cortex (at 0.05 significance level) and
the left temporal parietal junction (at 0.1 significance level) for
all four syntax types. We concluded that there were significant
differences (related to both shape and magnitude) in the mean
trajectories of1HbD at these two brain regions between case and
control group, and these two brain regions were also associated
with children’s syntax comprehension ability. A close inspection
of Figure 6 reveals that the mean trajectories of 1HbD for the
control group mainly fluctuate around zero but those of the case
group are around−0.2 for all the eight scenarios. Using the same
range of y-axis as the oxygenated hemodynamic trajectories of
1HbO in Figure 5, the overall mean trends of the deoxygenated
hemodynamic trajectories 1HbD were very flat, especially those
of the case group. So, we decreased the range of the y-axis in
Figure 6 to the half of that of Figure 5 so that the significant
oscillations were more apparent.

None of the 32 hypothesis tests related to the variation
trends (H0,2l, l = 1, 2) could be rejected for either 1HbO or
1HbD at any of the eight brain regions or for any of the four
syntax type types. Thus, there were no significant differences in
the eigenfunction (i.e., variation trends) in 1HbD and 1HbD
between the case and control groups.
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FIGURE 5 | The mean trends for 1HbO (i.e., H01). The mean trajectories µ̂c (t) of 15 smoothing 1HbO curves, in the control group are depicted as a blue line and

similar information for case group are depicted as a red line. IFC , inferior frontal cortex; IPPC, inferior posterior parietal cortex. OR, object relative clause sentences;

SR, subject relative clause sentences; SVO, subject-verb-object sentences; and PAS, passive sentences. (A) The mean trajectories of 1HbO for OR syntax type at

the right IFC; (B) the mean trajectories of 1HbO for SR syntax type at the right IFC; (C) the mean trajectories of 1HbO for SVO syntax type at the right IFC; (D) the

mean trajectories of 1HbO for OR syntax type at the left IPPC; (E) the mean trajectories of 1HbO for PAS syntax type at the left IPPC.

Hypothesis test H0,3l, l = 1, 2, related to the eigenvalues, was
rejected at a few brain regions and syntax types. It indicated
that the percentages of variation explained by the first two
eigenfunctions (i.e., the distributions of the first two principle
component scores) were significantly different between case and
control groups. Table 1 summarizes the details of percentage
of variation for all significant brain regions and syntax types.
Among all these significant differences, the left inferior posterior
parietal cortex brain region for 1HbD achieved the maximum
for all four syntax types, with the first eigenfunction of the case
group (v11(t)) explaining 96−98% of the total variation of the
case group vs. 59−70% of the total variation of the control group
(v12(t)). Similarly, the second eigenfunction (v21(t)) explained
0.7−1.0% of the total variation of the case group vs. 15−34% of
the total variation of the control group (v22(t)). Additionally, we
also noticed that the superolateral temporal cortex brain regions
for 1HbO showed opposite directions in the percentage of
variation explained by the first two eigenfuncitons as compared

to other brain regions. Specifically, the first eigenfunction of
the case group (v11(t)) explained a greater percentage of total
variation than the first eigenfunction of the control group (v12(t))
for almost all scenarios, except the 1HbO at left superolateral
temporal cortex for passive and subject-verb-objects sentences,
and right superolateral temporal cortex for object relative clause
sentences. Also, we observed that the second eigenfunction of
the case group (v21(t)) explained a much smaller percentage
of total variation than the second eigenfunction of the control
group (v22(t)) for almost all scenarios with the exception of
the 1HbO at left superolateral temporal cortex for subject-verb-
object sentences and right superolateral temporal cortex for object
relative clause sentences.

4. DISCUSSION

The primary goal of this article was to determine whether
significant group differences in the hemodynamic trajectories
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FIGURE 6 | The mean trends for 1HbD (i.e., H01). IPPC , inferior posterior parietal cortex; TPJ, temporal parietal junction. OR, object relative clause sentences;

SR, subject relative clause sentences; SVO, subject-verb-object sentences; and PAS, passive sentences. (A) The mean trajectories of 1HbD for OR syntax type at the

right IPPC; (B) the mean trajectories of 1HbD for PAS syntax type at the right IPPC; (C) the mean trajectories of 1HbD for SR syntax type at the right IPPC; (D) the

mean trajectories of 1HbD for SVO syntax type at the right IPPC; (E) the mean trajectories of 1HbD for OR syntax type at the left TPJ; (F) the mean trajectories of

