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The microbiota colonizing the rhizosphere and the endorhizosphere contribute to
plant growth, productivity, carbon sequestration, and phytoremediation. Several studies
suggested that different plants types and even genotypes of the same plant species
harbor partially different microbiomes. Here, we characterize the rhizosphere bacterial
and fungal microbiota across five grapevine rootstock genotypes cultivated in the
same soil at two vineyards and sampling dates over 2 years by 16S rRNA gene
and ITS high-throughput amplicon sequencing. In addition, we use quantitative PCR
(qPCR) approach to measure the relative abundance and dynamic changes of fungal
pathogens associated with black-foot disease. The objectives were to (1) unravel
the effects of rootstock genotype on microbial communities in the rhizosphere of
grapevine and (2) to compare the relative abundances of sequence reads and DNA
amount of black-foot disease pathogens. Host genetic control of the microbiome
was evident in the rhizosphere of the mature vineyard. Microbiome composition also
shifted as year of sampling, and fungal diversity varied with sampling moments. Linear
discriminant analysis identified specific bacterial (i.e., Bacillus) and fungal (i.e., Glomus)
taxa associated with grapevine rootstocks. Host genotype did not predict any summary
metrics of rhizosphere α- and β-diversity in the young vineyard. Regarding black-foot
associated pathogens, a significant correlation between sequencing reads and qPCR
was observed. In conclusion, grapevine rootstock genotypes in the mature vineyard
were associated with different rhizosphere microbiomes. The latter could also have been
affected by age of the vineyard, soil properties or field management practices. A more
comprehensive study is needed to decipher the cause of the rootstock microbiome
selection and the mechanisms by which grapevines are able to shape their associated
microbial community. Understanding the vast diversity of bacteria and fungi in the
rhizosphere and the interactions between microbiota and grapevine will facilitate the
development of future strategies for grapevine protection.

Keywords: bacterial and fungal recruitment, black-foot disease, microbial ecology, microbiome, rhizosphere,
rootstock selection
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INTRODUCTION

Plants have evolved to cope with biotic and abiotic stresses in
association with soil microorganisms (Lemanceau et al., 2017).
These microorganisms are known as plant microbiota and,
together with the plant, they form an holobiont (Liu et al., 2018).
Plant-soil microbiome interactions are complex and, until recent
times, the study of these relationships has been mainly focused
in the pathogenicity of some microbial agents and how they use
and compete for the resources (Philippot et al., 2013; Zancarini
et al., 2013; Gilbert et al., 2014; Sapkota et al., 2015). Recent
investigations have shown that soil microbiota can directly and
indirectly interact with the plants improving their fitness and
health (Sapkota et al., 2015). For example, these interactions
help plants to deal with abiotic stress and diseases, improving
the exchange of substances such as nitrogen or phosphate,
or by acting as biocontrol agents through competition with
pathogens (Reinhold-Hurek et al., 2015; Vega-Avila et al., 2015;
Gallart et al., 2018).

Roots are surrounded by a narrow zone of soil known
as rhizosphere. This area, which is influenced by the roots,
has a high microbial diversity and its community structure is
expected to be different than the one found in the bulk soil
(Reinhold-Hurek et al., 2015). The rhizosphere microbiome
community composition is affected by different factors, such as
ambient conditions, soil properties, and background microbial
composition (Qiao et al., 2017). In addition, plants are able to
shape their rhizosphere microbiome, as evidenced by the fact that
different plant species host specific microbial communities when
grown on the same soil (Aira et al., 2010; Berendsen et al., 2012;
Bazghaleh et al., 2015).

As reviewed by Philippot et al. (2013), plant roots release
a huge variety of carbon-containing compounds known as
rhizodeposits (nutrients, exudates, border cells, and mucilage)
which make the rhizosphere more nutritive than the bulk soil,
which is mostly mesotrophic/oligotrophic, inducing therefore
changes on soil microbial communities. It has been reported
that the biodiversity in the rhizosphere is lower than in the
corresponding bulk soil (Reinhold-Hurek et al., 2015; Lemanceau
et al., 2017) since carbon availability often limits microbial
growth (Dennis et al., 2010). Rhizodeposits released by the plants
considerably vary according to the age and development of
plants, among species and even among different genotypes of the
same species (Inceoǧlu et al., 2010; Philippot et al., 2013; Gilbert
et al., 2014; Bazghaleh et al., 2015; Hacquard, 2016; Wagner et al.,
2016; Lemanceau et al., 2017; Qiao et al., 2017).

The rhizosphere is also the infection court where soil-
borne pathogens establish a parasitic relationship with the
plant. To infect root tissue, pathogens have to compete with
members of the rhizosphere microbiome for available nutrients
and microsites (Chapelle et al., 2016). Exploiting genetic
variation in host plant species and understanding interactions

Abbreviations: ITS, Internal transcribed spacer; OTU, Operational taxonomic
unit; PCoA, Principal coordinate analysis; PCR, Polymerase chain reaction;
PERMANOVA, Permutational multivariate analysis of variance; QIIME,
Quantitative insights into microbial ecology; qPCR, Quantitative polymerase
chain reaction; rRNA, Ribosomal RNA; SIMPER, Similarity percentages.

between microbiota and their hosts plants will allow the
rhizosphere microbiota to be incorporated into plant breeding
programs to promote beneficial associations between plants
and microorganisms.

Common grapevine (Vitis vinifera L.) is one of the most
extensively grown and economically important woody perennial
fruit crop worldwide with an annual production in 2014
exceeding 74 million tons of grapes and 30 million tons of wine
(FAO, 2018). Since the late 19th century, V. vinifera cultivars
have been grafted onto resistant rootstock of other Vitis species
and hybrids to combat the devastating root phylloxera pest.
Several major criteria have been outlined for choosing rootstocks:
resistance to phylloxera and nematodes, and adaptability to
drought, salinity, limestone content, and poor mineral nutrition
(Reynolds and Wardle, 2001). In addition, the rootstock influence
may affect scion vigor, yields, and fruit and wine qualities
(Warschefsky et al., 2016).

Plant genetic control over microbial communities in the
rhizosphere has been reported for different genotypes of the
same species (Aira et al., 2010; Bouffaud et al., 2012; Peiffer
et al., 2013; Marques et al., 2014; Jiang et al., 2017; Gallart
et al., 2018). However, within grapevine species, the impact of
genetic variation on the composition of the bacterial and fungal
microbiota is poorly understood. In a recent study, Marasco
et al. (2018) observed that five grapevine genotypes influenced
the bacterial microbiome from both the root tissues and the
rhizosphere fractions at a single vineyard, sampling date and year.

