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OBJECTIVE—In diabetes, retinal vascular basement membrane
(BM) undergoes significant thickening and compromises vessel
function including increased vascular permeability, a prominent
lesion of early diabetic retinopathy. In this study we determined
whether altered expression and activity of lysyl oxidase (LOX), a
cross-linking enzyme, may compromise vascular basement mem-
brane functional integrity under high-glucose (HG) conditions.

RESEARCH DESIGN AND METHODS—Rat retinal endothe-
lial cells (RRECs) grown in normal (5 mmol/l) or HG (30 mmol/l
glucose) medium for 7 days were assessed for expression of LOX
and proLOX by Western blot analysis and LOX enzyme activity.
To determine whether HG alters cellular distribution patterns of
LOX and proLOX, immunostaining with respective antibodies
was performed. Similarly, cells grown in normal or HG medium
were subjected to both LOX inhibition with �-aminopropionitrile
(BAPN) and by small interfering RNA knockdown, and respec-
tively examined for cell monolayer permeability. Additionally,
retinas of streptozotocin (STZ)-induced diabetic rats were ana-
lyzed to determine if diabetes altered LOX expression.

RESULTS—Western blot analysis revealed significantly in-
creased LOX and proLOX expression in cells grown in HG
medium compared with those grown in normal medium. The
increased LOX level was strikingly similar to LOX upegulation in
the diabetic retinas. In cells grown in HG medium, LOX activity
and cell monolayer permeability was significantly increased, as
were LOX and proLOX immunostaining. Small interfering RNA-
or BAPN–induced-specific blockage of LOX expression or activ-
ity, respectively, reduced cell monolayer permeability.

CONCLUSIONS—HG-induced increased LOX expression and
activity compromises barrier functional integrity, a prominent
lesion of diabetic retinopathy. Diabetes 59:3159–3166, 2010

T
he pathogenesis of diabetic microangiopathy is
influenced by qualitative and quantitative
changes of the capillary basement membrane.
Although histologic and functional changes that

accompany diabetic microangiopathy have been well doc-
umented (1–4), specific intracellular and extracellular
mechanisms pertaining to these changes that lead progres-

sively to dysfunction of vessels as seen in diabetic reti-
nopathy remain unclear. The hallmark of diabetic
microangiopathy, in particular diabetic retinopathy, is the
thickening of the retinal capillary basement membrane
(5–7). Although many studies investigating retinal capil-
lary leakage in diabetes have focused on vascular cell
abnormalities such as the endothelium (8,9) and on the
production of vascular endothelial growth factor (VEGF),
regarded as a predominant factor responsible for the
development of new dysfunctional vessels, only a few
have examined the relationship between biochemical
changes of the abnormal accumulation of the extracellular
matrix (ECM) and excess permeability. Stabilization, fibril
assembly, and polarity, essential components for func-
tional integrity of the basement membrane, depend largely
on proper cross-linking of collagen. Cross-linked collagen
fibers become insoluble and exhibit progressively in-
creased tensile strength, which is essential for normal
connective tissue function.

Lysyl oxidase (LOX) is an extracellular enzyme that is
synthesized and secreted as a glycosylated proenzyme
(proLOX, 50 kDa), which further undergoes extracellular
proteolytic processing into a mature, biologically active 32
kDa form (LOX) (10). LOX enzyme catalyzes oxidative
deamination of peptidyl lysine and hydroxylysine residues
in secreted collagen precursors, and lysine residues in
elastin. These aldehydes spontaneously undergo conden-
sation reactions that result in normal mature and func-
tional extracellular matrices. Excess LOX-dependent
cross-linking contributes to excess ECM accumulation in
fibrotic diseases (11,12). Although perhaps counter-intui-
tive, studies have shown that an increase in stiffness of
extracellular matrices can enhance cell migration through
an ECM in part by altering integrin and cell surface
receptor signaling complexes (13). In the present study,
we sought to determine whether glucose-dependent regu-
lation of LOX could contribute to increased basement
membrane permeability in cultures of retinal endothelial
cells. Increased LOX enzyme expression and activity have
recently been linked to increased invasiveness of tumor
cells, possibly mediated in part by its effects on the
structure and physical properties of the ECM (14–16).
Studies seem to suggest that the integrity of the basement
membrane and the stromal compartment of the ECM
require an optimal degree of LOX-dependent cross-linking.

