
Bioimage informatics

An automated workflow for parallel processing

of large multiview SPIM recordings

Christopher Schmied1, Peter Steinbach1, Tobias Pietzsch1,

Stephan Preibisch1,2,3 and Pavel Tomancak1,*

1Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany, 2HHMI Janelia Research

Campus, Ashburn, VA, USA and 3Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical

Systems Biology, Berlin, Germany

*To whom correspondence should be addressed.

Associate Editor: Robert Murphy

Received on 30 July 2015; revised on 13 November 2015; accepted on 25 November 2015

Abstract

Summary: Selective Plane Illumination Microscopy (SPIM) allows to image developing organisms

in 3D at unprecedented temporal resolution over long periods of time. The resulting massive

amounts of raw image data requires extensive processing interactively via dedicated graphical

user interface (GUI) applications. The consecutive processing steps can be easily automated and

the individual time points can be processed independently, which lends itself to trivial paralleliza-

tion on a high performance computing (HPC) cluster. Here, we introduce an automated workflow

for processing large multiview, multichannel, multiillumination time-lapse SPIM data on a single

workstation or in parallel on a HPC cluster. The pipeline relies on snakemake to resolve dependen-

cies among consecutive processing steps and can be easily adapted to any cluster environment for

processing SPIM data in a fraction of the time required to collect it.

Availability and implementation: The code is distributed free and open source under the MIT li-

cense http://opensource.org/licenses/MIT. The source code can be downloaded from github:

https://github.com/mpicbg-scicomp/snakemake-workflows. Documentation can be found here:

http://fiji.sc/Automated_workflow_for_parallel_Multiview_Reconstruction.

Contact: schmied@mpi-cbg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The duration and temporal resolution of 3D fluorescent imaging of

living biological specimen is limited by the amount of laser light ex-

posure the sample can survive. Selective Plane Illumination

Microscopy (SPIM) alleviates this by illuminating only the imaged

plane thus reducing photo damage dramatically. Additionally, SPIM

achieves fast acquisition rates due to sensitive wide-field detectors

and sample rotation enables complete coverage of large, non-

transparent specimen. Taken together, SPIM allows imaging of

developing organisms in toto at single cell resolution with unprece-

dented temporal resolution over long periods of time (Huisken

et al., 2004; Keller et al., 2008).

This powerful technology produces massive, terabyte size

datasets that need computationally expensive and time-consuming

processing before analysis. Existing software solutions implemented

in Fiji (Preibisch et al., 2010, 2014; Schmied et al., 2014;

Preibisch, unpublished (https://github.com/fiji/SPIM_Registration))

or in ZEISS ZEN black are performing chained processing steps on

a single computer and require user inputs via a GUI. As the spatial

and temporal resolution of the light sheet data increase, such

approaches become inconvenient since processing can take days.

In controlled experiments, SPIM image processing is robust

enough to be automated and key steps are independent from time

point to time point. HPC is inherently designed for such time

VC The Author 2015. Published by Oxford University Press. 1112
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(7), 2016, 1112–1114

doi: 10.1093/bioinformatics/btv706

Advance Access Publication Date: 1 December 2015

Applications Note

http://opensource.org/licenses/MIT
https://github.com/mpicbg-scicomp/snakemake-workflows
http://fiji.sc/Automated_workflow_for_parallel_Multiview_Reconstruction
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
https://github.com/fiji/SPIM_Registration
http://www.oxfordjournals.org/


consuming and embarrassingly parallel tasks that require no user

interaction. Therefore, we developed an automated workflow with

minimum user interaction that is easily scalable to multiple datasets

or time points on a cluster. In combination with the appropriate

computing resources it enables for the first time processing of SPIM

data that is faster than the total acquisition time required for collect-

ing the raw images.

2 Processing workflow

The Fiji SPIM processing pipeline uses Hierarchical Data Format

(HDF5) as data container for the originally generated TIFF or CZI

files by custom made (Pitrone et al., 2013) or commercial SPIM

microscopes (Fig. 1A and B). Following format conversion, multi-

view registration aligns the different acquisition angles (views)

within each time point (Fig. 1C), and subsequent time-lapse registra-

tion stabilizes the recording over time (Preibisch et al., 2010) (Fig.

