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ABSTRACT
Background. NirS-type denitrifying bacteria and ammonia-oxidizing bacteria (AOB)
play a key role in the soil nitrogen cycle, whichmay affect the growth anddevelopment of
underground truffles.We aimed to investigate nirS-type denitrifying bacterial and AOB
community structures in the rhizosphere soils ofCarya illinoinensis seedlings inoculated
with the black truffle (Tuber melanosporum) during the early symbiotic stage.
Methods. The C. illinoinensis seedlings inoculated with or without T. melanosporum
were cultivated in a greenhouse for six months. Next-generation sequencing (NGS)
technology was used to analyze nirS-type denitrifying bacterial and AOB community
structures in the rhizosphere soils of these seedlings. Additionally, the soil properties
were determined.
Results. The results indicated that the abundance and diversity of AOB were signif-
icantly reduced due to the inoculation of T. melanosporum, while these of nirS-type
denitrifying bacteria increased significantly. Proteobacteria were the dominant bacterial
groups, and Rhodanobacter, Pseudomonas, Nitrosospira and Nitrosomonas were the
dominant classified bacterial genera in all the soil samples. Pseudomonas was the most
abundant classified nirS-type denitrifying bacterial genus in ectomycorrhizosphere
soils whose relative abundance could significantly increase after T. melanosporum
inoculation. A large number of unclassified nirS-type denitrifying bacteria and AOB
were observed. Moreover, T. melanosporum inoculation had little effect on the pH,
total nitrogen (TN), nitrate-nitrogen (NO−3 -N) and ammonium-nitrogen (NH+4 -
N) contents in ectomycorrhizosphere soils. Overall, our results showed that nirS-
type denitrifying bacterial and AOB communities in C. illinoinensis rhizosphere soils
were significantly affected by T. melanosporum on the initial stage of ectomycorrhizal
symbiosis, without obvious variation of soil N contents.

Subjects Agricultural Science, Biodiversity, Microbiology, Plant Science
Keywords Tuber melanosporum, Carya illinoinensis, nirS-type denitrifying bacteria, Ammonia-
oxidizing bacteria, Ectomycorrhizosphere soils

How to cite this article Kang Z, Zou J, Huang Y, Zhang X, Ye L, Zhang B, Zhang X, Li X. 2020. Tuber melanosporum shapes nirS-
type denitrifying and ammonia-oxidizing bacterial communities in Carya illinoinensis ectomycorrhizosphere soils. PeerJ 8:e9457
http://doi.org/10.7717/peerj.9457

https://peerj.com
mailto:kerrylee_tw@sina.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.9457
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.9457


INTRODUCTION
Tuber (Ascomycota, Pezizales), commonly known as the truffle, is an edible fungus which
can form symbiotic relationships with plants. To date, more than 200 species of truffles
have been discovered worldwide (Bonito et al., 2011a), particularly in Sweden, France,
Italy, Hungary, Spain, the United Kingdom, and Russia (Wedén, Chevalier & Danell, 2004).
Tuber melanosporum, native in France, Italy and Spain, is a valuable and rare species of
Tuber in the market (Donnini et al., 2014). T. melanosporum attracted people primarily by
its unique aroma compounds. As ectomycorrhizal fungi, truffles need to form symbiotic
association with the host plant to complete their life cycle (Kües & Martin, 2011). Recently,
the cultivation of T. melanosporum (as well as other species including T. aestivum Vittad.,
T. borchii Vittad., and T. indicum) has been conducted worldwide by planting truffle-
mycorrhized plant hosts in nurseries (Reyna & Garcia-Barreda, 2014), yet studies on the
cultivation of this black truffle species in China are seldom reported.

Truffles can form symbiotic relationships with trees from several genera, including
Corylus, Quercus, Abies Pinus, Populus and Salix (Healy et al., 2016; Wan et al., 2016). The
pecan tree, Carya illinoinensis (Wangenh.) K. Koch, is an indigenous and economically
important tree that grows naturally in moist bottom-land habitats in the United States.
However though endemic to theMississippi basin,C. illinoinensis is now cultivated globally
(Wakeling et al., 2001; Ruan, Wood & Payne, 1992). Tuber lyonii Butters was the first truffle
species described in symbiotic association with the pecan tree (Trappa, Jumpponen &
Cázares, 1996). Bonito et al. (2011b) hypothesized that pecan orchards could be managed
to optimize both truffle and pecan production simultaneously. In general, the utilization
of C. illinoinensis as a host plant for T. melanosporum has good application prospects and
is worthy of study.

Soil microorganisms and physicochemical properties in the rhizosphere of host plant can
vary with the growth of truffles, from the occurrence of ectomycorrhizae to the formation
of their mature fruiting bodies (Ponce et al., 2014; Barbieri et al., 2007; Garcia-Barreda et
al., 2017). The microbial communities of ectomycorrhizosphere soils are verified to be
different from that of rhizosphere soils in both artificial conditions and the wild (Fu et
al., 2016; Li et al., 2018a; Li et al., 2018b). There were numerous classified and unclassified
microorganisms detected in the ectomycorrhizosphere soils of Tuber (Garcia-Barreda &
Reyna, 2012), whichmade it difficult to analyze the taxonomy and functionof all the bacteria
simultaneously. Paracoccus, Pseudomonas, Rhizobium, Bacillus, and Nitrosomonadales were
some possible denitrifying bacteria and ammonia-oxidizing bacteria (AOB) (Yoshida
et al., 2010; Purkhold, Pommerening-Röser & Juretschko, 2000) already detected in the
ectomycorrhizae and ectomycorrhizosphere soil of Tuber-host associations (Yang et
al., 2019; Li et al., 2019; Mello et al., 2013). Nevertheless, the distribution of denitrifying
bacteria and the structure of AOB communities in ectomycorrhizosphere soils stay unclear.