To better understand the players and processes that operate
in the rhizosphere, a variety of molecular techniques, such as
metagenomics have been applied over the past decade. Here,
we characterize the rhizosphere bacterial and fungal microbiota
across five grapevine rootstock genotypes cultivated in the same
soil at two vineyards and sampling dates over 2 years by
16S rRNA gene and ITS high-throughput amplicon sequencing
(HTAS). This design allowed us to evaluate the effect of
the growing region, year, sampling date, grapevine genotype,
and their interactions on the bacterial and fungal community
diversity. In addition, we used quantitative Polymerase Chain
Reaction (qPCR) approach to measure the relative abundance
and dynamic changes of fungal pathogens associated with black-
foot disease, one of the main soil-borne fungal diseases affecting
grapevine production worldwide.

MATERIALS AND METHODS

Sample Collection
Grapevine rhizosphere samples of five rootstocks (110 R,
140 Ru, 1103 P, 41 B, and 161-49 C) were collected at
two vineyards located in Aldeanueva de Ebro (abbreviated as
“Aldea”) (La Rioja, Spain) and Olite (Navarre, Spain). Features
of the selected rootstocks are reported in Supplementary
Table 1 (Martínez-Cutillas et al., 1990; Hidalgo, 2002; Keller,
2010). All the selected rootstocks were cultivated in the same
vineyard and had been grafted onto Tempranillo cultivar.
Soil physicochemical properties showed significant differences
between soil types. Climate and soil management practices
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for fertilization, irrigation, and disease control also varied
between vineyards (Supplementary Table 2). Aldea vineyard
was 25-year-old vines at the moment of sampling and
contained four randomized blocks of 48 vines per rootstock
and block. Olite vineyard was 7-year-old vines at the moment
of sampling and contained three randomized blocks of 15
vines per rootstock and block. In each vineyard, three
rhizosphere samples were randomly collected per rootstock
at two sampling dates (June and November) over 2 years
(2016 and 2017). Sampled vines did not show any symptom
of disease or nutrient deficiency. A total of 60 samples were
collected per vineyard.

Rhizosphere soil samples were collected with a sterile spade
close to the stem at depths of 40 to 50 cm, where the root
system was denser. All samples were stored in sterile bags on
dry ice at the time of sampling, and brought to the laboratory
for further processing within 24 h from the time of sampling.
The sampled roots with rhizosphere soil particles attached were
placed in sterile tubes containing 9 mL of physiological solution
(9 g/L NaCl). The tubes were vortexed for 5 min to detach the
soil particles and then centrifuged at 4000 rpm for 5 min. The
supernatant was discarded and the remaining soil fraction was
used for DNA extraction.

DNA Extraction and Sequencing
The rhizosphere DNA was extracted from 0.5 g sample using
the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) and DNA
samples were randomized across plates. The bacterial V4 region
of the 16S rRNA gene was amplified using the protocol described
by Lundberg et al. (2013). The universal primer pair 515F
and 806R was used to generate bacterial-derived 16S rRNA
amplicons. PNA PCR clamps were used to reduce host organelle
contamination. The fungal ITS2 region was amplified using the
universal primers ITS3/KYO2 and ITS4 (Toju et al., 2012). All
primers were modified to include Illumina adapters1. Each 25 µl
reaction contained 12.5 µl of HiFi HotStart Ready Mix (KAPA
Biosystems, Woburn, MA, United States), 1.0 µl of each primer
(10 µM), 2.5 µl of DNA template (5 ng/µl), and 8.0 µl PCR-
grade water. PCR amplifications (performed in triplicate for each
sample) consisted of a 3 min denaturation at 95◦C; 25 cycles
of 30 s at 95◦C, 30 s at 55◦C and 30 s at 72◦C; and 5 min
at 72◦C. Samples were cleaned using the AMPure beads XP
purification system (Beckman Coulter, United Kingdom) and
sequenced on the Illumina MiSeq platform at the Fundación
FISABIO (Valencia, Spain) facility using a 2 × 300 nucleotide
paired reads protocol.

Data Analysis
Raw forward and reverse reads for each sample were assembled
into paired-end reads considering the minimum overlapping
of 50 nucleotides and a maximum of one mismatch within
the region using the fastq-join tool from the ea-tools suite
(Aronesty, 2011). The paired reads were then quality trimmed
with a minimum of Q20. Sequences without either primer were
discarded. Chimeric sequences were identified and filtered using

1www.illumina.com

the Usearch tool (Edgar, 2010, 2018). The UClust algorithm
(Edgar, 2013) in QIIME (Caporaso et al., 2010) was used to cluster
sequences at a 97% sequence similarity against UNITE dynamic
database (Abarenkov et al., 2010) for ITS reads and Greengenes
database (DeSantis et al., 2006) using the QIIME implementation
of the RDP classifier for 16S rRNA reads (Caporaso et al.,
2010). A tree was constructed from a gap-filtered alignment
using FastTree (Price et al., 2009). A final OTU table was
created excluding unaligned sequences and singletons. OTUs
with no kingdom-level classification or matching chloroplast,
mitochondrial, or Viridiplantae sequences were then removed
from the data set. Good’s coverage values were calculated using
the Mothur computer software (Schloss et al., 2009). The rarefied
OTU table and the phylogenetic tree were used as inputs for the
subsequent analyses of α- and β- diversity. The OTU table was
log transformed for statistical analysis (McMurdie and Holmes,
2014). As a final filter, taxa whose total abundances were less
than 1% of the mean abundance were excluded, and only the
OTUs present in at least two-thirds of the replicates of each
sample were selected.

Bacterial and Fungal Diversity, Taxonomy
Distribution and Statistical Analysis
Biodiversity indexes and principle statistics analyses on
taxonomic profiles were analyzed in R version 3.5 using the
vegan (Oksanen et al., 2018) and Phyloseq packages (McMurdie
and Holmes, 2014). Data in each vineyard was analyzed
separately due to the differences in soil chemistry and climate
(Supplementary Table 2). Technical noise (variation attributable
to sequencing depth or batch effects) was controlled by including
MiSeq run as a random effect.