LOX expression has been identified in several tissues,
including the skin, aorta, heart, lung, liver, cartilage, bone,
kidney, retina, and brain (17–23). Clearly the importance
of LOX-mediated cross-linking is significant to tissue in-
tegrity and its functionality. Abnormal LOX activity is
associated with various pathologies. Reduced LOX activity
is known to cause lathyrism (24), whereas its upregulation
in tumor cells is associated with metastasis leading to
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malignancy and cancer (14,25). Importantly, LOX expres-
sion is regulated by hypoxia-inducible factors (HIFs), a
key player in promoting retinal neovascularization in
advanced diabetic retinopathy (14). However, limited in-
formation is available on LOX related to the metabolic
state of cells grown under high-glucose conditions, and
even less is known about the expression of LOX in the
diabetic retina.

The underlying mechanism associated with increased
vascular permeability in diabetic retinopathy in the con-
text of excess ECM accumulation is still unknown. The
present study investigated the effects of HG conditions or
diabetes on LOX expression and whether HG-induced
changes in LOX activity may contribute to excess
permeability.

RESEARCH DESIGN AND METHODS

Cell culture. Rat retinal endothelial cells (RRECs) ascertained positive for
von Willebrand factor were grown in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% FBS (Hyclon, Thermo Scientific, Waltham, MA), antibiotics,
and antimycotics. Third to fifth passage cells were used in this study. All
experiments were repeated at least four times. To examine the effect of HG on
LOX and proLOX expression, RRECs were grown in normal medium (5 mmol/l
glucose) or HG medium (30 mmol/l) for 7 days followed by protein isolation
and Western blot analysis. In parallel, cells were exposed to 30 mmol/l
mannitol as osmotic control and protein analyzed by Western blot analysis. To
examine the effect of VEGF stimulation on the expression of LOX, RRECs
were exposed to 25 ng/ml of VEGF (Sigma, St. Louis, MO) for 24 or 48 h
followed by protein isolation and Western blot analysis for LOX.
Animals. All animal studies were performed according to the ARVO State-
ment for the Use of Animals in Ophthalmic and Vision Research. Ten
Sprague-Dawley male rats, each weighing �200 g, were used in this study.
Five of the 10 rats were injected intraperitoneally with streptozotocin (STZ)
(55 mg/kg body weight) to induce diabetes. The glucose concentration in
blood and urine were checked after 2 or 3 days after STZ injection to confirm
diabetes status in the animals. The remaining 5 animals served as nondiabetic
controls. Blood glucose levels were measured in each animal 2 to 3 times
weekly and at the time of death. The diabetic group represented rats with
blood glucose levels of �350 mg/dl. The diabetic rats received NPH insulin
injection as needed to maintain blood glucose levels. After 3 weeks of
diabetes, the animals were killed and retinas were isolated and total protein
extracted. To examine the effect of diabetes on LOX protein expression, the
retinal protein from the diabetic retinas and those of the control nondiabetic
retinas were subjected to Western blot analysis for LOX protein expression.
Western blot analysis. Total protein was isolated from RRECs grown in
normal or HG medium and retinas from nondiabetic control and diabetic rats.
Briefly, to extract total protein, cells were lysed in buffer containing 1xPBS, 1%
NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 3 mol/l urea, pH 7.4. Similarly,
retinal protein was isolated by homogenizing the retina in the same ice cold
lysis buffer. Cell lysates and the homogenized retinas were centrifuged at
14,000 rpm for 20 min at 4°C. Protein concentration in each sample was
determined by the bicinchoninic acid protein assay reagents (bicinchoninic
acid protein assay, Pierce, Rockford, IL). Western blot analysis was performed
with samples containing equal amounts of protein (25–35 �g) in a 10%
SDS–polyacrylamide gel. The separated proteins in the gel were then trans-
ferred onto a PVDF membrane. Nonspecific binding sites were blocked by
incubating the PVDF membrane in Tris-buffered saline containing 0.1%
Tween-20 (TTBS) with 5% nonfat dry milk. Membranes were then incubated
overnight at 4°C with rabbit anti-rat mature LOX (Novus, Littleton, CO) and
rabbit anti-rat proLOX antibodies (26), washed with TTBS for 20 min three
times each for 5 min, and then incubated with the corresponding secondary
antibody conjugated with alkaline phosphatase (1:3,000, anti-rabbit IgG, Cell
Signaling, Danvers, MA). Experiments presented here were repeated at least
four times. After washing with TTBS, Immuno-Star Chemiluminescent Protein
Detection System (BioRad, Hercules, CA) was used to detect protein levels of
LOX and proLOX. Molecular weights were determined by comparison with
prestained protein molecular weight standards (BioRad, Precision Plus Pro-
tein Standards). Densitometric analysis of the chemiluminescent signal was
performed at nonsaturating exposures using ImageJ software (developed by
Wayne Rasband, National Institutes of Health, Bethesda, MD).
Immunofluorescence microscopy. To examine the effect of HG on the
localization and distribution of LOX and proLOX in RRECs, immunostaining
for LOX and proLOX was performed in cells plated on coverslips. Briefly, the