The nitrogen (N) cycle is one of the most important nutrient cycles in an ecosystem
(Thamdrup, 2012), which is vital for host plants and Tuber. Both denitrification and
ammonia oxidation are important biological processes in the N cycle. Denitrification
is the main pathway of N2O release in farmland ecosystems (Conrad, 1997), and an
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important process that reduces N pools in farmland soils (Seitzinger et al., 2006). By
denitrification, denitrifying microorganisms gradually reduce the nitrates or nitrous acid
in the environment to gaseous products (NO, N2O, and N2) under multi-step enzymatic
catalysis.Most soil denitrification is performed by denitrifyingmicrobes, including bacteria,
fungi, and archaea (Shapleigh, 2006). Denitrification-related enzymes containing nitrate,
nitrite, NO, and N2O reductase, can be expressed by certain denitrifying bacteria such
as Pseudomonas denitrificans and Bacillus stearothermophilus (Gregory et al., 2003). The
nitrite reductase functional gene, which controls the catalyzing of the reduction of nitrite
to nitric oxide, is the main molecular marker in denitrifying bacteria research (Braker
et al., 2000). Nitrite reductase has two different structural forms, one of them contains
copper (Cu-nir) and is encoded by the nirK gene, while the other contains the heme
CD1 (cd1-nir) is encoded by nirS gene containing (Zumft, 1997). More nirS gene are
detected than nirK gene in most soil samples, and nirS-type denitrifying bacteria species
in the environment are affected by factors such as water, plants, etc (Azziz et al., 2017).
As the main driver of the ammonium oxidation process, AOB has long been a focal and
functional focus in environmental microbial ecology (Kowalchuk & Stephen, 2001). The
AOB in β-Proteobacteria and γ -Proteobacteria has been considered to be the most active
in ammonium oxidation in soils. The oxidation of ammonia to nitrite is a rate-limiting step
of nitrification controlled by many AOB ammonia monooxygenase (amoA) genes. These
genes were widely involved in the study of the relative abundance of AOB in ecosystems
(Purkhold, Pommerening-Röser & Juretschko, 2000; Wang et al., 2011). The efficiency of
nitrification and denitrification in soils was related to the number of microbial functional
genes. The community structure of ammonia-oxidizing microorganisms, however, could
in return be affected by the concentration of ammonium nitrogen and organic matter
(Petersen et al., 2012). Structures of nirS-type denitrifying bacterial and AOB community
in Tuber ectomycorrhizosphere soils are unclear. Only few studies have focused on the
relationship between these bacteria and properties of the ectomycorrhizosphere soils.

In our study, we therefore infected C. illinoinensis with the spores of T. melanosporum
and tracked the formation of mycorrhizae during the next six months of cultivation. We
also did next-generation amplicon sequencing for nirS and amoA genes, to analyze the
denitrification and ammonia oxidation microbial community structures in rhizosphere
soils. Furthermore, the physicochemical soil properties in the rhizosphere of C. illinoinensis
seedlings were determined. The study aims to investigate nirS-type denitrifying bacterial
and AOB community structures involving in the ammonium oxidation and denitrification
processes in the T. melanosporum ectomycorrhizosphere soils.

MATERIALS & METHODS
Cultivation of sterile C. illinoinensis seedlings
Seeds of C. illinoinensis were soaked in fresh-water for about 20 h and sterilized with 0.3%
potassium permanganate for 30 min, then the seeds were rinsed with distilled water until
the last wash solution became colorless. In order to increase the germination rate, the seeds
were stored in the sands which had been sterilized for 90 min at 121 ◦C in an autoclave.
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One month later, the germinated C. illinoinensis seeds were sown in a plastic container
filled with the sterilized substrate (vermiculite, perlite and water at a ratio of 1:1:1, v/v/v)
(Fig. S1) (Li et al., 2017). The plastic container with seeds was then placed in a natural light
plastic greenhouse and watered with sterile water, to maintain a soil moisture content of
25%. The temperature of the greenhouse was 23 ◦C–25 ◦C in daytime and 16 ◦C–20 ◦C at
night. The well-grownC. illinoinensis seedlings with similar plant height and stem thickness
were selected for inoculation.

