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Abstract

Modeling a gene’s expression from its intergenic locus and trans-regulatory context is a fundamental goal in computational
biology. Owing to the distributed nature of cis-regulatory information and the poorly understood mechanisms that
integrate such information, gene locus modeling is a more challenging task than modeling individual enhancers. Here we
report the first quantitative model of a gene’s expression pattern as a function of its locus. We model the expression readout
of a locus in two tiers: 1) combinatorial regulation by transcription factors bound to each enhancer is predicted by a
thermodynamics-based model and 2) independent contributions from multiple enhancers are linearly combined to fit the
gene expression pattern. The model does not require any prior knowledge about enhancers contributing toward a gene’s
expression. We demonstrate that the model captures the complex multi-domain expression patterns of anterior-posterior
patterning genes in the early Drosophila embryo. Altogether, we model the expression patterns of 27 genes; these include
several gap genes, pair-rule genes, and anterior, posterior, trunk, and terminal genes. We find that the model-selected
enhancers for each gene overlap strongly with its experimentally characterized enhancers. Our findings also suggest the
presence of sequence-segments in the locus that would contribute ectopic expression patterns and hence were ‘‘shut
down’’ by the model. We applied our model to identify the transcription factors responsible for forming the stripe
boundaries of the studied genes. The resulting network of regulatory interactions exhibits a high level of agreement with
known regulatory influences on the target genes. Finally, we analyzed whether and why our assumption of enhancer
independence was necessary for the genes we studied. We found a deterioration of expression when binding sites in one
enhancer were allowed to influence the readout of another enhancer. Thus, interference between enhancer activities was a
possible factor necessitating enhancer independence in our model.
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Introduction

Gene regulation is key to understanding of a variety of

biological processes ranging from development [1] to disease [2].

Transcriptional regulation is one of the best studied stages of gene

regulation [3], especially in the context of developmental biology

[4]. Studies of early embryonic development in Drosophila [5] have

revealed the roles of various transcription factors (TFs) in setting

up precise spatio-temporal gene expression patterns, and delin-

eated many ‘‘enhancers’’ (also called ‘‘cis-regulatory modules’’ or

‘‘CRMs’’) that mediate the activities of combinations of TFs. We

have today a fairly detailed knowledge of the transcriptional

regulatory network involved in patterning of the anterior-posterior

(A/P) and dorso-ventral (D/V) axes in the blastoderm-stage

Drosophila embryo [6–8]. This knowledge has spurred the

development of quantitative models of gene regulation that aim

to map the sequence of a given enhancer to the expression pattern

driven by that enhancer [9–17]. These models attempt to (1)

predict the strength of TF binding to sites within the enhancer by

using data on TF concentration and binding specificity, and (2)

integrate the predicted binding strengths of multiple TFs into a

quantitative prediction of that enhancer’s contribution to gene

expression. The prediction may vary from one cell type to another,

as TF concentrations vary. The ultimate goal is to build a

computational tool that automatically predicts the expression of

any gene in any cellular condition based solely on the genome

sequence and a quantitative description of the trans-regulatory

context [18]. Such a computational tool will embody our

knowledge of the so-called ‘‘cis-regulatory code’’ [19,20]. It will

help us annotate the regulatory genome at a single nucleotide

resolution, and predict the effects of genotypic changes (in cis or in

trans) on gene expression and phenotype.

Gene expression modeling
In this study, we consider the problem of modeling gene

expression, which is an important intermediate step in the more

ambitious goal of building the predictive tool mentioned above. In

the modeling task, we are given the inputs (sequence and TF

concentrations) and output (gene expression), and a model with

tunable parameters is trained to map the inputs to the outputs.

Such a model has many possible uses. Once trained on wild-type

data on a gene, it can be used to predict outputs on non-wild-type

inputs, which may include changes in cis (sequence) or trans (TF

concentrations). It can provide a quantitative description of how a
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specific gene’s regulation is encoded in the sequence, and can

precisely characterize each TF’s role in regulating the gene.

Moreover, by testing alternative models in terms of their goodness-

of-fit on the data, we can gain valuable insights into the

mechanisms underlying gene regulation. Here, we develop such

a model of gene expression, show that it fits the available data

accurately, and demonstrate a few practical utilities of the model.