cells were fixed with methanol, blocked with 2% BSA in PBS for 30 min, and
incubated overnight in a moist chamber with rabbit anti-rat mature LOX
and rabbit anti-rat proLOX antibodies in a PBS-BSA antibody solution (1:100
and 1:100, respectively). Cells were then washed in PBS and incubated with a
goat anti-rabbit IgG secondary antibody conjugated with fluorescein isothio-
cyanate (Jackson Immunoresearch Labs, West Grove, PA) for 1 h at 37°C in a
dark chamber. The cells were then washed three times in PBS and mounted
in Slow-Fade (Invitrogen, Carlsbad, CA) and examined. Negative control
samples were processed in the same manner, except that the primary antibody
was omitted. The cells were viewed and photographed with a Nikon Diaphot
fluorescence microscope and a Nikon F1 digital camera. The fluorescence
intensity of the LOX and proLOX signal was analyzed using ImageJ, image
analysis software from the National Institutes of Health.
LOX immunostaining in retinas of normal and diabetic rats. Retinas
from normal and diabetic Sprague-Dawley rats were fixed in 4% formalin,
rinsed in PBS, embedded in optimal cutting temperature compound, and
frozen in liquid nitrogen. Next, 9-�m sections were cut at �20°C and mounted
onto glass slides for immunostaining. Sections were blocked in 2% BSA and
incubated overnight with rabbit anti-LOX antibody at 4°C. After washing with
PBS, sections were incubated using Rhodamine-conjugated goat anti-rabbit
secondary antibody. Sections were analyzed under a microscope equipped
with fluorescence and images were digitally photographed.
LOX activity. To examine the effect of HG on LOX enzyme activity, RRECs
were grown in normal or HG medium or in mannitol for 6 days, and at
semiconfluence cell culture media was changed to phenol red-free 2% FBS
(normal or HG, respectively) media. Cells were grown further for 24 h,
resulting in a total of 7 days exposure to HG, or 7 days exposure to mannitol
used as osmotic control. On the day of the assay, samples of media from
normal and HG cell cultures were collected and LOX enzyme activity was
determined using the Amplex Red fluorescence assay as previously described
as optimized for LOX (27). Samples were prepared in a final volume of 2 ml
containing 1.2 mol/l urea, 0.05 mol/l sodium borate (pH 8.2), 1 unit/ml of
horseradish peroxidase (Sigma), and 10 mmol/l 1,5-diaminopentane (Cadav-
erine; Sigma) and incubated at 37°C for 30 min. Parallel assays were prepared
with 0.5 mmol/l �-aminopropionitrile fumarate (BAPN, Sigma), a specific
inhibitor of LOX activity (17,28–30). Fluorescence from the samples was
measured using a Hitachi F-2000 fluorescence spectrophotometer with exci-
tation and emission wavelengths at 568 and 587 nm, respectively. The amount
of hydrogen peroxide (H2O2) produced was determined from a standard curve
of nanomoles of H2O2 versus fluorescence in the peroxidase/Amplex Red
optimized reaction conditions. The H2O2 solutions were standardized by
titration of an acidified dilution of 30% hydrogen peroxide with acidified 0.02
mol/l KMnO4.
Transfection with LOX small interfering RNA. RRECs were transfected
with LOX small interfering RNA (siRNA) (Santa Cruz, Santa Cruz, CA) and
nonspecific siRNA (scrambled siRNA, 5�-aauauuggcguuaagauucua-3�, Ambion,
Austin, TX) in the presence of 0.2% lipofectamin 2000 (Invitrogen) prepared in
Opti-MEM (Invitrogen). The LOX siRNA was targeted against two sequences
of the mature rat LOX (5�-CUGAAUCAGACUACAGUA-3� and 5�-ACAAG
TACTCCGACGACAA-3�) that have no homology with the other members of
the amine oxidase enzyme family. The optimal concentration of siRNA was
determined by testing 16.5, 33, 49.5, and 66 nmol/l of the LOX siRNA in RRECs
and harvesting the cells after 2 days, then carrying out Western blot analysis.
The concentration of 33 nmol/l LOX siRNA provided �42% inhibition of LOX
expression in RRECs and was subsequently used in the experiments.
In vitro permeability as a function of LOX activity and as a function of

