
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disorder with a prevalence of 2~3 per 100,000 people and is 
generally fatal within a few years of disease onset. Affected motor 
neurons in the brain stem, spinal cord, and motor cortex undergo 
significant loss, and it eventually causes progressive muscle wasting 
and paralysis in ALS patients. ALS was initially reported by Dr. 
Jean-Martin Charcot, a French neurologist, in 1869 [1]. Since 
Charcot’s initial reporting, ALS received international attention 
when Lou Gehrig, a baseball player of the New York Yankees 

(Bronx, NY, USA), retired from baseball after being diagnosed 
with ALS in 1939. For this reason ALS has also been referred 
as ‘Lou Gehrig’s disease’. Interestingly, Gulf War veterans have a 
significantly increased risk (above two fold) of developing ALS [2]. 
Evidence has shown that the incidence of ALS has risen in recent 
years and it is reasonable to expect that it will continue to rise in 
the future. Most cases of ALS occur sporadically, but about 5~10% 
of ALS cases are familial ALS (FALS). In FALS, more than 90 
mutations are found in superoxide dismutase 1  (SOD1) gene [3-6]. 
In addition, other mutations in FUS/TLS and TDP-43 genes have 
been known in ALS. Recently, a hexanucleotide repeat expansion 
of the C9orf72 gene has been identified as the most common 
cause of FALS discovered to date [7-15]. Given that mutations 
of the important cellular antioxidant enzyme SOD1 are a cause 
of FALS, it has well been proposed that oxidative stress plays a 
key role in the disease pathogenesis. Indeed oxidative damage 
and gliogenesis in both postmortem human FALS and sporadic 
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ALS (SALS) tissue and in transgenic (mutant SOD1 (G93A)) 
ALS animal models have been documented [16, 17]. Abnormal 
regulation of glutamate-dependent excitatory signal has also been 
identified in ALS suggesting that excessive synaptic glutamate 
and oxidative stress trigger motor neuronal damage. Moreover, 
altered calcium homeostasis, mitochondrial dysfunction, protein 
aggregation, cytoskeletal disruption, apoptosis, and inflammation 
are associated with motor neuronal damage and cell death [5, 
18]. Current medical care for both FALS and SALS focuses 
on symptom management. Supportive care can help control 
symptoms and make ALS more manageable for patients and their 
families, but this care does not significantly improve the disease 
progression. Even, to date, there are no effective drug therapies 
that slow the relentless progression of ALS [19-21]. In this regard, 
the better understanding of pathogenic mechanism of ALS may 
enhance the possibility for ameliorating the disease onset and 
progression. In this review, we focus on how non-neuronal cells 
are associated with the pathogenesis of ALS.

What is non-cell autonomous toxicity?

In the past when scientists had focused on the study of neuronal 
function and activity, the events related to neuronal damage and 
cell death were only investigated from a narrow viewpoint. This 
view was based on the notion that neurons are damaged due to 
the dysfunction and deregulation by themselves (so called cell 
autonomous pathway), and this damage was not related to the 
dysfunction of any other cell types. As time went by, the view and 
knowledge of scientists on the mechanisms of neuronal damage 
have more evolved and advanced. Importantly, a growing body of 
evidence have proven that non-neuronal cells such as astrocytes, 
microglia, and oligodendrocytes directly contribute to the motor 
neuronal damage and cell death (so called non-cell autonomous 
pathway) in ALS including other neurodegenerative diseases. 
Indeed, the disease onset and progression is modulated via non-
cell autonomous pathway in transgenic ALS [mutant SOD1 
(G93A)] mice [18]. The mutant SOD1 expression within motor 
neurons initiates a damage process and drives the disease onset. 
In parallel, activation of astrocytes and microglia by mutant 
SOD1 markedly exacerbates the disease progression while motor 
neuronal mutant SOD1 has little influence on the progression of 
ALS. Thus, the paradigm of the non-cell autonomous toxicity has 
been determined and proven in several experimental conditions 
of ALS [22, 23]. 

How do astrocytes mind motor neurons?