Within sample type, α-diversity estimates were calculated by
analyzing the Chao1 richness and Shannon diversity in Phyloseq
package, as implemented in the tool MicrobiomeAnalyst
(Dhariwal et al., 2017). The normalized OTU table was analyzed
using Bray Curtis metrics (Bray and Curtis, 1957) and utilized to
evaluate the β- diversity and to construct PCoA plots (Vázquez-
Baeza et al., 2013) using MicrobiomeAnalyst. In order to compare
bacterial and fungal communities composition and to partition
of variance in different categories, Bray–Curtis distance matrices
were subjected to PERMANOVA (Anderson, 2001) using the
adonis function with a permutation number of 999 available
in the vegan package of R. PERMANOVA was performed
to investigate which OTUs significantly differed in abundance
among experimental factors.

The variance-partitioning model tests for effects of year,
sampling date and genotype on microbiome communities,
while year-by-genotype and date-by-genotype interaction terms
describe how the distinct fungal and bacterial communities
at different common rootstocks respond differently to each
of these factors. The linear mixed models were fit using the
lme4 package (Bates et al., 2015). Statistical significance of
fixed predictors (Year + Sampling Date + Genotype + Year
× Genotype + Date × Genotype) was assessed using Type
III ANOVA with Satterthwaite’s approximation of denominator
degrees of freedom in the package InnerTest (Kuznetsova et al.,
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2016), and of random effects (MiSeq run) using likelihood ratio
tests. This model was used to predict community descriptors
that were continuous and approximately normally distributed
in α-diversity metrics (Shannon entropy and Chao1 estimated
richness) as described above.

The Linear Discriminant Analysis Effect Size (LEfSe)
algorithm was used to identify taxa (genus level or higher)
that differed in relative abundance between the rootstocks
(Segata et al., 2011). The online Galaxy Version 1.0 interface
(The Huttenhower Lab, 2018) was used, the threshold for the
logarithmic LDA score was set at 1.0 and the Wilcoxon p-value
at 0.05. The results are displayed in a cladogram and a bar graph.
A Similarity Percentages (SIMPER) analysis was performed
with PRIMER 6 software to explore the dissimilarities between
the rootstock factor. Summarized taxa tables at the phylum
and genera levels were used to investigate the phylogenetic
groups that contribute to the dissimilarity. Unclassified OTUs
amounting to less than 3% of the relative abundance in the
rhizosphere were discarded from the analysis, according to
Marasco et al. (2018). The bacterial and fungal OTUs shared
among vineyards and rootstocks were defined by a Venn-diagram
analysis using the software available at (Van de Peer et al., 2018).

Quantitative PCR Amplification and
Quantification of Black-Foot Disease
Pathogens
Quantitative PCR analyses were performed with the DNA
extracted from the soil samples, as Agustí-Brisach et al. (2014)
developed in previous research, using the primers YT2F and Cyl-
R (Dubrovsky and Fabritius, 2007; Tewoldemedhin et al., 2011).
These primers amplify the main Cylindrocarpon-like asexual
morphs associated with black-foot disease, in particular those
belonging to the genera Dactylonectria, Ilyonectria, Neonectria,
and Thelonectria. Rotor-Gene 6000 real-time rotary analyzer
(Qiagen, Hilden, Germany) was used to perform the qPCR
amplifications. Each reaction contained 2 µl of DNA, 1× of
SYBR Premix Ex Taq II (Tli RNase H Plus) (Takara Bio Inc.,
Shiga, Japan) and 0.4 µM of each primer. The reaction mix was
adjusted to a final volume of 20 µl with sterile distilled water.
The thermocycling profile consisted of 30 s at 95◦C and 50 cycles
of 10 s at 95◦C, 10 s at 60◦C, and 30 s at 72◦C. To evaluate
amplification specificity, melting curve analysis was performed
at the end of the qPCR runs according to the manufacturer’s
recommendations. Each analysis included three replicates of
each sample, a non-template control reaction (water) and a
positive control containing DNA extracted from a pure culture
of the Dactylonectria torresensis isolate GTMF DT097, obtained
from the collection of the Instituto Agroforestal Mediterráneo,
Universitat Politècnica de Valencia, Spain. D. torresensis is the
most common fungal species associated with black-foot diseased
vines in Italy (Carlucci et al., 2017), Portugal (Reis et al., 2013),
and Spain (Berlanas et al., 2017). For DNA extraction, fungal
mycelium of this isolate grown on potato dextrose agar (PDA,
Biokar-Diagnostics, Zac de Ther, France) for 2 weeks at 25◦C
in darkness, was scraped from the surface of the plate with
a sterile scalpel. Total DNA was extracted using the E.Z.N.A.

Plant Miniprep kit (Omega Bio-Tek, Doraville, United States)
following the manufacturer’s instructions and mycelia was
previously homogenized with 4 steel beads of 2.38 mm and
2 of 3 mm diameter (Qiagen, Hilden, Germany) using a
FastPrep-24TM5G (MP Biomedicals, California, United States)
at 5 m/s for 20 s twice. DNA extracted was quantified with
Invitrogen Qubit 4 Fluorometer (Thermo Fisher Scientific,
Waltham, United States).

DNA of the Cylindrocarpon-like asexual morphs species
was quantified using a standard curve constructed with the
isolate GTMF DT097, consisting of a dilution series from
275 µg/µL to 0.275 fg/µL. Quantitative PCR analysis were
perform as previously explained and the standard curve
was generated following the MIQE guidelines (Bustin et al.,
2009), by plotting quantification cycle (Cq) values obtained
for each specific DNA concentration, versus the logarithm
of the initial concentration of isolate DNA. The mean DNA
concentration and the standard deviation were determined
from three replicates per dilution. Sensitivity of the qPCR
assay was assessed using the standard curve to determine
the minimum DNA concentration that can be detected. The
amplification efficiency (E) and the coefficient of determination
(R2) of the standard curve were obtained using the Rotor-
Gene 6000 Series software v. 1.7 (Qiagen, Hilden, Germany).
Signal threshold levels were set automatically by the instrument
software and the limit of detection (LOD) was identified by
the last dilution when successful qPCR amplification of DNA
occurred, accompanied by a melting curve peak temperature
specific to D. torresensis.

Values from the Cylindrocarpon-like asexual morphs number
of OTUs and DNA concentration were transformed by log
(n/N ∗ 1000 + 1). Where n was the number of OTUs or the
DNA concentration detected on each sample and N was the total
number of OTUs and the total DNA concentration detected. An
analysis of correlation between both transformed datasets was
performed in R version 3.5 using the corrr package.