LOX expression. To examine the effect of HG-induced LOX activity on cell
monolayer permeability, RRECs were grown on cell culture inserts (0.4-�m
pore size, Falcon, Paramus, NJ) of transwell plates in normal or HG medium
for 7 days. HG cells grown in parallel were then incubated with BAPN, an
irreversible inhibitor of LOX activity. Cell monolayer permeability was as-
sessed by measuring the diffusion of FITC-dextran (MW 43 kDa, Sigma) from
the upper to the lower chamber. The in vitro permeability (IVP) assay was
performed as reported earlier (31–33). Briefly, after cells were allowed to
reach near confluency, 48 h before the IVP assay measurement, media from
both the upper and lower chamber of all groups was replaced with fresh
phenol red-free DMEM. Medium in the upper and lower chamber of the
BAPN-treated group was substituted with BAPN at a final concentration of 100
�mol/l. After 24 h of incubation with BAPN, media in the upper chamber of all
groups was replaced with 600 �l of FITC-dextran solution (0.5 mg/ml) and
cells allowed to incubate at 37°C. At the 1-h time point, 200 �l samples from
the lower chamber of all transwells were collected and measured at 492 nm
using a spectrophotometric microplate reader (SpectraMax Gemini Vmax;
Molecular Devices, Sunnyvale, CA). All experiments were performed in
triplicate and the solute permeability was calculated based on the following
formula: (lower chamber fluorescence/input fluorescence) � 100%.

To examine the effect of HG-induced LOX expression on cell monolayer
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permeability, RRECs were grown in parallel in similar transwell inserts under
normal or HG condition for 7 days. Briefly, cells in four groups (normal, HG,
HG�LOX siRNA, and HG�scrambled siRNA) were grown to �80% confluency
and transfected with LOX siRNA and then in vitro permeability assay
performed 24 h after the transfection. Diffusion of FITC-dextran from the
upper to the lower chambers was measured from aliquots obtained from the
bottom chambers of the transwell plates. All experiments were performed in
triplicate and the solute permeability was calculated based on the following
formula: (lower chamber fluorescence/input fluorescence) � 100%.
Statistical analysis. All data are reported as mean � SD; one-way ANOVA
followed by a Student t test was used to analyze all data. Data with values of
P 	 0.05 were considered significant.