Truffle inoculation treatment
T. melanosporum ascocarps were purchased from truffle producing areas in French and
used as spore inoculum. The ascocarps were washed with sterile water and their surface
sterilized by burning briefly with 75% alcohol. Then the ascocarps were soaked in sterile
water to stimulate spores release and germination (Semeniuk, 2008). Finally, the treated
T. melanosporum ascocarps were smashed and blended using food chopper to obtain
their paste. Next, the substrates with peat, vermiculite, perlite organic soil and water
at a ratio of 1:1:1:0.9 (v/v/v/v) were prepared and sterilized for 90 min at 121 ◦C in an
autoclave. The sterilized substrate (total nitrogen 2.05 g/kg, nitrate-nitrogen 37.50 mg/kg
and ammonium-nitrogen 20.16 mg/kg) was filled into nursery pots and 1.5 g of the
paste inoculum was mixed into the substrate of each pot, then one sterile seedling was
transplanted into each nursery pot. Thirty seedlings inoculated with T. melanosporum
were named group I. At the same time, an equivalent number of C. illinoinensis seedlings
were transplanted into nursery pots without T. melanosporum inoculum, named group II.
Each group had thirty replicates to ensure the survival of enough seedlings after 6 months
cultivation. All pots were maintained in a greenhouse under the same conditions without
fertilization, and they were watered with tap water every three days at 6:00 pm for 6 month
(Geng et al., 2009).

Sampling strategy and soil analyses
Eight pots of group I and four pots of group II were randomly selected, and roots of
these seedlings were observed under a microscope. Morphological and anatomical analysis
revealed that the four seedlings in group II were not colonized by ectomycorrhizal fungi, and
only 4 of the 8 seedlings in group I inoculated with truffle spores, showing ectomycrrhizae
formation (Fig. 1) (Marozzi et al., 2017). The four pots of group I colonized by T.
melanosporumwere used as experimental materials, and the four pots of group II were used
as controls, thus, each experimental treatment had four replicates. Ectomycorrhizosphere
soils (rhizosphere soils of C. illinoinensis seedlings inoculated with T. melanosporum) and
rhizosphere soils (rhizosphere soils ofC. illinoinensis seedlingswithout inoculating) samples
were sampled and placed into 2 mL EP tubes. The samples were cooled rapidly using liquid
nitrogen and stored at−80 ◦C. The remaining soils around theC. illinoinensis roots were air
dried for soil property analysis, including pH, organic matter (OM), available potassium
(AK), total nitrogen (TN), available phosphorus (AP), nitrate-nitrogen (NO−3 -N) and
ammonium-nitrogen (NH+4 -N), which were determined following the methods described
in previous studies (Lu, 1999; Li et al., 2017). Ectomycorrhizosphere soils of C. illinoinensis
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Figure 1 Morphological features of Carya illinoinensis root in association with or without Tuber
melanosporum. (A) Ectomycorrhizae of Tuber melanosporum, Scale bar = 500 µm; (B) Root of Carya
illinoinensis without Tuber melanosporum, Scale bar = 700 µm; (C) Mantle with cystidia , Scale bar = 65
µm; (D) Mantle cell of ectomycorrhizae, Scale bar = 10 µm.

Full-size DOI: 10.7717/peerj.9457/fig-1

colonized with T. melanosporum were labeled as ‘‘FH’’ from Chines name of the Tuber,
‘‘Faguo Heibao’’, and the rhizosphere soils of the C. illinoinensis seedlings without T.
melanosporum inoculation were labeled as ‘‘CK’’ standing for Control Check.

DNA extraction, PCR amplification, and MiSeq sequencing
DNA from rhizosphere soils was extracted using a Soil DNA Kit (D5625-01, Omega
Bio-tek Inc., Norcross, GA, USA) following the manufacturer’s instructions. The DNA
concentration and purity were measured on 1% agarose gels, adjusted to 1 ng/µL using
sterile water and stored at −20 ◦C.

The universal primers Cd3aF (5′-GTSAACGTSAAGGARACSGG-3′) (Michotey, Méjean
& Bonin, 2000) and R3cd (5′-GASTTCGGRTGSGTCTTGA-3′) (Throbäck et al., 2004)
were used to amplify nirS-type denitrifying bacteria in PCR. The reaction consisted of
10 ng DNA template, 4 µL FastPfu buffer, 2 µL dNTPs (2.5 mmol L−1), 0.4 µL FastPfu
polymerase, 0.8 µL forward primer (5 µmol L−1), and 0.8 µL reverse primer (5 µmol L−1),
diluted to 20 µL with ddH2O. The reaction program was set as follows: pre-denaturation
at 95 ◦C for 4 min, followed by 28 cycles of denaturation at 95 ◦C for 40 s, annealing at
56 ◦C for 30 s, extension at 72 ◦C for 40 s, and then final extension at 72 ◦C for 10 min.
The universal primers b-amoA-1F (5′-GGGGTTTCTACTGGTGGT-3′) and b-amoA-2R
(5′-CCCCTCKGSAAAGCCTTCTTC-3′) (Mao, Yannarell & Mackie, 2011) were used to
amplify the AOB in a 30 µL reaction system, which were consisted of 15 µL 2 × Ex Taq
MasterMix, 1.2 µL forward and reverse primers (10 µmol/L), 3 µL DNA template and
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9.6 µL RNase-free water. Samples were amplified by subjecting them to the following
PCR program: 95 ◦C for 3 min followed by 40 cycles at 95 ◦C for 60s, 55 ◦C for 45 s and
72 ◦C extension for 60 s. The samples were then mixed and analyzed by 1.5% agarose
gel electrophoresis, after which the PCR product was recovered using a gel recovery kit
(Axygen, USA) and eluted with Tris–HCl and 1.5% agarose gel electrophoresis (Kim et al.,
2011). According to the preliminary quantitative electrophoresis results, PCRproducts were
quantified using QuantiFluorTM-ST Blue Fluorescence Quantitation System (Promega,
USA), after which the proportions were mixed according to template concentration for
each sample. Finally, these samples stored at −80 ◦C.