1HbD for PAS syntax type at the left TPJ; (G) the mean trajectories of 1HbD for SR syntax type at the left TPJ; (H) the mean trajectories of 1HbD for SVO syntax type

at the left TPJ.

existed for two groups with known language differences. To
achieve this goal, we designed a syntax comprehension task
in which 15 children with SLI and 15 age-matched, typically-
developing controls pointed to pictures representing the agent
(actor) after hearing four types of sentences (subject-verb-object

sentences, subject relative clause sentences, passive sentences,
and object relative clause sentences). We administered the 60
questions in a pseudo-random order to 30 participants during
the NIRS data collection. We performed three formal hypothesis
tests to formally assess the group differences between the case

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 June 2016 | Volume 10 | Article 108

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Fu et al. Function-Based fNIRS Analysis

TABLE 1 | Significant group differences in the percentages of variation

explained by the first two eigenfunctions between the case and control

groups.

Category Brain region Syntax Case Control

v11(%) v21(%) v12(%) v22(%)

1HbO left IPPC OR 88.3 5.5 76.8 15.3

1HbO left TPJ PAS 97.4 0.6 87.9 5.2

1HbO left STC PAS 89.8 3.9 92.8 5.4

1HbO left STC SVO 84.7 6.0 95.2 1.8

1HbO right STC OR 83.0 6.2 96.1 1.3

1HbD left IPPC OR 97.5 0.9 59.8 33.6

1HbD left IPPC PAS 97.6 0.8 61.2 31.4

1HbD left IPPC SR 97.7 0.7 66.8 23.8

1HbD left IPPC SVO 96.8 1.0 69.8 15.6

1HbD left TPJ OR 97.1 0.8 83.0 12.8

1HbD left TPJ PAS 97.1 0.8 87.6 8.3

1HbD left TPJ SR 97.9 0.6 91.8 4.5

1HbD left STC OR 93.8 2.4 83.5 13.3

1HbD left STC PAS 92.1 2.7 87.7 10.0

1HbD left STC SR 95.0 1.9 88.8 8.1

1HbD left STC SVO 92.4 2.6 89.2 5.5

IPPC, inferior posterior parietal cortex; TPJ, temporal parietal junction; STC, superolateral

temporal cortex; OR, object relative clause sentences; SR, subject relative clause

sentences; SVO, subject-verb-object sentences; and PAS, passive sentences; v11 stands

for the first eigenfunction of the case group; v21 stands for the second eigenfunction of

the case group; v12 stands for the first eigenfunction of the control group; and v22 stands

for the second eigenfunction of the control group.

and control groups, and determined the threshold by a bootstrap
approach for high dimensional objects when both test statistics
and distributions were unknown (Benko et al., 2009).

The FDA approach is different from the widly used traditional
approaches in existing NIRS literature (e.g., GLM and t-test).
In functional data analyis, the modeling is performed in the
functional sense that treats the entire curve as the modeling
target and fully utilizes the superior temporal resolution of fNIRS
data. But GLM extracts multivariate discrete points and does
not utilize the dynamic trajectories of the fNIRS curve. As a
nonparametric data-driven approach, FDA does not assume any
linear structure or normality distribution such as that within
the GLM model (Shimada and Hiraki, 2006; Koh et al., 2007;
Abdelnour and Huppert, 2009; Custo et al., 2010; Penny et al.,
2011; Tak and Ye, 2014). Unlike simple t-tests (Aldrich et al.,
1994; Germon et al., 1994, 1999; Young et al., 2000; Hoshi et al.,
2001; Isobe et al., 2001; Kennan et al., 2002; Schroeter et al., 2002;
Hoshi, 2003; Matsuo et al., 2003; Tachtsidis et al., 2004; Tsujimoto
et al., 2004; Shibuya-Tayoshi et al., 2007; Kim et al., 2010),
FDA tests the trajectory differences of two entire curves for two
groups and captures not only the differences in magnitude but
also in shape. Thus, our approach was inclusive of all observed
stimulus-relevant data information and was not restricted to the
magnitudee differences as t-test does.