RESULTS

High-Throughput Amplicon Sequencing
After paired-end alignments, quality filtering and deletion
of chimeric, singletons, and mitochondrial and chloroplast
sequences, a total of 4,337,395 bacterial 16S rRNA sequences
and 6,216,366 fungal internal transcribed spacer (ITS) sequences
were generated from 117 (three samples were removed from
the analysis due to the low number of sequence reads) and
120 samples, respectively, and assigned to 975 bacterial and
567 fungal operational taxonomic units (OTUs) (Supplementary
Table 3). Good’s coverage values indicated that on average 94.5
and 90.1% of the total species richness were accounted for in
bacteria and fungal communities, respectively (Supplementary
Table 4). Chao1 diversity estimator ranged from 143.6 to 549.5 in
the bacterial microbiome, and from 90.5 to 254.9 in the fungal
microbiome. Shannon diversity estimator ranged from 1.80 to
4.68 in the bacterial microbiome, and from 1.80 to 3.84 in the
fungal microbiome (Supplementary Table 4).
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Core Grapevine Phylogeny Between
Vineyards
The two habitats used as vineyard sites (Aldeanueva del Ebro,
abbreviated “Aldea” in the figures and tables; and Olite) were
separated by 45 km, and varied in most of soil physicochemical
properties (Supplementary Table 2). Bacterial communities of
rhizosphere soil samples did not differ significantly between
vineyards (Supplementary Table 5). However, α-diversity
differed among sites when studying the fungal microbiota,
and principal coordinates analysis (PCoA) of Bray Curtis data
demonstrated that vineyard was the primary source of β-diversity
(Supplementary Figure 1). Comparing the fungal and bacterial
microbiota of the two vineyards, 82.9 and 58.7% of bacterial
and fungal OTUs, respectively, were shared between vineyards,
demonstrating the existence of a “core” grape phylogeny that is
independent of the growing region (Figure 1).

The relative abundance of bacterial and fungal phyla detected
across all samples is shown in Figure 1. In both vineyards,
the bacterial phyla Proteobacteria (26.1 and 28.1% in Aldea
and Olite, respectively) and Actinobacteria (24.1 and 18.5%)
represented almost 50% of the total bacteria detected. These phyla
were followed by Acidobacteria (13.7 and 16.4%), unidentified
bacteria (11.4 and 11.7%), and Bacteroidetes (5.2 and 6.1%)
(Figure 1). The most abundant families within the Proteobacteria
phylum were unidentified families from the order Rhizobiales
(13.0 and 10.4% in Aldea and Olite, respectively), unidentified
families from the class Betaproteobacteria (9.8 and 13.0%)
and Sphingomonadaceae (7.6 and 10.7%). The most abundant
families within the Actinobacteria phylum were unidentified
Actinobacteria (29.1 and 22.5% in Aldea and Olite, respectively),
Gaiellaceae (16.0 and 15.2%) and Streptomycetaceae (6.2 and
6.7%) (Supplementary Figure 2). Regarding the fungal taxa,

the most abundant fungal phylum was Ascomycota (66.6
and 69.9% in Aldea and Olite, respectively), followed by
Basidiomycota (20.1 and 11.5%) and Zygomycota (8.9 and
15.2%) (Figure 1). The most abundant families within the
Ascomycota phylum were Nectriaceae (15.4%), unidentified
Ascomycota (8.8%), and Bionectriaceae (9.1%) in Aldea vineyard,
and Nectriaceae (17.7%), unidentified Ascomycota (11.1%),
Pyronemataceae (9.6%), and Trichocomaceae (8.4%) in Olite
vineyard (Supplementary Figure 2).

Host Genetic Influence on the
Rhizosphere Microbiota
Bacterial and fungal diversity in rhizosphere soil samples differed
significantly among rootstocks in Aldea vineyard. However,
plant genotype did not predict Chao1 diversity (Table 1). Host
genotype was the most important factor in structuring bacterial
(R2 = 0.65, P < 0.001) and fungal (R2 = 0.86, P < 0.001)
communities in the entire dataset, and also when the data were
split by year and date (Table 2). A PCoA further demonstrated the
variation in the total dataset could be attributed to host genotype
in Aldea vineyard (Figure 2). In Olite vineyard, plant genotype
had a much weaker influence on rhizosphere-associated bacterial
and fungal communities. Host genotype did not predict any
summary metrics of rhizosphere α and β-diversities (Tables 1, 2).

The linear discriminant analysis effect size (LEfSe) detected
27 bacterial and 36 fungal clades in the rhizospheres, which
discriminated the microbial communities between the different
rootstock genotypes in Aldea vineyard (Figures 3, 4). Both
rootstocks 1103 P and 41 B showed higher number of
differentially abundant bacterial clades (8 each) than the other
rootstocks (5, 4, and 2 in 161-49 C, 110 R, and 140 Ru,
respectively). The dominant bacterial phyla were Firmicutes

FIGURE 1 | Venn diagram illustrating the overlap of the OTUs identified in the bacterial (A) and fungal (B) microbiota between vineyards. Relative abundance of
different bacterial (C) and fungal (D) phyla in the rootstock rhizospheres in both vineyards representing OTUs showing more than 1% relative abundance of all reads
and present in at least 2/3 of replicates. Phyla representing less than 1% of the total reads are grouped in “Others”.
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TABLE 1 | Experimental factors predicting α-diversity of rhizosphere associated
fungal and bacterial communities in Aldea and Olite vineyards.