High throughput sequencing was conducted at Shanghai Majorbio Bio-pharm
Technology Co., Ltd. and sequenced according to manufacturer’s recommendations
with the Illumina MiSeq sequencing platform. Raw data were submitted to the Sequence
Read Archive (SRA) database with the accession number SRR10522644–SRR10522659.

High-throughput data analysis and statistical analysis
Paired-end reads were obtained, and paired-end reads that overlapped were merged
using FLASH (Version 1.2.11) (Tanja & Salzberg, 2011). The high-quality sequences
with mismatch rate of overlap sequence lower than 20% and with barcode and primer
sequence were filtered by QIIME (Version 1.8.0) and Trimmomatic software (Caporaso
et al., 2010), then correct sequence direction. Uparse (Version 7.0.1090) software was
used to analyze the high-quality sequences, and these sequences with ≥97% similarity
were clustered to the same OTU (Operational Taxonomic Units) (Edgar, 2013). A
representative sequence for each OTU was screened for further annotation, and the
taxonomic analysis of OTUs was performed using the RDP Classifier (Version 2.11;
http://sourceforge.net/projects/rdp-classifier/) (Wang et al., 2007) based on the FunGene
(Release7.3; http://fungene.cme.msu.edu/) database. Mothur (Version 1.30.2) was
used to divided OTUs, and alpha diversity analysis of nirS-type denitrifying bacterial
and AOB population (Coverage, Chao1, ACE, Shannon and Simpson index) were
performed based on these OTUs. Source code for the OTUs data is available at:
https://github.com/catherinekang/bacterial-community.git. Moreover, a rarefaction curve
was used to evaluate the representativeness of sequencing amount for the diversity of the
original nirS-type denitrifying bacteria or the AOB. In addition, barplots based on the R
software (Version 3.1.3) (Core et al., 2011) were utilized to cluster and analyze the phylum
and genus to share the taxonomic composition of the soil microbial communities. Principle
component analysis (PCA) and clustering analysis were used to reflect the beta diversity.

Alpha diversity estimators, soil properties and relative abundance of the taxa of AOB
and nirS-type denitrifying bacteria between the two treatments were compared with
independent t-test, which was performed in SPSS v21.0 (IBM Inc., Armonk, NY, USA). All
the data were presented as the mean value± standard deviation (SD) of the four biological
replicates in each treatment group. All the significant differences were assessed at P < 0.05.
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Table 1 Physical and chemical properties of soil samples.

Sample pH OM (g/kg) TN (g/kg) NH+4 -N (mg/kg) NO−3 -N (mg/kg) AK (mg/kg) AP (mg/kg)

CK 9.48± 0.06 37.23± 1.63 1.08± 0.03 10.80± 0.45 11.36± 0.12 199.52± 31.15 18.20± 0.51
FH 9.40± 0.02 34.19± 1.23 0.95± 0.04 12.09± 0.07 11.97± 0.04 244.74± 10.09 18.92± 1.49

Notes.
OM, organic matter; TN, total nitrogen; NH+4 -N, ammonium-nitrogen; NO−3 -N, nitrate-nitrogen; AK, available potassium; AP, available phosphorus; FH, ectomycorrhizo-
sphere soil (the rhizosphere soil of Carya illinoinensismycorrhized with Tuber melanosporum); CK, the rhizosphere soil of Carya illinoinensis without Tuber melanosporum part-
ner.
Values are mean± standard deviation (n= 4). There is no significant difference between two treatments (P > 0.05).

RESULTS
Soil property analysis
The results of soil properties showed that the nitrate-nitrogen and available potassium
contents of FH were slightly higher than those of CK, and there were no significant
different in pH, organic matter, available potassium, total nitrogen, available phosphorus,
nitrate-nitrogen and ammonium-nitrogen between CK and FH (Table 1).

AOB diversity analysis
A total of 123,091 reads were obtained from the 8 samples after quality control procedures,
most of which were 401–500 bp, and there were 11,990–19,959 reads in each sample
(Fig. 2A). All the sequences were clustered into 251 OTUs, and the two treatments shared
47 OTUs. The number of unique OTUs which could only be detected in FH (77) was
smaller than the unique OTUs which could only be detected in CK (127) (Fig. 3A).

As shown in Table 2, the coverage in the two treatments were 99%, indicating that we
sequenced ammonia monooxygenase genes at the proper depth and the data were reliable.
The richness indices such as ACE (P = 0.049) and Chao1 (P = 0.043) estimators in CK
was significantly greater than those in FH. Shannon diversity in the two treatments ranged
from 1.32 to 1.62, and was significantly greater in CK treatment (P = 0.047), however,
there was no significant difference between FH and CK in the Simpson index and the
observed species (OTU). For the observed species, Shannon, Chao1, and ACE of FH were
lower than those of CK, which showed that the richness and diversity of AOB in FH was
significantly lower than that in CK (P < 0.05) (Table 2).

Taxonomic analyses of AOB
As shown in Fig. 4A, the observed species mainly belonged to two phyla, and Proteobacteria
was themost abundant in each treatment. The average relative abundance of Proteobacteria
in CK (98.59%) was significantly greater than that in FH (84.93%) (P = 0.049) (Table 3).