RESULTS

Effect of HG on LOX and proLOX protein expression
in RRECs. Western blot analysis indicated that RRECs
grown in HG medium for 7 days exhibited significant
increase in the expression of LOX and proLOX protein
levels compared with those of RRECs grown in normal
medium (136 � 18% of control, P 	 0.005, n 
 9; 157 � 32%
of control, P 	 0.0005, n 
 9, respectively). Exposure of
the cells to 30 mmol/l mannitol for 7 days had no effect on
LOX expression. The �-actin protein expression used as an
internal control confirmed equal protein loading for all
groups (Figs. 1 and 2).
Effect of HG on localization and distribution of LOX
and proLOX in RRECs. The distribution and localization
of LOX and proLOX protein in RRECs was assessed by
immunofluorescence microscopy. Immunostaining inten-
sity for LOX and proLOX showed a significant increase in
RRECs grown in HG medium (Fig. 3B and F) compared
with those of cells grown in normal medium (Fig. 3A and
E) LOX immunostaining demonstrated increased intracel-
lular punctate-like staining in the cytoplasm, whereas
staining for proLOX revealed a generalized and diffuse
cytoplasmic staining. No change was detected with re-
spect to LOX or proLOX distribution under HG condition
in RRECs.
Effect of diabetes on retinal LOX protein expression
and localization. Blood glucose levels measured rou-
tinely and at the time of death confirmed the presence of
hyperglycemia in these rats compared with control nondi-
abetic rats (326 � 16 vs. 104 � 12, P 	 0.01). After 3 weeks
of diabetes, retinal LOX protein levels were significantly

increased (125 � 4.8% of control, P 	 0.05) compared with
those in control nondiabetic rats (n 
 5) (Fig. 4). The
�-actin protein expression was used as an internal control
for protein loading and was similar in all groups. The
immunohistochemical analysis of the retinal sections sug-
gests that the perivascular tissue as well as the basement
membrane of the retinal capillaries in the diabetic retinas
show increased LOX immunostaining compared with
blood vessels in the normal retinas (Fig. 5).
Effect of HG on LOX activity. LOX activity measure-
ments performed in RRECs grown in HG condition indi-
cated significant upregulation compared with those grown
in normal medium (175 � 21% of control, P 	 0.0005, n 

