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Oxidative stress and altered redox signaling have been described in a plethora of
pathological conditions, such as inflammation, cardiovascular diseases, diabetes, can-
cer, and neurodegenerative disorders, among others [1]. The concept of redox-active
therapeutics explores the potential usefulness of redox-active molecules to modulate the
etiology/progression of such diseases. Although the therapeutic potential of many natural
and synthetic compounds has been suggested for decades, recent advances in molecular
biology and pharmacology have strengthened this field of research by providing novel
mechanistic insights, especially regarding the redox modulation of critical signaling path-
ways. The scope of this Special Issue is to give a broad and updated overview of the
therapeutic potential of redox-active molecules, covering from fundamental science to
clinical research, focused on the potential effects of either natural or synthetic compounds
on different redox-related diseases.

Redox-modulating strategies have been widely explored in the cancer pharmacol-
ogy field. Some classical chemotherapeutic drugs, such as doxorubicin, are known to
increase intracellular ROS levels [2]. A review paper by Mirzaei et al. [3] addresses the
role of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in doxorubicin resis-
tance. Furthermore, the modulation of Nrf2 as a strategy to ameliorate the side effects
of doxorubicin is discussed. Another combinational therapy is proposed in a research
paper by Manguinhas et al. [4], in a study on non-small-cell lung cancer cells. The authors
explored the combination of cisplatin with E3330, an inhibitor of the redox function of
the apurinic/apyrimidinic endonuclease 1. This compound was able to increase cytotox-
icity and impair cell migration and invasion, boosting cisplatin’s anti-cancer effects. An
emerging class of drugs for anticancer therapy are the inhibitors of lysyl oxidase enzymes.
Ferreira et al. [5] reviewed the role of LOXL2, a member of this family of enzymes, on cancer
development and metastases, with a special focus on breast cancer. The recent advances in
the development of LOXL2 inhibitors are also described.

Along with synthetic drugs, many natural compounds have shown noteworthy results
in cancer pharmacology. Yu et al. [6] investigated the effects of Withanolide C in breast
cancer cells. The authors found that the compound exerts oxidative stress-mediated
cytotoxicity, apoptosis and DNA damage in breast cancer cell lines. Another natural
product with anticancer properties is the antibiotic Thiostrepton. Nelson et al. [7] explored
the mechanistic basis for the interaction of Thiostrepton with peroxiredoxin 3, which is
the molecular target of this drug. Plant (poly)phenols have also demonstrated anticancer
activities in various models of neoplasia. Ossikbayeva et al. [8] suggest that the combination
of curcumin and carnosic acid synergistically suppresses the proliferation of metastatic
prostate cancer cells, and they describe the underlying mechanisms.

Besides oncology, other therapeutic areas may benefit from redox interventions. A
review article from Scammahorn et al. [9] describes the current research of therapeutic
strategies based on H2S, which displays powerful antioxidant properties, against renal and
cardiovascular pathologies. Di Luigi et al. [10] proposes that the phosphodiesterase type
5 inhibitor sildenafil could be a therapeutic candidate for systemic sclerosis treatment, as
it protects against oxidative damage in human dermal fibroblasts isolated from patients.
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In addition to small molecules, redox-active interventions may also include cell therapy
products. Oxidative stress is a major cause of damage to the quantity and quality of
embryos produced in vitro. A research paper by Ra et al. [11] studied the conditioned
medium of amniotic membrane-derived mesenchymal stem cells as a novel antioxidant
intervention for assisted reproduction.

This Special Issue also includes a clinical study carried out by Angiolillo et al. [12]. The
authors evaluated the effects of Lippia citriodora leaf extract on lipid and oxidative blood
profile of volunteers with hypercholesterolemia and suggested that dietary supplemen-
tation with such an extract could be beneficial in this condition. In fact, plants constitute
an incredible and still underexplored reservoir of molecules with potential therapeutic
applications. Menezes et al. [13] developed a strategy combining metabolomics, statistics,
and the evaluation of (poly)phenols’ bioactivity using a yeast-based discovery platform to
allow the bioprospection of natural sources of (poly)phenols with therapeutic potential for
redox-related diseases.

Disturbances in glutathione homeostasis are implicated in several diseases. Therefore,
different approaches aimed at replenishing glutathione levels have been suggested. The
compound I-152 combines two pro-GSH molecules, N-acetyl-cysteine and cysteamine.
Crinelli et al. [14] explored the molecular mechanisms of I-152 and demonstrated that
not only does it supply GSH precursors, but it also activates the Nrf2 and the activating
transcription factor 4 signaling pathways. Another novel antioxidant approach consists of
selenium enrichment of yeasts and lactic acid bacteria, which combines the beneficial effects
of these microorganisms and of selenium supplementation. A research paper by Krausova
et al. [15] studied the bioavailability and effects of Se-enriched strains in a rat model.

This Special Issue has highlighted the vast possibilities of redox-active interventions.
However, in most cases, many questions still need to be answered during the drug devel-
opment journey, before these molecules could reach clinical use. The articles published in
this Special Issue represent some more steps in this direction. I would like to acknowledge
all the authors for their contributions.
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