The results of classification showed that 251 OTUs were separated into more than six
genera (Fig. 5A). The primary three genera in FH treatment were Nitrosospira (57.90%),
Nitrosomonas (25.12%) and unclassified bacteria (15.07%); while those in CK were
Nitrosospira (55.38%), Nitrosomonas (39.99%) and an unclassified genus belong to
Betaproteobacteria (1.93%) (Table 4). Moreover, the relative abundance of Nitrosospira in
both treatments was approximately the same, while the relative abundance ofNitrosomonas
in CK was slightly greater than that in FH. Nitrosococcus was detected in CK, with
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Figure 2 Rarefaction curves for ammonia-oxidizing bacterial (A) and nirS-type denitrifying bacterial
(B) OTU diversity in different samples. FH, ectomycorrhizosphere soil (the rhizosphere soil of Carya illi-
noinensismycorrhized with Tuber melanosporum). CK, the rhizosphere soil of Carya illinoinensis without
Tuber melanosporum partner.

Full-size DOI: 10.7717/peerj.9457/fig-2

Figure 3 Numbers of shared and unique ammonia-oxidizing bacterial (A) and nirS-type denitrifying
bacterial (B) Operational Taxonomic Units (OTUs). FH, ectomycorrhizosphere soil (the rhizosphere soil
of Carya illinoinensismycorrhized with Tuber melanosporum). CK, the rhizosphere soil of Carya illinoinen-
sis without Tuber melanosporum partner.

Full-size DOI: 10.7717/peerj.9457/fig-3

significantly higher relative abundance than that in FH (P = 0.046). Nevertheless, the
most abundant unclassified AOB genus in FH was significantly more abundant than that
in CK (1.41%) (P = 0.005).

NirS-type denitrifying bacterial diversity analysis
A total of 139,493 reads were obtained from the 8 samples after quality control procedures,
most of which the sequencing length was 301–400 bp, and there were 10,424-19,961 reads
in each sample (Fig. 2B). All the sequences from the two treatments were clustered into 750
OTUs, which were utilized to form a histogram of genera and phyla. Moreover, there were
a total of 193 OTUs shared by two treatments and the number of unique OTUs detected
in FH (311) was more than the unique OTUs detected in CK (246) (Fig. 3B).
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Table 2 Community richness and diversity indices of ammonia-oxidizing bacteria and nirS-type denitrifying bacteria in rhizosphere soil with
or without Tuber melanosporum partner.

Samples Observed species Simpson Shannon ACE Chao1 Coverage

CK 56.75± 15.21 0.32± 0.04 1.62± 0.15 58.68± 2.61 57.22± 6.63 0.99
FH 46.00± 10.92 0.45± 0.15 1.32± 0.19* 48.13± 8.17* 46.55± 5.09* 0.99
T-statistic 1.148 −1.722 2.482 2.460 2.551 0.069

AOB

P-value 0.295 0.136 0.048 0.049 0.043 0.947
CK 175.00± 14.38 0.16± 0.05 2.55± 0.16 188.43± 10.19 179.61± 14.37 0.99
FH 193.50± 40.51 0.13± 0.03 2.80± 0.08* 204.27± 7.73* 196.39± 40.51* 0.99
T-statistic −0.861 0.928 −2.675 −2.584 −2.475 −0.047

nirS-type denitrifying
bacteria

P-value 0.422 0.389 0.037 0.042 0.048 0.964

Notes.
FH, ectomycorrhizosphere soil (the rhizosphere soil of Carya illinoinensismycorrhized with Tuber melanosporum); CK, the rhizosphere soil of Carya illinoinensis without Tuber
melanosporum partner.
Values are mean± standard deviation (n= 4).
*Significant difference between samples (P < 0.05).

The coverage of the denitrifying bacterial communities in the two treatments was
99% (Table 2). The ACE (P = 0.042) and Chao1 (P = 0.048) estimators revealed that
the richness of nirS-type denitrifying bacteria in FH was significantly greater than that
in CK. The Simpson index of two treatments was similar, and the number of observed
species of FH was slightly higher than that of CK without significant difference. And the
Shannon index of FH was significantly higher than that of CK (P = 0.037) (Table 2). The
results demonstrated that the richness and diversity of nirS-type denitrifying bacteria were
significantly increased with T. melanosporum inoculation. Moreover, the observed species
of nirS-type denitrifying bacteria were far more than AOB in both treatments (Fig. S2), the
Shannon, Chao1 and ACE index of nirS-type denitrifying bacteria were much higher than
AOB.

Taxonomic analyses of nirS-type denitrifying bacterial communities
As shown in Fig. 4B, at the phylum level, the most abundant were unclassified bacteria and
no rank bacteria, followed by Proteobacteria. The average proportions of Proteobacteria
in the two treatments were 9.49% (CK) and 8.69% (FH), with Proteobacteria and an
unclassified bacteria phylum being slightly more abundant in CK than in FH (Table 3).
Nevertheless, there was no significant difference in the relative abundance of the dominant
phyla between FH and CK.

The results showed that these 750 OTUs belonged to more than nine genera, and the
most abundant classified genera were Pseudomonas, Rhodanobacter, Magnetospirillum and
Rubrivivax (Fig. 5B). The main classified genera in FH were Pseudomonas (0.46%), while
the main classified genus in CK was Rhodanobacter (0.33%), and the relative abundance
of Pseudomonas of FH was significantly higher than that of CK (P = 0.017) (Table 4).
The relative abundance of the no rank bacterial genus was similar in FH and CK, without
significant difference. However, the relative abundance of two unclassified genera observed
in FH, belonging toGammaproteobacteria (P = 0.027) andBetaproteobacteria (P = 0.015),
were significantly lower than those observed in CK.