1D). Fusion combines the registered views of one time point into a

single volume by averaging or multiview deconvolution (Preibisch

et al., 2010, 2014) (Fig. 1E and F). The result is a set of HDF5 files

containing registered and fused multiview SPIM data that can be

examined locally or remotely using the BigDataViewer (Pietzsch

et al., 2015).

All steps are implemented as plugins (Preibisch et al., 2010,

2014; Pietzsch et al., 2015; Preibisch, unpublished (https://github.

com/fiji/SPIM_Registration)), in the open-source platform Fiji

(Schindelin et al., 2012). We use these plugins by executing them

from the command line as Fiji beanshell scripts (Supplementary Fig.

1). To overcome the legacy dependency of Fiji on the GUI we

encapsulate it in a virtual framebuffer (xvfb) that simulates a moni-

tor in the headless cluster environment (Supplementary Fig. 1).

To map and dispatch the workflow logic to a single workstation

or on a HPC cluster, we use the automated workflow engine snake-

make (Köster and Rahmann, 2012). The workflow is defined using

a Snakefile containing the name, input and output file names of each

of the processing steps and python code calling the beanshell scripts

(Supplementary Fig. 1). Upon invocation, the snakemake rule engine

resolves the dependencies between individual processing steps based

on the input files required and the output files produced during the

workflow. It also creates the command that fits the input/output

rule description and the template command as defined in the

Snakefile. Most importantly, if single tasks on individual files are

discovered to be independent, they are invoked in parallel

(Supplementary Fig. 2). Each instance of snakemake for one dataset

is independent and thus the workflow can be applied simultaneously

to multiple dataset.

The required parameters for processing are collected by the user

during GUI processing of an exemplary time point and entered into

a .yaml configuration file (Supplementary List 1). The workflow is

executed by passing the .yaml file to snakemake on the command

line (Supplementary Fig. 1). Importantly, from the user perspective

the launching of the pipeline on a HPC cluster and on a local work-

station appears identical and require a single command

(Supplementary List 2). If the parameters are chosen correctly and

the local or HPC resources are sufficient (Supplementary Table 1

and 2) no further action from the user is necessary.

Snakemake supports multiple back ends to perform the com-

mand dispatch: local, cluster and Distributed Resource

Management Application API (DRMAA) (Köster and Rahmann,

2012). The local back end creates a new sub shell and calls the com-

mand(s) required. The cluster back end is a general interface to HPC

batch systems based on string substitution. DRMAA specifies a sys-

tem library that interfaces all common batch systems based on a

generalized task model, thus multiple batch systems are supported

through one interface.

3 Results

We compared the performance of the pipeline on a 175 GB, single

channel SPIM recording of a Drosophila embryo consisting of 90

time points and 5 views, processed either on a single computer or on

a HPC cluster (Supplementary Table 1). The processing using aver-

age fusion takes almost precisely one day on a single powerful com-

puter. In contrast, using the full cluster resource the dataset can be

processed in 1 h 31 min, which represents a 16-fold speedup in pro-

cessing. Since the time-lapse covers 23 h of Drosophila embryonic

development the processing becomes real time with respect to the

acquisition. Using deconvolution on a cluster with only 4 GPUs

(Supplementary Table 1) still brings a more than 3-fold speed up

(Supplementary Table 3). A dataset of 2.2 TB in size with 715 time

points (Schmied et al., 2014) would take an estimated week to pro-

cess on a single computer. Using this method, the processing

is reduced to only 13 h with typical cluster workload from other

users.