5) (Fig. 6). Cells gown in parallel in 30 mmol/l mannitol
showed no change in LOX activity.
Effect of LOX siRNA in RRECs grown in HG condition
and on cell monolayer permeability. We examined the
effect of LOX siRNA in cells grown under HG conditions.
In cells grown in HG medium and transfected with LOX
siRNA, the LOX expression was significantly reduced
compared with that of cells grown in HG medium and
transfected with scrambled siRNA (88 � 8% of control vs.
119 � 16% of control, P 	 0.05, n 
 3) (Fig. 7A). When
RRECs grown in HG medium were transfected with the
LOX siRNA, the permeability of the cell monolayer signif-
icantly decreased compared with that of the HG cells
transfected with scrambled siRNA (185 � 35%, P 	 0.005;
333 � 14% of control, P 	 0.005; n 
 3) (Fig. 7B). Since the
LOX siRNA that we used was specifically targeted against
the LOX transcript, the data presented here demonstrate
that LOX overexpression is involved in increased
permeability.
BAPN-mediated reduction of HG-induced upregula-
tion of LOX activity on cell monolayer permeability.
The IVP assay was designed to examine the effect of LOX
enzyme activity on cell layer permeability. For this we
used BAPN that irreversibly blocks the amine oxidase
activity of LOX. The IVP assay showing significantly ele-
vated fluorescein permeance was present in the RREC
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FIG. 1. Western blot analysis of LOX protein levels in RRECs grown in
normal (N) or HG media. Graph shows that the LOX protein level was
significantly upregulated in cells grown in HG medium compared with
cells grown in normal (N) medium. Cells exposed to mannitol for 7 days
exhibited no change in LOX expression. Data are presented as mean �
SD (*P < 0.005; n � 9).
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FIG. 2. Western blot analysis of proLOX protein levels in RRECs grown
in normal (N) or HG media. Graph shows proLOX protein level was
significantly upregulated in cells grown in HG medium compared with
those of cells grown in normal medium. Data are presented as mean �
SD (*P < 0.0005; n � 9).
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monolayer grown in HG compared to those grown in
normal medium (325 � 17% of control, P 	 0.05, n 
 6).
When RRECs grown in HG medium were incubated with
BAPN, the permeability of the cellular monolayer was
significantly decreased (141 � 42%, P 	 0.05, n 
 6) (Fig.
7B). Since BAPN blocks LOX activity, the data demon-
strate that increased LOX activity is, at least in part,
involved in increased permeability.
Effect of VEGF on the expression of LOX. VEGF
promotes vascular permeability. To gain insight into
whether VEGF could mediate effects of glucose on LOX
expression, we determined whether treatment of RRECs
with 25 ng/ml VEGF regulate LOX. Western blot analysis
indicated that RRECs stimulated with VEGF for 24 h had
no effect on LOX expression; however, exposure to VEGF

for 48 h modestly increased LOX expression compared
with those of RRECs grown in normal medium (132 � 20%
of control, P 	 0.05, n 
 4) (Fig. 8).

DISCUSSION

The results from this study provide evidence that excess
synthesis of basement membrane components, such as
collagen type IV, and the subsequent thickening of the
vascular basement membrane may play a far more critical
role during the breakdown of blood retinal barrier as seen
in diabetic retinopathy than so far suspected. To our
knowledge, this is the first study that shows increased
protein expression for both LOX and proLOX under HG
condition in RRECs and in diabetic rat retinas and that the
HG-induced increase in LOX activity could lead to altered
cross-linking of collagen fibrils and contribute to excess
permeability. Our data also show increased LOX expres-
sion in retinas of diabetic rats that supports a previous
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FIG. 3. Representative images of LOX immunostaining in RRECs grown in normal (N) (A) and HG (B) conditions. C and D represent the
corresponding brightfield images. Upregulation of LOX under HG shows predominantly focal cytoplasmic staining. Immunostaining of proLOX in
RRECs in normal (E) and HG (F) conditions. G and H represent the corresponding brightfield images. Upregulation of proLOX under HG shows
diffuse perinuclear distribution of proLOX.
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FIG. 4. Western blot analysis of LOX protein levels in diabetic rat
retinas. Graph shows LOX protein expression was significantly upregu-
lated in the retinas of diabetic rats compared with control nondiabetic
rats. Data are presented as mean � SD (*P < 0.05, n � 5). DM,
diabetes.
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FIG. 5. Cryosections of normal and diabetic rat retinas immunostained
with anti-LOX primary antibody and rhodamine-conjugated secondary
antibody. Blood vessel in the diabetic retina shows increased LOX
immunostaining compared with those of the normal retina.
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study reporting increased LOX-dependent cross-linking in
skin collagen in diabetes (34). Although the changes in
dermal collagen reported in the earlier study are presum-
ably types I and III, nevertheless, changes in LOX observed
in this study suggest that similar biochemical alterations
affect different collagen types present in various tissues in
diabetes.