Kang et al. (2020), PeerJ, DOI 10.7717/peerj.9457 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.9457#supp-2
http://dx.doi.org/10.7717/peerj.9457


Figure 4 Taxonomic composition of ammonia-oxidizing bacterial (A) and nirS-type denitrifying bac-
terial (B) communities at the phylum levels. FH, ectomycorrhizosphere soil (the rhizosphere soil of
Carya illinoinensismycorrhized with Tuber melanosporum). CK, the rhizosphere soil of Carya illinoinensis
without Tuber melanosporum partner.

Full-size DOI: 10.7717/peerj.9457/fig-4

Principle component analysis (PCA)
The Unifrac-PCA analysis was used to visualize the similarities and differences of the
bacterial component in different soil samples. The shorter distance between two samples
means more similar nirS-type denitrifying bacterial and AOB communities in the different
samples, and the different shaded circles represented confidence ellipses. The results showed
that both AOB and nirS-type denitrifying bacteria in the FH were not similar to CK. In
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Table 3 The relative abundance of the most abundant ammonia-oxidizing and nirS-type denitrifying bacterial phyla in rhizosphere soil with or
without Tuber melanosporum partner.

Phyla CK FH T-statistic P-value

Proteobacteria 98.59%± 0.01 84.93%± 0.13* 2.467 0.049
AOB

Unclassified Bacteria 1.41%± 0.01 15.07%± 0.13* −2.594 0.041
Proteobacteria 9.49%± 0.12 8.69%± 0.02 0.135 0.897
No rank Bacteria 33.25%± 0.08 51.10%± 0.12 −2.154 0.074
Unclassified Bacteria
miscellaneous

0.04%± 0.00 0.03%± 0.00 0.308 0.769nirS-type denitrifying
bacteria

Unclassified Bacteria 57.22%± 0.14 40.18%± 0.11 1.934 0.101

Notes.
FH, ectomycorrhizosphere soil (the rhizosphere soil of Carya illinoinensismycorrhized with Tuber melanosporum); CK, the rhizosphere soil of Carya illinoinensis without Tuber
melanosporum partner.
Values are mean± standard deviation (n= 4).
*Significant difference between samples (P < 0.05).

Fig. 6, the distance between FH and CK in AOB was greater than the distance between
them in nirS-type denitrifying bacteria, which could indicate that the difference of AOB
communities between FH and CK was greater than that of nirS-type denitrifying bacterial
communities between them.

DISCUSSION
This experiment amplified nirS and amoA genes partner to detect the denitrifying bacterial
and ammonia-oxidizing bacterial (AOB) communities from the rhizosphere soil of C.
illinoinensis with or without T. melanosporum inoculation. The study also explored the
impacts of T. melanosporum inoculation on the nitrogen cycling bacteria in microecology
of C. illinoinensis rhizosphere within 6 months after inoculation.

Results of PCA analysis showed a significant difference of nirS-type denitrifying bacterial
and AOB communities between ectomycorrhizosphere soil and rhizosphere soil. This
was in accordance with the previous finding that the composition and function of
bacterial communities in ectomycorrhizosphere soil could be altered by the formation
of ectomycorrhizae (Jung et al., 2012). In our study, the total nitrogen, nitrate-nitrogen
and ammonium-nitrogen contents of ectomycorrhizosphere soil were not significantly
different from rhizosphere soil similarly to the contents of other determined properties.
Previous studies reported that the ectomycorrhizal fungi could increase available nitrogen
in forest soil by producing enzymes or organic acids, accelerating plant litter decomposition,
and soil mineral dissolution (Sterkenburg et al., 2018; Lindahl et al., 2006). The contrasting
results from our study, however, suggested that the ectomycorrhizae of T. melanosporum
had little impact on the soil properties in the host plant rhizosphere which did not contain
plant litter at the initial stage of inoculation.

Moreover, the richness and diversity of AOB in the ectomycorrhizosphere soil were
significantly lower than those in rhizosphere soil (P < 0.05). The Proteobacteria was the
most abundant AOB in both ectomycorrhizosphere soil (84.93%) and rhizosphere soil
(98.59%), which was consistent with the in forest soils (Rösch, Mergel & Bothe, 2002).
The most abundant genera of AOB were Nitrosospira and Nitrosomonas. Li et al. (2018a)
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Figure 5 Taxonomic composition of ammonia-oxidizing bacterial (A) and nirS-type denitrifying bac-
terial (B) communities at the genus levels. FH, ectomycorrhizosphere soil (the rhizosphere soil of Carya
illinoinensismycorrhized with Tuber melanosporum). CK, the rhizosphere soil of Carya illinoinensis with-
out Tuber melanosporum partner.