4 Conclusion and outlook

The biologist‘s goal is to analyze, for instance, cellular behavior

using time-lapse SPIM recordings. The steps between data acquisi-

tion and analysis are of rather technical interest. Our pipeline

Fig. 1. Automated workflow for multiview processing. Workflow for SPIM

image processing (A–E) using parallelization (B, C and E). Shown on the right

yz slices in the BigDataViewer of a Drosophila embryo expressing histone

H2Av-mRFPruby raw (A) registered (C) and deconvolved (E). Results of de-

convolution with xy , xz and xz slices through the fused volume of the same

embryo (F). Scale bars represent 50 lm

An automated workflow for parallel SPIM processing 1113

https://github.com/fiji/SPIM_Registration
https://github.com/fiji/SPIM_Registration
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
Deleted Text: r
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
Deleted Text: ours
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1
Deleted Text: c
Deleted Text: s
Deleted Text: u


leverages HPC to reduce the notoriously difficult and time-consum-

ing SPIM data processing to a single autonomous command. Similar

pipelines have been developed (Amat et al., 2015), however in our

case the reliance on an open source platform (Fiji) allows us to exe-

cute the processing in parallel without any software associated costs.

It is also possible to incorporate new algorithms from the Fiji ecosys-

tem into the pipeline (Schmid and Huisken, 2015 and see

Supplementary Note).

Future improvements of the workflow will provide greater accessi-

bility to novice users by using the UNICORE GUI framework

(Almond and Snelling, 1999). Ultimately, we aim for a completely un-

supervised automated processing similar to grid computing practiced

in fields facing similar big data challenges such as particle physics and

molecular simulation (Bird, 2011; Gesing et al., 2012)

Acknowledgements

We thank Stephan Janosch for valuable discussions and Akanksha Jain for

testing the workflow. We thank the computer services of the MPI-CBG for

their great general support and specifically Oscar Gonzalez, the members of

the scientific computing facility and light microscopy facility.

Funding

P.T. and C.S. were supported by the HFSP Young Investigator grant

RGY0093/2012. P.T. and T.P. were supported by the European Research

Council Community‘s Seventh Framework Program (FP7/2007-2013) grant

agreement 260746.

Conflict of interest: none declared.

References

Almond,J. and Snelling,D. (1999) UNICORE: Uniform access to supercom-

puting as an element of electronic commerce. Future Gener. Comput. Syst.,

613, 1–10.

Amat,F. et al. (2015) Efficient processing and analysis of large-scale light-sheet

microscopy data. Nat. Protoc., 10, 1679–1696.

Bird,I. (2011) Computing for the Large Hadron Collider. Annu. Rev. Nucl.

Part. Sci., 61, 99–118.

Gesing,S. et al. (2012) A single sign-on infrastructure for science gateways

on a use case for structural bioinformatics. J. Grid Comput., 10, 769–

790.

Huisken,J. et al. (2004) Optical Sectioning Deep Inside Live Embryos by

Selective Plane Illumination Microscopy. Science, 305, 1007–1009.

Keller,P.J. et al. (2008) Reconstruction of zebra- fish early embryonic develop-

ment by scanned light sheet microscopy. Science, 322, 1065–1069.

Köster,J. and Rahmann,S. (2012) Snakemake–a scalable bioinformatics work-

flow engine. Bioinformatics, 28, 2520–2522.

Pietzsch,T. et al. (2015) BigDataViewer: visualization and processing for large

image data sets. Nat. Methods, 12, 481–483.

Pitrone,P.G. et al. (2013) OpenSPIM: an open-access light-sheet microscopy

platform. Nat. Methods, 10, 598–599.

Preibisch,S. et al. (2010) Software for bead-based registration of selective

plane illumination microscopy data. Nat. Methods, 7, 418–419.

Preibisch,S. et al. (2014) Efficient Bayesian-based multiview deconvolution.

Nat. Methods, 11, 645–648.

Schindelin,J. et al. (2012) Fiji: an open-source platform for biological-image

analysis. Nat. Methods, 9, 676–682.

Schmid,B. and Huisken,J. (2015) Real-time multi-view deconvolution.

Bioinformatics, 31, 3398–3400.

Schmied,C. et al. (2014) Open-source solutions for SPIMage processing.

Quant. Imag. Cell Biol., 123, 505–529.

1114 C.Schmied et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv706/-/DC1