Bacteria Aldea Olite

Shannon Chao1 Shannon Chao1

Genotype F4,54 = 3.47
P = 0.0134

F4,54 = 0.34
P = 0.8480

F4,54 = 0.90
P = 0.4693

F4,54 = 0.32
P = 0.8648

Year F1,57 = 6.83
P = 7.3e-09

F1,57 = 17.39
P = 1.5e-20

F1,57 = 4.66
P = 1.6e-04

F1,57 = 7.55
P = 4.7e-10

Year × Genotype F4,49 = 0.73
P = 0.0122

F4,49 = 1.48
P = 0.3661

F4,49 = 2.33
P = 0.0623

F4,49 = 6.08
P = 0.2143

Date F1,57 = 0.05 F1,57 = 0.18 F1,57 = 0.68 F1,57 = 0.13

P = 0.9555 P = 0.8502 P = 0.4989 P = 0.8941

Date × Genotype F4,49 = 1.55 F4,49 = 0.74 F4,49 = 0.19 F4,49 = 1.67

P = 0.1812 P = 0.7702 P = 0.1802 P = 0.2561

MiSeq run χ2
1 = 0.55

P = 0.3623
χ2

1 = 0.74
P = 0.4565

χ2
1 = 0.28

P = 0.7712
χ2

1 = 1.59
P = 0.3421

Fungi

Genotype F4,55 = 2.80
P = 0.0232

F4,55 = 1.12
P = 0.3529

F4,55 = 0.82
P = 0.5130

F4,55 = 2.27
P = 0.0929

Year F1,58 = 0.95
P = 0.3415

F1,58 = 10.62
P = 3.2e-15

F1,58 = 0.37
P = 0.7112

F1,58 = 5.25
P = 3.5e-06

Year × Genotype F4,50 = 2.85
P = 0.1126

F4,50 = 1.15
P = 0.3601

F4,50 = 0.35
P = 0.1831

F4,50 = 3.85
P = 0.3126

Date F1,58 = 8.52 F1,58 = 2.17 F1,58 = 0.44 F1,58 = 1.31
P = 1.08e-11 P = 0.0640 P = 0.6597 P = 0.1937

Date × Genotype F4,50 = 0.71 F4,50 = 0.91 F4,50 = 1.91 F4,50 = 6.81
P = 0.0112 P = 0.2903 P = 0.6351 P = 0.7443

MiSeq run χ2
1 = 0.74 χ2

1 = 2.92 χ2
1 = 1.77 χ2

1 = 0.12
P = 0.4912 P = 0.2551 P = 0.8135 P = 0.7331

ANOVA, analysis of variance. Statistics describe linear random-intercept models
of Shannon diversity and Chao1 richness in the rhizosphere. All P-values were
corrected for multiple comparisons using the sequential Bonferroni correction.
Significance was assessed using Type III ANOVA with F-tests for fixed effects
and likelihood ratio tests for the random effect. Bold values indicate statistically
significant results after correction for multiple comparisons. P < 0.05.

(37%) in rootstock 41B, Actinobacteria and Planctomycetes (50%
each) in rootstock 140 Ru, and Actinobacteria in rootstocks
161-49 C, 110 R, and 1103 P (60, 75, and 75%, respectively)
(Figure 3). The dominant fungal phyla were Basidiomycota
(73%) in rootstock 140 Ru, and Ascomycota in rootstocks
41 B, 161-49 C, 110 R, and 1103 P (75, 100, 36, and 71%,
respectively) (Figure 4).

The rootstock-pairs dissimilarity, due to phyla and genera
contribution in the rhizosphere was calculated by SIMPER
(similarity percentages) analysis (Supplementary Table 6).
Higher microbiome dissimilarity among rootstocks was
revealed in Aldea vineyard compared to Olite vineyard,
considering bacterial (Supplementary Table 6A) and fungal
phyla (Supplementary Table 6C), and bacterial (Supplementary
Table 6B) and fungal genera (Supplementary Table 6D)
distribution. Firmicutes and Acidobacteria were the major
phyla that contribute to differentiate the bacterial communities
associated with the different rootstock types in Aldea and Olite
vineyards, respectively (Supplementary Table 6A). Several
genera were predominant and determined the dissimilarities
among rootstocks such as Bacillus in Aldea vineyard or

TABLE 2 | Adonis test of category effect on bacterial and fungal Bray–Curtis
distance matrix.

Bacteria Aldea Olite

Dataset Factor R2 P-value Factor R2 P-value

Total Genotype 0.658 0.001 Genotype 0.058 0.015

Year 0.163 0.001 Year 0.494 0.001

Date 0.109 0.002 Date 0.059 0.004

110 R Year 0.564 0.002 Year 0.438 0.005

Date 0.028 0.116 Date 0.204 0.066

140 Ru Year 0.235 0.006 Year 0.458 0.005

Date 0.355 0.002 Date 0.092 0.333

1103 P Year 0.220 0.011 Year 0.379 0.005

Date 0.461 0.002 Date 0.174 0.036

41 B Year 0.087 0.071 Year 0.453 0.005

Date 0.670 0.002 Date 0.129 0.092

161 49 C Year 0.228 0.003 Year 0.471 0.005

Date 0.228 0.005 Date 0.221 0.040

2016 Genotype 0.868 0.001 Genotype 0.206 0.031

Date 0.067 0.035 Date 0.165 0.001

2017 Genotype 0.768 0.001 Genotype 0.240 0.001

Date 0.135 0.004 Date 0.138 0.002

June Genotype 0.634 0.001 Genotype 0.145 0.365

Year 0.110 0.005 Year 0.331 0.001

November Genotype 0.831 0.001 Genotype 0.240 0.020

Year 0.123 0.004 Year 0.354 0.001

Fungi

Total Genotype 0.864 0.001 Genotype 0.096 0.027

Year 0.052 0.004 Year 0.564 0.001

Date 0.084 0.001 Date 0.042 0.005

110 R Year 0.183 0.122 Year 0.438 0.005

Date 0.501 0.002 Date 0.204 0.066

140 Ru Year 0.142 0.137 Year 0.458 0.005

Date 0.615 0.002 Date 0.092 0.333

1103 P Year 0.266 0.031 Year 0.379 0.005

Date 0.496 0.002 Date 0.174 0.036

41 B Year 0.241 0.033 Year 0.453 0.005

Date 0.425 0.002 Date 0.129 0.092

161 49 C Year 0.191 0.066 Year 0.471 0.005

Date 0.472 0.002 Date 0.221 0.040

2016 Genotype 0.841 0.001 Genotype 0.144 0.305

Date 0.110 0.002 Date 0.070 0.002

2017 Genotype 0.928 0.001 Genotype 0.274 0.001

Date 0.130 0.002 Date 0.127 0.002

June Genotype 0.808 0.001 Genotype 0.220 0.012

Year 0.066 0.080 Year 0.289 0.001

November Genotype 0.753 0.001 Genotype 0.200 0.003

Year 0.105 0.004 Year 0.208 0.001

Aridibacter in Olite vineyard. The genus Bacillus appeared
to be rhizosphere genotype biomarker of 140 Ru and 161-
49 C rootstocks (Supplementary Table 6B). The fungal
phyla Ascomycota and Basidiomycota contributed to the
dissimilarity among rootstocks in Aldea vineyard, while only
the phylum Basidiomycota contributed to differentiate fungal
communities among rootstocks (Supplementary Table 6C).
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FIGURE 2 | Box plot illustrating the differences in Shannon diversity measures of the bacterial (A) and fungal (C) communities in the grapevine rootstocks in Aldea
vineyard. Principal Coordinate Analysis (PCoA) based on Bray Curtis dissimilarity metrics, showing the distance in the bacterial (B) and fungal (D) communities
among grapevine rootstocks.