Full-size DOI: 10.7717/peerj.9457/fig-5

and Li et al. (2018b) reported that the Nitrosospira and Nitrosomonas were the most
abundant AOB in ectomycorrhizosphere soil of Pinus massoniana Lamb colonized by
Pisolithus tinctorius under field condition, which is basically the same with the findings of
our study. In addition, the relative abundance of Nitrosococcus and an unclassified AOB
genus of Betaproteobacteria in ectomycorrhizosphere soils was significantly greater than
that in rhizosphere soils while another unclassified genus was significantly lower than
that in rhizosphere soils (P < 0.05). The soil moisture might have an indirect effect on
AOB communities by changing the availability and mobility of nitrogen in the substrate
(Gleeson et al., 2010; Hu et al., 2015). However, C. illinoinensis seedlings in two treatments
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Table 4 The relative abundance of the most abundant ammonia-oxidizing and nirS-type denitrifying bacterial genera in rhizosphere soil with
or without Tuber melanosporum partner.

Genera CK FH T -statistic P-value

Nitrosospira 55.38%± 0.42 57.90%± 0.38 −0.089 0.932
Nitrosomonas 39.99%± 0.41 25.12%± 0.28 0.600 0.573
Nitrosococcus 0.12%± 0.00 0.00%± 0.00* 2.509 0.046
Unclassified Betaproteobacteria 1.93%± 0.02 0.85%± 0.01* 2.533 0.044
Unclassified Bacteria 1.41%± 0.01 15.07%± 0.13* −4.409 0.005

AOB

Unclassified Nitrosomonadales 0.98%± 0.02 0.97%± 0.01 0.011 0.991
No rank Bacteria 33.25%± 0.08 51.10%± 0.12 −1.940 0.102
Unclassified Bacteria 57.22%± 0.14 40.18%± 0.11 1.934 0.101
Unclassified Proteobacteria 3.44%± 0.02 7.16%± 0.01 −2.268 0.095
Unclassified Gammaproteobacteria 3.6%± 0.07 0.00%± 0.00* 2.910 0.027
Unclassified Betaproteobacteria 1.98%± 0.03 0.51%± 0.00* 5.040 0.015
Rhodanobacter 0.33%± 0.01 0.35%± 0.00 −0.061 0.953
Pseudomonas 0.03%± 0.00 0.46%± 0.00* −2.541 0.017
Magnetospirillum 0.01%± 0.00 0.01%± 0.00 −0.049 0.963

nirS-type denitrifying
bacteria

Rubrivivax 0.01%± 0.00 0.04%± 0.00 −0.981 0.396

Notes.
FH, ectomycorrhizosphere soil (the rhizosphere soil of Carya illinoinensismycorrhized with Tuber melanosporum); CK, the rhizosphere soil of Carya illinoinensis without Tuber
melanosporum partner.
Values are mean± standard deviation (n= 4).
*Significant difference between samples (P < 0.05).

Figure 6 Principal component analysis (PCA) of ammonia-oxidizing bacterial (A) and nirS-type den-
itrifying bacterial (B) communities. FH, ectomycorrhizosphere soil (the rhizosphere soil of Carya illi-
noinensismycorrhized with Tuber melanosporum). CK, the rhizosphere soil of Carya illinoinensis without
Tuber melanosporum partner.

Full-size DOI: 10.7717/peerj.9457/fig-6

were watered equally in this work. Previous studies have illustrated that the diversity
of bacterial communities reduced in the brûlés (an area devoid of herbaceous cover)
and ectomycorrhizosphere soil (Mello et al., 2013; Zhang et al., 2019). Nevertheless, some
bacterial genera in ectomycorrhizosphere soils were significantly more abundant than those
in rhizosphere soils, such as Mesorhizobium, Reyranena, Rhizomicrobium and Nordella (Li
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et al., 2017). These findings may imply that the T. melanosporum ectomycorrhizae have
different effect on different AOB genera (Doornbos, Van Loon & Bakker, 2012), and the
richness and diversity of the AOB in rhizosphere soils were reduced by T. melanosporum
inoculation in general, though the ectomycorrhizae of T. melanosporum indeed affect the
relative abundance of Nitrosospira and Nitrosomonas little during early symbiotic stage.

In terms of the structural analysis nirS-type denitrifying bacterial community,
Proteobacteria was the dominant group both in rhizosphere and ectomycorrhizosphere
soils. Previous studies showed that most of the denitrifying bacteria which were detected
in crop rhizosphere soils and arable land soils belong to Proteobacteria (Chang et al., 2012;
Hui et al., 2010; Hou et al., 2018), which corroborates our results. Our work also showed
that the Rhodanobacter, Pseudomonas,Magnetospirillum and Rubrivivax were the dominant
classified bacterial genera in all the soil samples, which were detected in plant rhizosphere
soils and arable land soils frequently (Yu et al., 2018; Wen et al., 2016). The richness and
diversity of nirS-type denitrifying bacterial communities in ectomycorrhizosphere soil
were significantly greater than those in rhizosphere soil (P < 0.05). The land use and
fertilizer regimes affected the biological activity of denitrifying bacteria (Hui et al., 2010),
and the abundance of Rhodanobacter was sensitive to pH (Green et al., 2010). However, the
differences in soil properties between two treatments were not significant in the present
study, which may illustrate that the abundance of some nirS-type denitrifying bacterial
communities in rhizosphere soils was increased due to T. melanosporum inoculation. The
previous study showed that the mycorrhiza and rhizobia assist plants with the uptake of
phosphorus and nitrogen, respectively (Van der Heijden, Bardgett & Van Straalen, 2008),
which may suggest that the T. melanosporum ectomycorrhizae accelerate the weathering of
minerals and the degradation of recalcitrant organicmatter by enhancing the colonization of
nirS-type denitrifying bacteria in ectomycorrhizosphere soils (Berendsen, Pieterse & Bakker,
2012; Deveau et al., 2016). Meanwhile, the relative abundance of unclassified bacterial
genera belonging to Gammaproteobacteria and Betaproteobacteria were significantly
lower in ectomycorrhizosphere soils (P < 0.05), which demonstrated that the colonization
of T. melanosporum decreased the relative abundance of some nirS-type denitrifying
bacterial genera in ectomycorrhizosphere soils.