A major pathological feature of ALS is the generation and 
migration of new cells, specifically astrocytes, within and around 
damaged regions of the spinal cord [24]. Astrocytes respond to 
cellular stresses by proliferating and adopting a reactive phenotype 
characterized by the development of long and thick processes 
with an increased content of glial fibrillary acidic protein (GFAP). 
Interestingly, a similar increase in GFAP immunoreactivity 
was found when cultured primary spinal cord astrocytes were 
exposed to oxidative stress, suggesting that such morphological 
changes may be triggered by stress signals [24]. It seems likely that 
epigenetic alterations induced by mutant SOD1 (mtSOD1) and 
other pathological stresses are involved in the transformation of 
astrocytes to a neurotoxic reactive phenotype. In this scenario, 
non-cell autonomous cell death of motor neurons in ALS could 
result from either a loss of normal astrocytic support and/or the 
secretion of neurotoxic cytokines. Several studies have proven this 
idea as following: co-culture of astrocytes expressing mtSOD1 
(G93A) or exposure to conditioned medium derived from 
astrocytes expressing mtSOD1 (G93A) damages both primary 
motor neurons and embryonic stem cell-derived motor neurons 
[25, 26]. Previous studies have suggested that cytokines and other 
toxic factors released from SOD1(G93A) astrocytes may trigger 
motor neuronal damage [27-30]. For example, in vitro studies by 
Ferraiuolo et al. (2011) show that SOD1(G93A) astrocytes are toxic 
to normal motor neurons by reducing metabolic support from 
lactate release and activating pro-nerve growth factor-p75 receptor 
signaling pathway [27]. Interestingly, SOD1 (G93A) astrocytes 
specifically express NLRP3 (NACHT, LRR and PYD domains-
containing protein 3) inflammasome complexed with the NLR 
protein NLRP3, the adaptor ASC and pro-caspase 1, indicating 
that astrocytes mediate the neuroinflammation in ALS [28]. 
Moreover, transforming growth factor-β1 (TGF-β1) is increased 
in SOD1(G93A) astrocytes, and astrocyte-specific overexpression 
of TGF-β1 in SOD1(G93A) mice accelerates disease progression 
in a non-cell-autonomous manner [29]. On the other hand, 
the elevation of Bid, a BCL-2 family protein, in SOD1(G93A) 
astrocytes suggests that Bid activation may contribute to astrocyte 
activation and motor neuronal damage in ALS [30]. In this study, 
Bid is necessary for activating nuclear factor-κB in astrocytes to 
mediate pro-inflammatory stimuli, which represents that Bid is 
not directly toxic to motor neuron but indirectly modulates the 
astrocyte-dependent non-cell autonomous toxicity. Together, it has 
been successfully proven that astrocytic cytokines and toxin could 
determine disease progression and are critical to the pathogenesis 
of ALS.
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Excitatory amino acid transporter-2 (EAAT2) is known as a 
typical glial glutamate transporter that uptakes neurotransmitters 
glutamate and aspartate from the synaptic cleft [31]. It is believed 
that EAAT2 uptakes more than 90% of glutamate into glia. In 
normal condition, astrocytes uptake glutamate and turn it into 
glutamine, and nourish motor neurons by supplying them as 
energy source. However, when astrocytes become reactive, the 
expression of EAAT2  gene is decreased and subsequently an 
excess amount of extracellular synaptic glutamate may lead to 
excitocytotoxicity in motor neurons in the spinal cord of ALS. 
Indeed, as the dysfunction of EAAT2 is implicated in ALS, the 
level of EAAT2 is reduced in the motor cortex and spinal cord 
of ALS patients [32]. Moreover, the decrease of EAAT2 activity 
impairs motor neuron survival in mouse models of ALS [33]. 
Otherwise, not only does chemical induction of EAAT2 activity 
improve motor neuron survival in an in vitro  model of chronic 
excitotoxicity but it also extends the survival of transgenic ALS 
mice [34, 35]. When EAAT2 transgenic mice is crossed with 
mutant SOD1 (G93A) mice, it shows a significant delay in motor 
symptom such as grip strength decline but not in the onset 
of paralysis [36]. Interestingly, Foran et al., (2011) reports that 
sumoylated carboxy-terminal fragment of EAAT2 (CTE-SUMO1) 
is accumulated in the nucleus of astrocytes in the spinal cord of 
SOD1(G93A) mice [37]. The expression of CTE-SUMO1 in spinal 
cord astrocytes produces extrinsic toxicity by inducing caspase-3 
activation and impairs axonal growth of motor neurons in a co-
culture system. This study provides an unconventional role of 
EAAT2 in that EAAT2 participates in motor neuron degeneration 
through the direct cytotoxic effect of its truncated peptide but not 
through the activity of glutamate transporter. All together, growing 
evidence supports that regulation of EAAT2 activity accounts 
for motor neuronal survival and death in ALS via a non-cell 
autonomous pathway.

In comparison to the astrocytic phenotype in ALS, different 
astrocytic behaviors in relation to the excitotoxicity may be 
derived due to either the different damage region of  CNS 
(brain versus spinal cord) or the different stress stimuli (bolus 
excitotoxicity versus chronic oxidative stress). For instance, GFAP-
positive astrocytes appear extensively around the damage sites 7 
days after injection of N-ethyl-D-aspartic acid (NMDA) while 
EAAT2- and GFAP-positive astrocytes disappear in a kainic acid 
(KA)-injected cortical region of the brain [38]. This study shows 
that two excitotoxic injury models exhibit quite different pattern 
of astrocyte behaviors such as astrogliogenesis versus astrocyte loss 
that are distinguished from the pathology of ALS. Accordingly, it 
will be challenging to pursue how the difference of region or stress 
stimuli concerts and affects astrocyte behaviors in future studies. 