The fungal genera Geopyxis, Clonostachys, and Lecanicillium
determined the dissimilarities among rootstocks in Aldea
vineyard, being Geopyxis a rhizosphere genotype biomarker
of 110 R rootstock and Clonostachys of 1103 P and 140 Ru
rootstocks (Supplementary Table 6D). In Aldea vineyard,
161-49 C rootstock showed the highest dissimilarity with the
other rootstocks in bacterial and fungal microbiome distribution.

Year Strongly Influenced Microbiomes
Our results demonstrate that bacterial microbiome varied
profoundly between years. This pattern was consistent to
community-level measure of α- diversity in both Aldea and
Olite vineyards (Table 1) Richness increased between 2016 and
2017 in both vineyards (Supplementary Figure 3). However,
year of sampling affected the Bray Curtis metric of β-diversity
in only Olite vineyard (R2 = 0.494) (Supplementary Figure 3).
Regarding the fungal microbiome, richness also varied between
vineyards and increased between 2016 and 2017 in both
vineyards (Table 1 and Supplementary Figure 4). However,
year of sampling did not predict Shannon diversity and affected
the Bray Curtis metric of β-diversity in only Olite vineyard
(Table 2 and Supplementary Figure 4). Sampling date also
contributed to α-diversity variation indicating temporal changes
in relative abundance of fungal OTUs in Aldea vineyard. Fungal
composition decreased between June and November (Table 1 and
Supplementary Figure 5). Fungal community structure varied

individually in each rootstock with date (R2 ranging from 0.42
to 0.61), but not in the total dataset (R2 < 0.1) (Table 2).

Rootstock-Specific and Shared Bacterial
and Fungal Assemblages
The rhizosphere compartments of grapevine rootstocks showed
specific fungal and bacterial OTUs for each rootstocks and a
cluster of shared OTUs. In Aldea, specific OTUs associated
with most of the rootstocks ranged from 4.3 to 5.8% of their
bacterial communities (Figure 5). Specific OTUs associated with
the rootstocks 140 Ru, 1103 P, 41 B and 110 R represented
less than 9% of their fungal communities, where the 161-49C-
specific OTUs enriched only 4.5% of the relative abundance
(Figure 5). In Olite, specific OTUs associated with most of
the rootstocks represented less than 9% of their bacterial and
fungal communities, with the exception of bacterial communities
associated with 140 Ru rootstock that represented 21.3% of its
total (Figure 6). The OTUs that were unique in each of the
grapevine rootstock are shown in Supplementary Tables 7, 8.

Quantification of Black-Foot Disease
Pathogens Using Quantitative PCR
The standard curve, constructed with serial dilutions of the DNA
of D. torresensis isolate GTMF DT097, revealed high correlations
between Cq and DNA, with R2-value of 0.99 and reaction
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FIGURE 3 | LEfSe was used to identify the most differentially abundant taxa among grapevine rootstocks in Aldea vineyard. Cladogram generated by LEfSe
indicating differences of bacteria (A) at phylum, class, family, and genus levels between the five groups (relative abundance ≤0.5%). Each successive circle
represents a phylogenetic level. Color regions indicate taxa enriched in the different rootstocks. Differing taxa are listed on the right side of the cladogram. Bar graph
showing LDA scores for bacteria (B). Only taxa meeting an LDA significant threshold >2 are shown.

efficiency of 0.90. The minimum DNA concentration detectable
of D. torresensis was at Cq value of the dilution D7 thus, the limit
of detection (LOD) was established at 2.75 fg/µL.

DNA of Cylindrocarpon-like asexual morphs was detected in
all rootstock rhizosphere samples, in both vineyards and years,
with concentrations ranging from 0.39 pg/µL to 4.06 pg/µL in

Aldea 2016, from 3.52 pg/µL to 14.14 pg/µL in Aldea 2017, from
0.88 pg/µL to 8.45 pg/µL in Olite 2016 and from 2.65 pg/µL
to 59 pg/µL in Olite 2017. The year and vineyard factors had
a significant effect on Cylindrocarpon-like asexual morphs DNA
concentration detected (P < 0.01). The concentration of DNA
detected was significantly higher in Olite vineyard compared with
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FIGURE 4 | LEfSe was used to identify the most differentially abundant taxa among grapevine rootstocks in Aldea vineyard. Cladogram generated by LEfSe
indicating differences of fungi (A) at phylum, class, family, and genus levels between the five groups (relative abundance ≤0.5%). Each successive circle represents a
phylogenetic level. Color regions indicate taxa enriched in the different rootstocks. Differing taxa are listed on the right side of the cladogram. Bar graph showing LDA
scores for fungi (B). Only taxa meeting an LDA significant threshold >2 are shown.

Aldea vineyard, especially in year 2017. The rootstock factor had
a significant effect on the DNA concentration detected in Aldea
vineyard for 2017 samples (P = 0.0156). Rootstocks 161-49 C,
140 Ru, 1103 P, and 110R showed similar DNA concentrations
values that were significantly lower when compared with 41 B

rootstocks (Supplementary Figure 6). The analysis showed a
positive significant correlation between the number of OTUs
and the Cylindrocarpon-like asexual morphs DNA quantified
using the real-time approach (P < 0.01, Spearman correlation
coefficient = 0.72) (Supplementary Figure 7).
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FIGURE 5 | Venn diagrams showing the common and exclusive bacterial (A)
and fungal (B) OTUs of the rhizosphere of the grapevine rootstocks in
Aldea vineyard.

DISCUSSION

In this study, we characterized the rhizosphere microbial
community composition across five commercial grapevine
rootstock genotypes cultivated in the same soil at two vineyards
and sampling dates over 2 years. The analysis of bacterial and
fungal populations in the grapevine rhizosphere targeting 16S
rRNA and ITS region, respectively, have been proved effective
in previous studies (Corneo et al., 2014; Holland et al., 2016;

FIGURE 6 | Venn diagrams showing the common and exclusive bacterial (A)
and fungal (B) OTUs of the rhizosphere of the grapevine rootstocks in
Olite vineyard.