Our work revealed that the Pseudomonas was the most abundant classified nirS-type
denitrifying bacteria in ectomycorrhizosphere soils, which are widely distributed in plant
rhizosphere soils and truffle orchard soils (Prieme, Braker & Tiedje, 2002; Sharma et al.,
2005). Furthermore, Pseudomonas were also detected in fruiting bodies of Tuber indicum,
Tuber pseudoexcavatum, Tuber sinoaestivum, Tuber huidongense and T. melanosporum (Ye
et al., 2018; Roux et al., 2016). Though the ascocarp of T. melanosporum itself may not be
rich in Pseudomonas, it can somehow acquire Pseudomonas and massive other nitrogen
cycle-related bacteria (Antony-Babu et al., 2014). And though these nitrogen cycle-related
bacteria were carried in the ascocarp inoculum and brought into the substrate, we still
found some nirS-type denitrifying bacteria such as Unclassified Gammaproteobacteria
and Unclassified Betaproteobacteria significantly less abundant in ectomycorrhizosphere
soils than in rhizosphere soils. These may imply that, if without the bringing-in of these
bacteria from the ascocarp to the soils, their relative abundancemight be lower. This further
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revealed that the presence of truffle mycelia inhibited the colonization of AOB and some
nirS-type denitrifying bacteria. The Pseudomonas such as Pseudomonas fluorescens could
enhance both the mycorrhization of T. melanosporum and the nutrient uptake of the host
plant (Dominguez et al., 2012; Citterio et al., 2001; Mamoun & Olivier, 1992). The relative
abundance of Pseudomonas detected in ectomycorrhizosphere soils were significantly
greater than that in rhizosphere soils (P < 0.05), and the previous study also indicated
Pseudomonas had greater representation inside the brûlés compared with the outside (Mello
et al., 2013). We therefore hypothesized that T. melanosporum may improve the growth of
the host plants by enhancing the colonization of Pseudomonas in rhizosphere soils of the
host plants in the initial symbiotic stage. The ectomycorrhizosphere soils of the host plant
contained a large number of Pseudomonas species whose culture condition was unclear and
needs further study. We also found that the abundance of nirS-type denitrifying bacteria
was much greater than that of AOB in the rhizosphere soils of C. illinoinensis, and there
were a large number of unclassified nitrogen cycling bacteria in ectomycorrhizosphere
soils. The dynamic evolution of other nitrogen cycling microorganism including fungal
and archaea communities over the process of ectomycorrhizal formation require further
exploration.

On account of sterilized seeds and substrates used in our study, bacteria in tap water and
air could then randomly get into the soil, and those who get early entrance may be more
competitive and dominant due to their earlier starts and more rapid reproduction. This
may cause the levels of specific AOB and nirS-type denitrifying bacteria which were detected
in different samples of the same treatment vary greatly. In fact, we did find that the number
of certain OTUs differed greatly in 4 different samples in the same treatment. Therefore, the
results obtained when the sample size was small (n= 4) may not comprehensively reflect
the true situation of all plants under the same culture conditions. It is difficult to guarantee
that the significant differences in bacterial communities between two treatments were not
accidental. We will set a larger number of samples in a treatment, while by measuring
the rate of nitrification and denitrification, the mycorrhizal degree of T. melanosporum
mycorrhizal synthesis, and the abundance of the dominant AOB and nirS-type denitrifying
bacteria (especially Nitrosococcus and Pseudomonas, whose abundances differed greatly in
ectomycorrhizosphere and rhizosphere), we could conduct some in-depth researches. The
subsequent work could also focus on analyzing the correlation of the above three, and
exploring whether the dominant bacteria related to the nitrogen cycle at the initial stage
of inoculation could affect the mycorrhizal synthesis by changing the content of available
nitrogen in the soil, in addition, isolating and culturing these unclassified bacteria and
learning their biological characteristics.

CONCLUSIONS
In the current study, we found nirS-type denitrifying bacterial and AOB communities
in C. illinoinensis rhizosphere soils were significantly affected by T. melanosporum
inoculation at the early symbiotic stage, though the total nitrogen, nitrate-nitrogen and
ammonium-nitrogen contents of ectomycorrhizosphere soils were not different from
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those of rhizosphere soils. There was a lower-abundance of AOB and greater-abundance
of nirS-type denitrifying bacterial communities in C. illinoinensis-T. melanosporum
ectomycorrhizosphere soils compared with control treatment. Proteobacteria was the
dominant bacterial phylum, and the abundance of Nitrosomonas (AOB) was significantly
reduced because of T. melanosporum inoculation, while the abundance of Pseudomonas
(nirS-type denitrifying bacteria) increased. This work furthers our understanding of
rhizosphere microecology and the cultivation of T. melanosporum-C. illinoinensis.
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