How are astrocytes adapted to environmental 
stresses and what are the survival mechanisms of 
astrocytes under ALS condition? 

Our group has previously addressed this question using 
primary astrocytes from the spinal cord of wild type (WT) 
and ALS transgenic [mutant SOD1 (G93A)] mice. Our study 
shows that astrocyte survival is correlated with the elevation 
of Ets-2 transcription factor and with Bcl-xL  expression [39]. 
The transcriptional activation of Bcl-xL  by Ets-2 compensates 
oxidative stress by preventing astrocytes from apoptotic or 
necrotic cell death during the pathogenesis of ALS. Because we 
observed that motor neurons do not induce Bcl-xL in response 
to oxidative stress, we suggest that molecular mechanisms of Ets-
2-mediated and Bcl-xL-dependent survival pathways may vary 
among different cell types [39]. Then why are motor neurons 
of ALS not rescued by the surviving astrocytes? We propose a 
plausible mechanism that the Ets-2 and Bcl-xL pathway improves 
astrocyte survival but it occurs too late to prevent earlier motor 
neuronal damage, or perhaps survived reactive astrocytes release 
toxic molecules to propagate motor neuron damage (Fig. 1). 
However, whether this might be expected to occur at an earlier 
stage, before astrocyte activation is reached its threshold, remains 
to be further investigated.

Fig. 1. Astrocytes are associated with non-cell autonomous motor 
neuronal damage in ALS. For example, cellular stresses elevate Bcl-xl  
gene expression in astrocytes, and the increase level of mitochondrial 
Bcl-xl prevents oxidative damage in astrocytes under ALS condition. 
Meanwhile, the increased iNOS/NOS2  expression and the decreased 
EAAT2/GLT-1/SLC1A2  expression in astrocytes lead to increased NO 
release and decreased glutamate uptake in the synaptic cleft of spinal cord. 
Consequently, elevation of glutamate and NO triggers motor neuronal 
damage and cell death via non-cell autonomous pathway.
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Oxidative stress due to the mutation of SOD1 is highly implicated 
in the pathogenesis of ALS. Not only does superoxide anion (O2

-) 
lead to cellular damage including oxidation of DNA and protein 
and lipid peroxidation but nitric oxide (NO) is also thought to play 
a key pathogenic role in ALS [40]. Motor neurons are particularly 
vulnerable to oxidative stress in ALS which is a phenomena 
attributed to a low level of antioxidant enzymes and a high content 
of easily oxidized substrates [5, 24, 40]. NO is synthesized by NO 
synthases (NOSs) from arginine, which is a rate-limiting factor for 
NO production. We have reported that neuronal NOS (nNOS)-
positive motor neurons are depleted while inducible NOS (iNOS)-
positive reactive astrocytes are increased in ALS transgenic [mutant 
SOD1 (G93A)] mice [41]. The expression of iNOS /NOS2 was 
correlated with the increases of astrocyte activation and NO levels 
while nNOS/NOS1 expression was decreased in ALS transgenic 
[mutant SOD1 (G93A)] mice. The high levels of NO interact 
with superoxide and form highly toxic peroxynitrite. Consistent 
with findings previously reported by Przedborski and colleagues, 
increased levels of NO may further exacerbate oxidative stress and 
trigger motor neuron death [40-42]. As similar to ALS transgenic 
mice, accumulation of 8-hydroxy-2-deoxyguanosine, a marker 
of oxidative DNA damage, and elevated levels of peroxinitration 
damage (production of  nitrotyrosine residues by covalent 
interactions of NO) have also been found in human ALS [43-46]. 
These data support a prominent role of oxidative stress derived 
from reactive astrocytes during the pathogenesis of ALS (Fig. 1).

Is microglial activation a good sign or a bad sign 
to motor neurons?

Despite its controversy, microglia are also known to be linked 
to motor neuronal damage and the pathogenesis of ALS via the 
non-cell autonomous pathway [22, 47]. Interestingly, deletion 
of NF-κB signaling in microglia rescues motor neurons from 
microglial-mediated death in vitro  and extended survival in ALS 
mice by deregulating proinflammatory microglial activation. In 
contrast, selective NF-κB inhibition in ALS astrocytes was not 
sufficient to rescue motor neuron death [48]. In this context, the 
microglia-mediated damage and toxicity to motor neurons are 
driven through the diversity of death mechanisms. Using the 
mice carrying deletable mutant SOD1 transgene by the action 
of Cre recombinase, Yamanaka and Yamashita have shown that 
diminishing mutant SOD1 toxicity within microglia significantly 
slowed the disease progression of ALS. This finding suggests that, 
in part, microglia contribute to neurodegenerative process of ALS 
[49].