Longa et al., 2017; Manici et al., 2017; Stefanini and Cavalieri,
2018). Especially for bacterial barcoding, the choice of partial
sequence regions is pivotal and can significantly affect the results
because the 16S rRNA gene regions have different divergence
(Youssef et al., 2009). In our study, we used the V4 region
because according to recent in silico studies (Youssef et al., 2009),
V4 along with V5-V6, and V6-V7 regions were considered as
the most suitable regions for metagenomic purposes because
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they provided estimates comparable to those obtained with the
complete 16S rRNA gene sequence (Youssef et al., 2009).

Our study represents the first approach to investigate the
rhizosphere fungal microbiome of grapevine by HTAS. In
grapevine, the ecology of fungal communities is so far largely
derived from the studies using pyrosequencing approach in bulk
soil (Holland et al., 2016; Castañeda and Barbosa, 2017; Longa
et al., 2017) or ARISA fingerprinting (Likar et al., 2017) and
PCR-DGGE (Manici et al., 2017) approaches in rhizosphere soil.
Even though the ITS region was ratified by The Fungal Barcoding
Consortium (Schoch et al., 2012) as the universal DNA barcode
for the fungal kingdom using the same gene section proposed by
White et al. (1990), some recent reports point out its limitations
for specific taxa. This region does not work well with taxa having
narrow or no barcode gaps in their ITS regions, such as Fusarium
or Trichoderma (Schoch et al., 2012). In addition, the correct
identification of morphologically similar cryptic species using
the ITS regions is still problematic due to the lack of consensus
in the lineage-specific cut-off value for species determination
(Nilsson et al., 2008).

The bacterial microbiomes of the different rootstocks were
largely composed of Proteobacteria and Actinobacteria that
accounted for almost 50% of the relative abundance in both
vineyards. The predominant bacterial phyla found in this work
is consistent with the results obtained in other studies in
vineyard soil (Opsi et al., 2014; Vega-Avila et al., 2015; Castañeda
and Barbosa, 2017; Longa et al., 2017; Marasco et al., 2018).
Proteobacteria and Actinobacteria are known for their role in
the carbon biochemical cycle and their production of second
metabolites (Jenkins et al., 2009). The major fungal phyla
detected in our study were largely composed of Ascomycota and
Basiodiomycota that accounted for almost 75% of the relative
abundance in both vineyards. Previous studies also agree on
the most common fungal phyla detected in grapevines fields
(Castañeda and Barbosa, 2017; Longa et al., 2017; Manici et al.,
2017). These results suggest that vineyard microbiome in Navarre
and La Rioja regions is partially conserved.

The results obtained in the Aldea vineyard showed a
significant fraction of variation in fungal and bacterial diversity
(both the α- and β-diversity) that could be attributed to host
genetics. Recent research indicated that rootstock genotypes
could have a notable influence in shaping the bacteria taxa
distribution in the root and rhizosphere systems of grapevine
(Marasco et al., 2018). This effect of the host genotype in the
rhizosphere microbiome has been reported in other woody crops,
such as apple (Liu et al., 2018) and pines (Gallart et al., 2018),
as well as in several annual crops, such as maize (Peiffer et al.,
2013), potato (Inceoǧlu et al., 2010), and chickpea (Bazghaleh
et al., 2015). This could be due to the influence of the genotype
in the root metabolism, including immune response and exudate
composition, which impact in the rhizosphere microbiome
(Wagner et al., 2016). Rootstocks show different level of tolerance
to distinct diseases; and this could be decisive in their effect in
the microbiome (Sapkota et al., 2015). Moreover, as reviewed by
Liu et al. (2018), several studies hint to a possible co-evolution
of the holobiont. However, further research is needed to validate
this hypothesis. On the other hand, the Olite vineyard showed

a lower microbiome dissimilarity among rootstocks, suggesting
that the effect of genotype in shaping the microbiome might be
influenced by other factors.

The differences between Olite and Aldea vineyards could lie
in the soil physicochemical properties, in the soil and cultivar
management practices, or in the age of the plants, being vines
cultivated in Olite vineyard younger than in Aldea vineyard.
Environmental heterogeneity, such as the soil physicochemical
properties and moisture content have been identified as major
factors shaping the spatial scaling of the rhizosphere microbiome
in many previous studies (Costa et al., 2006; Tan et al., 2013;
Schreiter et al., 2014), including grapevine (Fernández-Calviño
et al., 2010; Corneo et al., 2014; Burns et al., 2015; Zarraonaindia
et al., 2015; Holland et al., 2016). Soil physicochemical properties
can also influence the population structure of specific soil-
borne pathogens. For instance, Berlanas et al. (2017) observed
that excessive calcium carbonate in soil may increase black-foot
disease inoculum density.

Field management practices have been also reported as an
important driver of the microbiome diversity (Santhanam et al.,
2015; Sapkota et al., 2015; Hacquard, 2016; Gallart et al., 2018),
including the grapevine soil microbiome (Vega-Avila et al.,
2015; Likar et al., 2017; Longa et al., 2017). Nevertheless,
other studies showed a long-term effect of cultivation rather
than field management on soil microbial diversity (Buckley and
Schmidt, 2001; Peiffer et al., 2013). Microbiome studies should
consider the high degree of temporal variability in the sample
design, because sampling the same point in different times can
give different results due the variability of the own microbial
community through time (Redford and Fierer, 2009). The year
to year variation found in our study could be explained by the
different root response to distinct environmental factors, such
as temperature or precipitation (Wagner et al., 2016). Further
research is needed to determine if environment plays a much
greater role than host genetics in determining the composition
of the rhizosphere microbiome of grapevine.