Locus-level gene expression modeling
A key challenge in achieving the above-stated goal is to model a

gene’s expression from the sequence of its entire intergenic region, or

‘‘locus’’. While regulatory influences on a gene have been known

to be located at great distances (.1 Mbp) from the gene [21,22], it

is frequently observed that much of the information about the

gene’s expression pattern is encoded in its locus [23]. This

information is typically organized in modular units of length

,1 Kbp, called enhancers, that are scattered in the locus, both

proximal and distal to the gene, and upstream, downstream as well

as within introns of the gene. For instance, complex gene

expression patterns such as the seven-striped patterns of ‘‘pair-

rule’’ genes (Figure 1A,B) in the Drosophila embryo are known to be

determined by multiple, distinct enhancers (Figure 1C), each of

which is sufficient to drive a discrete aspect (one or two stripes) of

the gene’s overall pattern [24,25]. How the information encoded

by multiple enhancers in a locus is integrated together is a largely

unexplored problem. A simple hypothesis might be that the

binding sites located across different enhancers in a gene’s locus

constitute one large enhancer, interpreted by the same rules of

combinatorial action that apply to binding sites within any single

enhancer. The more common view [26,27], however, is that each

enhancer is interpreted independently of others, and readouts of

multiple enhancers are superimposed or combined additively to

produce the gene expression pattern. If this latter view is more

accurate, existing sequence-to-expression models, which have been

tested on individual enhancers, may not suffice to model a gene’s

expression from its entire intergenic region. Indeed, while there

have been several successful attempts to model enhancer readouts,

especially for A/P and D/V patterning genes in Drosophila

[9–18,28], we are not aware of any computational model that

has been successfully tested on a multi-enhancer gene locus such as

those of the pair-rule genes (Figure 1A–C). Our primary objective

in this work is to implement and test such a computational model.

A recent study by Kim et al. [18] makes significant contributions

to this modeling question, although the authors’ primary focus was

on elucidating specific details of transcriptional control mecha-

nisms. (Also see Discussion.)

We present a computational framework for modeling the

expression level of a gene from the sequence of its locus and a

quantitative description of the trans-regulatory context (TF

concentrations). We refer to this task as ‘‘locus-level gene

expression modeling’’, where a gene’s locus is considered to be

the non-coding sequences extending upstream and downstream of

the gene until a neighboring gene’s boundary. (This includes

UTRs and introns.) Our new model, called GEMSTAT-GL

(‘‘Gene Expression Modeling based on Statistical Thermody-

namics - Gene-locus Level’’), implements the two-layered,

modular organization of cis-regulatory information mentioned

above, thus reflecting the commonly held view today.

Practical problems in implementing a locus-level model
An important challenge for a model that interprets multiple

enhancers in a locus and combines their separate readouts is the

unknown location of enhancers in a locus [29–31] – an enhancer is

typically ,1 Kbp long and may be located anywhere within the

much longer (often 10–50 Kbp long) gene locus. Accurate

identification of all the necessary enhancers in the locus will be a

prerequisite for modeling gene expression. High throughput

characterization of chromatin marks [32–35] and computational

enhancer scans [29,36–40] may help overcome this challenge in

the future; but ideally the quantitative model should automatically

discover the contributing segments in the locus, rather than relying

on enhancers identified a priori. A second major challenge in locus-

level modeling is to model the mechanisms that integrate outputs

from distinct enhancers into the endogenous gene expression. As

noted above, a relatively simple ‘‘additive’’ mechanism has been

suggested in the literature [26,41–43], where readouts of the

contributing enhancers are summed up to produce the gene

expression pattern. However, existing quantitative models often

are capable of predicting enhancer readouts only on a relative

scale (e.g., expression pattern along the A/P axis rather than

absolute expression values). As such, it is not clear if a simple

summation of model predictions on enhancers will suffice to

accurately predict gene expression patterns. Moreover, while a

minimal set of enhancers may capture all aspects of the gene

expression pattern, it is not clear what role the rest of the locus

plays. If the locus harbors multiple enhancers with similar

readouts, as has been suggested by the discovery of ‘‘shadow

enhancers’’ [44–46], a quantitative model should take into account

contributions from all of them. These are some of the challenges

related to locus-level gene expression modeling that motivate our

work.

Overview of model development and testing
We report here the first general-purpose quantitative model of a