We successfully detected significant group differences in the
oxygenated hemodynamic mean trends in two brain regions,
right inferior frontal cortex and left inferior posterior parietal

cortex. The mean oxygenated hemodynamic trajectories between
case and control groups showed different trends (different shape
and magnitude) in these two brain regions, with some segments
showing opposite fluctuating oscillations but other segments
having similar directions. In the right inferior frontal cortex, the
mean oxygenated hemodynamic trajectories of the control group
were always above zero, while those of the case group were
below zero. In the left inferior posterior partietal cortex, the mean
oxygenated hemodynamic trajectories of both case and control
groups were below zero. We also detected significant group
differences in deoxygenated hemodynamic mean trends in the
right inferior posterior partietal cortex and left temporal parietal
junction. The mean deoxygenated hemodynamic trajectories
of the control group mainly fluctuated around the zero line
while that of case group were all below −0.2. Some of these
significant findings from our quantitative functional NIRS
analysis were consistent with the results of a few other studies
that had dramatically different approaches, experiments, data
sets, and foci. For example, the left inferior posterior parietal
cortex (Angular Gyrus) brain region has been reported to
be highly engaged in semantic processing during language
comprehension (Geschwind, 1965; Joseph, 1982; Démonet et al.,
1992; Vandenberghe et al., 1996; Vigneau et al., 2006; Houdé
et al., 2010; Price, 2010), including some reports got by MRI
(Binder et al., 2009; Seghier et al., 2010; Seghier, 2013). Further,
differences between children with and without SLI in the extent
of activation of this area has been noted in studies of listening to
nonwords and words (Weismer et al., 2005). A number of MRI
studies have noted group differences between children with SLI
and their age-matched controls in the size of right hemisphere
parasylvian areas (Plante et al., 1991).

There were no significant differences in the eigenfunctions,
but the percentage of total variation explained by each
eigenfunction significantly differenced in the left inferior
posterior partietal cortex, left temporal parietal junction, and both
left and right superior temporal cortex. The finding of significant
group differences in the percentage of variation explained by the
first two eigenfunctions may be of particular interest. Recall that
the first two orthogonal eigenfunctions derived from the fNIRS
high dimensional auto covariance matrix were likely related
to the cognitive processes involved in performing our syntax
comprehension task. The significant group differences in the
percentage of total variation explained by the eigenfunctions
may relate to group differences in information processing
functions that have been associated with attention, semantic
processing, and syntactic processing in the left inferior posterior
parietal cortex, the left temporal parietal junction, and the left
superolateral temporal cortex. Further research on larger samples
of participants are needed to fully understand the meaning of
these results.

In future work, we will compare the significant differences
between left and right hemispheres. Unlike the comparisons
between case and control groups, the left and right brain samples
are not independent requiring a different approach. We will also
explore more detailed functional properties in the rest periods.
Although there are several hypothesis tests involved, we will
leave the multiple correction for the future for a few reasons.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 12 June 2016 | Volume 10 | Article 108

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Fu et al. Function-Based fNIRS Analysis

First, there are only 15 subjects within each group, which is
much less than the dimension of the curves (length of 120
after preprocessing and length of 8521 before preprocessing).
As a result, power is limited due to the difficulties of collecting
children with SLI. Therefore, we do not want to diminish our
findings due to a large number of multiple corrections. We
believe that our methods will yield better results after the sample
size is large enough and will investigate the multiple correction
when we have an appropriate sample size. Second, the multiple
tests involved here are not independent. Instead, they form
close correlations, as 1HbO and 1HbD and the four syntax
types are highly correlated. Therefore, many multiple correction
approaches will not be appropriate and likely will mislead the
results. For example, the test of equal mean hemodynamic
trends between case and control (H1,0) was rejected, whether we
considered each of the syntax types (with 120 length) individually
or we tested the stimuli of the four syntax types simultaneously
(with 480 length). However, if we used multiple correction, say
Bonferroni correction, then each syntax test would only have an
α/4 significance level, which makes the individual syntax period
impossible to be rejected given the current sample size. In that
case, none of the individual syntax types would show significant
differences, but the whole stimuli curve with four syntax types
would be significant between case and control. This would result
in conflicting conclusions.

In summary, this proof of concept study was conducted to
explore a more advanced statistical analysis approach to the
analysis of the time course of hemodynamic data collected with
fNIRS. This approach enables us to compare which brain regions
are significantly involved in syntax comprehension ability in the
two groups. FDA strategies were used to decompose the high
dimensional 1HbO and 1HbD time curves into mean curves
and eigenfunctions to represent overall trends and variation
structures (Ramsay and Silverman, 2002; Ferraty and Vieu, 2006;

Ramsay, 2006; Barati et al., 2013). After detailed comparisons and

hypothesis tests, we revealed greater brain activity for the control
group than the case group for all four syntax types. In addition,
different percentages of variation for the case and control groups
were explained by the first two eigenfunctions, suggesting that the
two groups used different cognitive processing strategies while
performing the tasks. The approach of FDA proposed in this
paper has promise as an analysis method that captures the overall
mean trends and variation trends of hemoglobin concentration
over time within and between groups without assuming any
structure.
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