On the other hand, in order to examine whether proliferating 

microglia leads to motor neuron degeneration in ALS mice, 
Gowing et al. (2008) generated double transgenic mice with 
CD11b-TK(mut-30) and mutant SOD1(G93A) in which a 50% 
reactive microglia is specifically reduced in the lumbar spinal cord 
[50]. Unexpectedly, reduction of reactive microglia had no effect 
on the degeneration of motor neuron. This study implies that 
proliferating microglia-expressing mutant SOD1 (G93A) does 
not play a pivotal role in triggering neuronal damage in an animal 
model of ALS. This study raises a question regarding whether 
different stages of microglia are involved in different modes of 
action for protecting versus being involved in the damaging of 
motor neurons through yet unidentified mechanisms. We suggest 
that future studies are necessary to uncover the precise action 
mechanism behind the obscure role of microglia in ALS. 

Why is it not consistent to observe the role of 
microglia in the neurodegenerative process of ALS? 

Is microglia activation beneficial or disadvantageous to motor 
neurons? Microglia function is necessary for surveilancing the 
condition of motor neurons and for restoring tissue injury in 
response to acute and reversible stress: microglia are beneficial 
before the threshold limit reached. However, constitutive 
activation of microglia by a chronic and irreversible stress such as 
ALS stress may transform them as a non-cell autonomous player 
to be toxic to motor neurons: microglia are disadvantageous after 
they become fully activated.

We have previously found that the expression of c-Ret is altered 
in motor neurons of the lumbar spinal cord in ALS transgenic 
[mutant SOD1 (G93A)] mice and ALS [mutant SOD1 (G85R) 
and (G93A)] motor neuronal cell lines [51]. c-Ret oncoprotein is 
a protein kinase receptor and responds to glial cell line-derived 
neurotrophic factor (GDNF). c-Ret-mediated signal transduction 
is important to maintain cellular activity and survival function. 
Notably, the levels of non-phosphorylated and phosphorylated 
c-Ret were markedly elevated in active microglia of the lumbar 
spinal cord of ALS mice in an age-dependent manner. Our 
findings suggest that ALS stress-induced expression of c-Ret in 
microglia may trigger non-cell autonomous toxic signals and 
exacerbate damage responses in motor neurons by disturbing the 
GDNF signaling pathway in motor neurons [51]. Our previous 
study does not provide a direct evidence that microglia contribute 
to non-cell autonomous motor neuronal damage in ALS. However, 
based on our findings, we suggest an indirect contribution of 
microglia to motor neuronal damage. For instance, the increased 
level of c-Ret in microglia elevates interaction with GDNF. As a 
result, the c-Ret and GDNF interaction promotes the survival of 
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microglia whereas the subsequent deprivation of NFs by activated 
microglia in the niche of spinal cord may lead to motor neuronal 
damage (Fig. 2).

CONCLUSIONS

A vicious cycle of ALS stresses transforms astrocytes and 

microglia from Dr. Jekyll to Mr. Hyde

In the pathogenesis of ALS, non-motor neuronal cells such as 
astrocytes and microglia undergo a series of molecular and cellular 
changes in that these cells become unprofitable to motor neurons, 
leading to irrecoverable neurodegeneration. The mechanism of 
non-cell autonomous motor neuron death is closely associated 
with the pathophysiological change in ALS that is apparently 
distinguished from cell autonomous pathway.

Neuroinflammation is now identified as a key contributor to 
motor neuron damage in ALS [52-54]. Reactive astrocytes and 
microglia are triggers of neuroinflammation that accelerate 
disease progression [55, 56] which is further exacerbated by 
ongoing neuronal injury [53]. Inflammatory cytokines released 
by astrocytes and microglia may facilitate glutamate excitotoxicity 
thereby linking neuroinflammation and excitotoxic death [18, 57, 
58].

Taken together, previous findings suggest that the molecular 
and cellular adaptation between astrocytes, microglia, and motor 
neurons may be differently modulated by epigenetic components 
upon ALS stresses. In this paradigm, due to chronic oxidative 
stress or other irreversible mechanisms, a critical threshold limit 
is reached and that reactive astrocytes and microglia trigger 
the pathological processes that subsequently lead to a non-cell 
autonomous death of motor neurons in ALS. This idea suggests 
that future therapeutic strategy for the treatment of ALS should 
be aimed at specific interception of pro-oxidant and pro-death 
signals in a cell-type specific manner [59-62].
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