gene’s expression pattern as a function of the sequence of its entire

locus. Here, ‘‘general-purpose’’ implies that the model can be

trained on any given data set with minimal or no manual

parameter tuning. Admittedly, the model has to be provided with

a complete set of candidate regulators (TFs), as well as their DNA

binding motifs and relative concentrations, which currently limits

its applicability to regulatory networks where such information is

available. But given this information the model then automatically

Author Summary

Quantitative modeling of gene expression from DNA
sequences and regulatory inputs underpin our studies of
gene regulation. The existing literature focuses on mod-
eling parts of a gene’s expression pattern from its
experimentally characterized ‘‘enhancers’’, which are
,1 Kbp long sequences, often located in the gene’s
intergenic region or ‘‘locus.’’ However, a far-reaching goal
is to model all aspects of a gene’s expression based on the
genome sequence, without prior knowledge of enhancers.
With this motivation, we have developed a model that
maps a gene’s locus and cellular context to its expression
in that context. Using this model, we study the regulation
of 27 genes having complex expression patterns in the
Drosophila embryo. Our findings suggest the presence of
sequence segments that can irreconcilably distort the
gene’s expression pattern and thus have to be ‘‘shut-
down’’ by the model. We also apply the model to identify
the transcription factors forming the stripe boundaries of
the studied genes; and our results agree remarkably with
experimental findings of decades of work. Finally, we
develop a new method to analyze if and why multiple
segments influencing a gene’s expression need to avoid
interaction between themselves.

Gene Expression Modeling from Intergenic Locus
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learns values for all of its free parameters, and the locations of

relevant enhancers in the gene locus. As noted above, the new

model treats the expression readout of an entire gene locus as

being two tiered – 1) sites within each enhancer act together to

produce that enhancer’s contribution, which is modeled using the

thermodynamics-based GEMSTAT model of enhancer function

[11], and 2) contributions from multiple enhancers are combined

as a weighted sum to produce the gene expression profile. See

Figure 2 for an overview of the newly proposed GEMSTAT-GL

model. We initially focused on the expression patterns of the genes

even-skipped, hairy, runt, and giant in the developmental stage

following the maternal to zygotic transition [6] in early Drosophila

melanogaster embryos. In this stage, each of these genes is expressed

in a complex multi stripe pattern and is known to be regulated by

multiple enhancers within its locus, and is thus an ideal test case

for locus-level modeling. As a point of contrast to the two-tiered

model of GEMSTAT-GL, we also trained the GEMSTAT model

that was shown previously to accurately model ,40 enhancers

involved in A/P patterning. We found that GEMSTAT fails to

model multiple sharply defined stripes and instead predicts one

broad expression domain when it is used for locus-level modeling

of each of the four genes mentioned above. In order to

demonstrate the broader applicability of GEMSTAT-GL, we

next used it to model the expression patterns of 23 additional genes

in early Drosophila embryo (we have thus modeled all the 27 A/P

genes from Kazemian et al. [13]). From the intergenic locus of

each gene, our model automatically selected one or a handful of

segments that together generated the gene’s expression. The

selected segments were found to overlap enhancers known to

regulate the gene, even though the model was not informed about

these enhancers. We also investigated whether and how the

intergenic sequence outside these selected segments contributes to

the gene’s expression. Our findings suggest the presence of

sequence segments in the locus that would exert an irreconcilable

impact on the gene’s expression pattern and thus were required to

be explicitly ‘‘shut down’’ by the model, presumably reflecting a

similar phenomenon in vivo.

Practical utilities of the new model
We used our models to analyze several aspects of the regulation

of eve, h, run, and gt. 1) An immediate practical benefit of our model

is the automatic discovery of candidate enhancers in the locus,

along with accurate assignments of regulatory activity to each

enhancer. This goes one step beyond our previous work [13]

where enhancers were annotated based on their pattern generat-

ing potential. The new method ensures that activities of multiple

enhancers in the locus can be aggregated to match the gene’s

expression profile. Also, since GEMSTAT-GL allows model

parameters to be trained simultaneously with the discovery of

enhancers in a gene’s locus, the assignment of regulatory activity to

enhancers is empirically more accurate than those reported in

[13]. 2) We performed in silico knock-downs of TFs and identified

the TFs responsible for the formation of stripe boundaries in A/P

expression patterns of these genes. The resulting network of

regulatory interactions exhibits a very high level of agreement with

known regulatory influences on the target genes, illustrating the

potential of the model-based approach for unraveling regulatory

networks. 3) We also developed a method to investigate whether

and why the assumed independence of enhancers was necessary in

our model. We found that interaction or ‘‘cross-talk’’ [43,47–49]

between the enhancers of a gene is detrimental to our model’s fits

to the gene’s expression data, and identified cases where specific

binding sites in one enhancer that may interfere with another

enhancer’s readout. This suggests that in these cases the

independence of enhancer contributions is necessary for proper

modeling of gene expression.

An implementation of the ‘‘GEMSTAT-GL’’ model is available

for download at: http://veda.cs.uiuc.edu/gemstat-gl/index.htm.