A study examining glomerular basement membrane
collagen and LOX-mediated cross-links in experimental
diabetes reported that the ratio of dihydroxylysinonor-
leucine to hydroxylysinonorleucine was increased, sugges-
tive of altered cross-linking in diabetes (35). The
development of basement membrane thickening in glo-
merular and retinal capillaries, a histologic hallmark of
diabetic microangiopathy, is associated with increased
vascular leakage. In this context it seems quite paradoxi-
cal that thickened basement membranes are more per-
missive to permeance; currently a mechanism for this
observation is unknown. Data presented here implicate
increased LOX expression and activity as mediating, at
least in part, increased permeability through retinal base-
ment membranes. To date, only the expression of LOXL2
seems to be implicated in diabetes and specifically in
diabetic nephropathy. Microarray analysis of human bi-
opsy samples from patients with DN suggested that LOXL2
was among the HIF target genes that were found to be
upregulated, though the increased expression was con-
firmed only by real-time PCR analysis (36). Furthermore
LOXL2 has been reported to have amine oxidase activity,
but unlike its family members, its enzyme activity was
apparently not inhibited by BAPN (30,37). There are no
reports that lysyl oxidase isoforms LOXL1, LOXL3, and
LOXL4 are regulated by HG conditions or diabetes. LOXL1
has been reported to play a role in pseudoexfoliation
glaucoma and primary open angle glaucoma. LOXL3 and
LOX4 have been implicated in breast cancer invasion and
head and neck squamous cell carcinoma (15,38). ECM
accumulation is now considered to play a more mechanis-
tic role in the development of compromised barrier func-
tion. Recent observations point to fibrotic matrices as
providing excess ligands for cell surface receptors such as
integrins, that in turn modulate cell signaling responses
and enhance local synthesis of proteolytic enzymes (13).
Similarly, upregulation of LOX in several invasive cancers
has provided additional support for the concept that a
fibrotic matrix can be more permeable than a normal

matrix (39). It is possible that elevation of LOX and
consequent increased cross-linking may make fibrotic
matrices more conducive for permeability of soluble mol-
ecules because of strains and resulting gaps between
collagen fibrils. Detailed direct ultrastructural analyses of
basement membrane integrity after increased LOX-medi-
ated cross-linking may help us understand LOX dependent
effects on basement membranes and increased
permeability.

Although collagen fibrillar arrangements are stabilized
by covalent cross-links, excessive cross-linking could con-
tribute to disorganized assembly of the collagen fibrils.
Electron microscopic investigation has revealed fine struc-
tural changes in the collagen fibrillar arrangement in
diabetes (40). These differences included increased pack-
ing density of collagen fibrils, decreases in fibrillar diam-
eter, and abnormal fibril morphology showing collagen
fibrils that appeared twisted, curved, overlapping, and
otherwise highly disorganized, suggestive of excess cross-
linking that is known to tighten collagen fibrils (40).
Diameter measurements on fibrils obtained during a time
course of assembly have demonstrated that a fibril diam-
eter distribution are dependent on late-stage assembly of
fibrils (41) that are in part regulated by LOX activity. Much
is still unknown related to the pathways for the secretion
and extracellular assembly of collagen molecules into
fibrils and the processing enzymes required for converting
the insoluble aggregates into mechanically and chemically
stable components of the matrices. The principles govern-
ing the self-assembly of collagen fibrils are currently not
well understood. Further studies are necessary to under-
stand how cells regulate this process, to learn how the
deposition of early collagen fibrils is orchestrated in the
basement membrane, and to understand the role of other
basement membrane components and their interactions in
these processes. Thus, the identification of altered activity
of a cross-linking enzyme, which is involved in basement
membrane organization and ultrastructural assembly of
collagen matrices, may provide new mechanistic insights
into the relationship between extracellular matrix accu-
mulation and excess vascular permeability in diabetes.

It is of interest that the LOX family of proteins is
multifunctional. Although LOX activity, as already noted,
is associated with increased metastatic behavior of tu-
mors, the propeptide region of LOX has tumor-suppressor
activity (42–47). The propeptide region of LOX and LOXL1
are each unique in structure, whereas the pro domains of
LOXL2 – LOXL4 contain conserved scavenger receptor
cystein-rich domains (SRCR) that in other proteins medi-
ate functional protein interactions (48). The biologic ac-
tivities of prodomains of LOX isoforms have not been
explored in the context of vascular biology. The present
study clearly identifies LOX expression itself, and LOX
activity in particular, as being critical for its effects on
endothelial barrier function, but additional activities of
LOX and LOXL1-LOXL4 that are independent of enzyme
activity may also contribute to its biological roles in vivo.