Several studies have remarked the effect of the growth stage
of the plant in its associated rhizosphere microbiome (Baudoin
et al., 2002; Inceoǧlu et al., 2010; Li et al., 2014; Okubo et al.,
2014; Yuan et al., 2015; Wagner et al., 2016; Qiao et al., 2017).
Changes in the quantity and quality of root exudates as plants
develop have been proposed as the main source of variation
of the rhizosphere microbiome composition present during
different developmental stages of maize cultivars (Baudoin et al.,
2002). However, most of the published studies are focused in
annual plant systems. In grapevine, Manici et al. (2017) recently
investigated shifts in bacterial and fungal communities between
mature and young replaced vines in Italy. At a single sampling
moment, these researchers concluded that long-term growth
legacy overcame plant age in shaping rhizosphere microbiome
(Manici et al., 2017). Further research is therefore needed
to determine the long-term effect of the grapevine age on
the associated microbiome as plants develop. This could be
accomplished by comparing the rhizosphere microbiome (i) in
a single vineyard over time, or (ii) in two vineyards in close
proximity with identical environmental conditions and soils, but
with vines on different aging process.
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Our results showed that the root system type is able to select
specific bacterial and fungal OTUs as biomarkers for the different
genotypes. Members of the bacterial genus Bacillus, which was
only found in 140 Ru and 161-49 C rootstocks in Aldea vineyard,
has wide diversity of physiological ability with respect to heat,
pH, and salinity. Therefore, Bacillus species can be found in
a wide range of habitats, being a few of them pathogenic to
vertebrates or invertebrates (Holt et al., 1994). Bacillus subtilis
and Bacillus amyloliquefaciens have been described as potential
biocontrol agents against Aspergillus parasiticus and stem rot
disease (Le et al., 2018; Siahmoshteh et al., 2018). In vitro assays
of the heat stable metabolites of B. subtilis showed promising
results in reducing the growth of the fungal trunk pathogens
Lasiodiplodia theobromae, Phaeomoniella chlamydospora, and
Phaeoacremonium minimum (Alfonzo et al., 2009). Rezgui et al.
(2016) recently identified several B. subtilis strains inhabiting the
wood tissues of mature grapevines in Tunisia with antagonistic
traits against fungal trunk pathogens. On the other hand, some
species of the arbuscular mycorrhizal (AM) fungal genus Glomus,
one of the most differentially abundant taxa for 110 R rootstock
in Aldea vineyard, are cataloged as biocontrol agents (Tahat
et al., 2010). For instance, inoculation of grapevine roots with
Rhizophagus irregularis (syn. Glomus intraradices) reduced both
the disease severity and the number of root lesions caused
by black-foot disease pathogens (Petit and Gubler, 2006). AM
fungi form one of the most interesting beneficial plant–micro-
organism associations (Smith and Read, 2008) and are known
to colonize the roots of the majority of land plants, including
grapevines (Schreiner and Mihara, 2009; Trouvelot et al.,
2015). Several genera within the Glomeromycota phylum have
been identified from the rhizosphere samples obtainted in this
study, namely Claroideoglomus, Diversispora, Entrophosphora,
and Rhizophagus. Trouvelot et al. (2015) reported that soil
management can greatly impact the diversity of AM fungi.
In fact, AM fungal communities are highly influenced by
the soil characteristics but also to a smaller extent by the
host plant development stage (Schreiner and Mihara, 2009;
Balestrini et al., 2010).

High-throughput amplicon sequencing is a powerful method
for the analysis of microbial populations. It is accomplished
by sequencing specific marker genes amplified directly from
environmental DNA without prior enrichment or cultivation of
the target population (Franzosa et al., 2015). The advantages
of this approach is the detection of rare taxa at the genus
level given the availability of large and comprehensive reference
databases as well as several pipelines for bioinformatics analysis
(Stefanini and Cavalieri, 2018). Drawbacks of HTAS include
the biased relative quantification of bacterial communities since
bacterial species bear various number of copies of 16S rRNA
genes, the sequencing of matrix (e.g., grape ITS, chloroplast
16S) and the low confidence for taxonomic assignment at the
species level (Stefanini and Cavalieri, 2018). A step forward
consists of the understanding of how changes in the composition
of microbial communities impact the population’s biological
functions (Ravin et al., 2015). Unfortunately, HTAS only allows
inference of functional annotation while in whole-genome
sequencing, functional annotation can be carried out by gene
enrichment (Stefanini and Cavalieri, 2018). A further drawback

of using DNA-based metagenomic data to infer the biological
functions potentially exploited by microbial populations is that
the detected DNA may belong to dead organisms. However, an
approach based on RNA sequencing would give a direct report
of the functions achievable by the viable microbial populations.
In grapevine, the study of the active fungal communities of
internal grapevine wood by HTAS in extracted total RNA has
been recently accomplished by Eichmeier et al. (2018).

The quantitative significance of next-generation sequencing
data for microorganisms is often debated (Amend et al., 2010).
Fortunately, we were able to compare the relative abundance of
reads with the relative abundance of DNA of black-foot disease
pathogens, and we observed significant positive correlation.
From the fungal soilborne pathogens affecting grapevine,
Cylindrocarpon-like asexual morphs associated with black-foot
disease are among the most important limiting factor of the
production worldwide (Halleen et al., 2006; Agustí-Brisach and
Armengol, 2013). Therefore, Cylindrocarpon-like asexual morphs
can be considered model pathogens to monitor the healthy status
of the grapevine planting material when analyzing the fungal
microbial composition of soil/rhizosphere samples.

Grapevine rootstocks have different susceptibilities toward
pathogens, including trunk disease pathogens (Eskalen et al.,
2001; Alaniz et al., 2010; Gramaje et al., 2010; Brown et al.,
2013; Billones-Baaijens et al., 2014), which may be an important
factor in shaping not only pathogens abundance but also entire
communities. Nevertheless, we did not observe a clear correlation
between known disease resistances in individual genotypes and
the fungal communities, although Cylindrocarpon-like asexual
morphs were found in lower abundance in 161-49 C rootstock
by both high-throughput amplicon sequencing and qPCR
approaches. The use of 161-49 C rootstock was previously
recommended within an integrated management program for
other grapevine trunk diseases, such as Petri disease and esca
(Gramaje et al., 2010).

CONCLUSION

We have studied the effects of genotype, year, sampling date, and
location on bacterial and fungal communities in the grapevine
rhizosphere. We found that grapevine genotype was the most
important factor in shaping the microbiome in the mature
vineyard. Many bacterial and fungal species were found in all
rootstocks and in both locations in our study, demonstrating the
existence of a “core” grape phylogeny that is independent of the
growing region. Interestingly, the rhizosphere compartments of
140 Ru and 161-49 C rootstocks, the latter showing high tolerance
to esca and Petri disease pathogens in previous research (Gramaje
et al., 2010), harbored lower number of black-foot pathogens
than the other grapevine rootstocks. Also of interest was the
presence of high relative abundance of the genus Bacillus in both
grapevine rootstocks, a bacterial genus recognized as biocontrol
agents. A more comprehensive study is needed to decipher the
cause of the rootstock microbiome selection and the mechanisms
by which grapevines are able to shape their associated microbial
community. Understanding the vast diversity of bacteria and
fungi in the rhizosphere and the interactions between microbiota
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and grapevine will facilitate the development of future strategies
for grapevine protection.
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