Morphologic abnormalities of retinal capillary basement
membrane of diabetic individuals appear to reflect a
poorly known process of structural remodeling. These
structural abnormalities may be the result of excessive
cross-linking represented by the thickened retinal capil-
lary basement membrane, one of the prominent character-
istics of diabetic retinopathy (5,6). Although upregulation
of basement membrane components such as fibronectin,
collagen IV, and laminin in diabetes has been established,
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FIG. 6. Graph shows increased LOX activity in the medium in which
RRECs were grown in HG condition compared with the activity in
medium derived from RRECs grown in normal (N) condition. Data are
presented as mean � SD (*P < 0.0005; n � 5).
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and recent studies indicate its contributory role to excess
retinal vascular permeability (2,7,49,50), the exact bio-
chemical changes that modify matrix and promote excess
permeability are unclear. However, it is clear that in-
creased vascular permeability requires the passage of
solutes through two layers inherent in capillaries, the
cellular layer and the ECM layer (basement membrane).
Although studies have implicated breakdown of tight

junctions and increased vacuolar transport to excess
permeability (51), these changes represent abnormalities
of the cellular layer. Other mechanisms such as nonenzy-
matic glycation could also contribute to and potentiate
excess permeability (52,53). An increase in collagen solu-
bility under elevated glucose concentrations may lead to
unbalanced biosynthesis and processing of collagen pre-
cursors (54). This study provides novel information re-
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FIG. 7. A: Graph shows the effect of LOX siRNA on LOX protein level in RRECs. In cells grown in HG medium and transfected with LOX siRNA,
the LOX protein expression was significantly decreased compared with that in cells grown in HG medium and transfected with scrambled siRNA.
Data are expressed as mean � SD (*P < 0.005, **P < 0.05). B: Effect of reduced LOX activity on cell monolayer permeability and effect of reduced
LOX expression on cell monolayer permeability. The permeability of FITC-conjugated dextran molecules was significantly decreased to near
normal level in cells grown in HG medium after incubation with BAPN compared with RRECs grown in HG. Data are expressed as mean � SD (*P <
0.05, n � 6; **P < 0.05; n � 6). The permeability of FITC-conjugated dextran molecules was also significantly decreased to near normal level in
cells grown in HG medium after transfection with LOX siRNA compared with untransfected RRECs grown in HG. Data are expressed as mean �
SD (***P < 0.005; n � 3). N, normal.
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lated to the ECM in which biochemical changes of the
matrix components may render it more permeable in
diabetes.

In this study we observed a modest upregulation of LOX
expression by VEGF in retinal endothelial cells. It is,
therefore, conceivable that VEGF may partially mediate
the regulation of LOX under diabetic conditions, but this
requires further study. It is of interest that hypoxia is an
upregulator of both VEGF and LOX (55), and it seems
likely that hypoxia-mediated LOX upregulation directly or
indirectly increases diabetic microvascular retinal perme-
ability. Increased levels of VEGF and thickening of the
vascular basement through upregulation of ECM protein
expression in diabetes are among the most distinct char-
acteristics of the disease. Such an increase in ECM expres-
sion could lead to retinal vascular basement membrane
thickening, and in turn, contribute to increased permeabil-
ity (49).

In summary, our findings indicate that HG-induced
increased LOX expression and activity is associated with
retinal endothelial cell dysfunction and excess permeabil-
ity. Successful application of siRNA and BAPN for inhibi-
tion of HG-induced upregulation of LOX expression and
LOX activity with beneficial outcomes on barrier function
opens up the option of reducing LOX overexpression and
activity as a potential strategy for preventing increased
permeability associated with diabetic retinopathy.
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