Results

A thermodynamics-based model accurately predicts
readouts of the enhancers of even-skipped, hairy, runt,
and giant

We previously reported a statistical thermodynamics-based

model of enhancer function, called ‘‘GEMSTAT’’, that was

shown to successfully predict the expression patterns of ,40

enhancers of the anterior posterior (A/P) axis patterning system in

early Drosophila embryo [11]. GEMSTAT is built on basic physical

principles laid out by Shea and Ackers [10,50]. It is the only

available general purpose tool that can predict the expression

readout of an arbitrary DNA segment and whose parameters can

be trained on any given set of enhancers. It assumes gene

expression in a cell type to be proportional to the fractional

occupancy [51] of the basal transcriptional machinery at the gene

promoter, and estimates this occupancy from the enhancer

sequence and the binding specificities (motifs) and concentrations

of TFs in that cell type. Due to its previous successful application

to individual enhancers and due to our extensive experience with

it, GEMSTAT was a natural initial choice for modeling a gene

locus. We made a major modification to GEMSTAT’s objective

function, which is used to compare predicted and real expression

patterns: instead of the ‘‘root mean square error’’ function [11], it

now uses a ‘‘weighted Pattern Generating Potential’’ (w-PGP)

function [52] that was designed specifically for comparing spatial

gene expression patterns. (See Materials and Methods and Figure

S10 for details.)

Before using GEMSTAT to model the entire locus, we sought

to confirm if it accurately models the characterized enhancers of

the genes of interest in this study. We first focused on four genes in

the early Drosophila embryo, namely even-skipped (eve), hairy (h), runt

(run), and giant (gt). The multi-stripe patterns of these genes (e.g.,

Figure 1A,B) are among the first manifestations of complex

combinatorial regulation in the Drosophila embryo [53]. These

genes are initially regulated by an interplay of maternally

deposited proteins and their immediate regulatory targets [6],

and their expression is later stabilized through more complex

mechanisms including auto-[54,55] and cross-regulation [56]. Due

to the complexity and multi-enhancer origins of their expression

patterns and due to availability of high resolution expression data

[57], these four genes were chosen as the primary subject of our

study. (See Text S1 for a discussion of why several other complex

Figure 1. (A) Schematic of expression pattern of the pair-rule gene even-skipped (eve) in D. melanogaster embryo. ‘A’ and ‘P’ denote the
anterior and the posterior ends of the embryo, respectively. (B) Quantitative profile of eve gene expression along the anterior-posterior axis of the
embryo. (C) Genome Browser view of the five distinct enhancer elements that drive eve gene expression; each enhancer’s name denotes the specific
stripe(s) of gene expression that it drives. The entire locus is 17 Kbp long. (D) Concentration profiles along the anterior-posterior axis, for the nine TFs
used to model the expression patterns of the genes eve, h, run, and gt. (E) Real (red) and GEMSTAT-predicted (green) expression profiles along the A/P
axis for the known enhancers of eve, h, run, and gt.
doi:10.1371/journal.pcbi.1003467.g001
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Figure 2. Overview of the newly proposed GEMSTAT-GL model (details are given in Materials and Methods). The model has two types
of parameters, namely thermodynamic parameters (to compute the expression readout of any sequence window) and window-weight parameters
(to compute a weighted summation of the expression readouts of a set of selected windows). The parameters are optimized iteratively to fit the
expression pattern of a given gene from its locus. In the example shown, GEMSTAT-GL is applied to fit the three-striped expression pattern (shown by
the green, the red, and the blue stripes) of a gene g from its locus. Each iteration in model training consists of two phases. In the first phase, through a
sliding window mechanism, the model selects a set C(s) of candidate windows for each stripe s. To this end, each window’s readout (computed by
GEMSTAT, denoted here by function G) is compared against each individual stripe, as exemplified through the operations on the green window.
(Computation of the initial estimates for thermodynamic parameters is explained in main text.) In the second phase, a solution is constructed by
iteratively checking if including a new window from the candidate sets (computed in Phase 1) improves model performance. In the shown example,

Gene Expression Modeling from Intergenic Locus
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patterned genes were not included in the initial study.) A total of

18 early functioning enhancers have been reported in the

literature for eve, h, run, and gt – 5 for eve (Figure 1C), 7 for h, 3

for run, and 3 for gt – each responsible for some discrete aspect

(typically one or two ‘‘stripes’’) of the respective gene’s pattern

during early stages of development. Thus, for each gene our data

set included the sequences and known expression readouts of each

enhancer, and the DNA motifs and A/P concentration profiles of

nine TFs – BCD, CAD, ZLD, GT, HB, KNI, KR, TLL, and SLP

(Figure 1D) – that are known to regulate expression at this stage of

development [6,58,59]. For each gene, GEMSTAT learns one set

of parameters so as to maximize the agreement between predicted

and known expression profiles of all enhancers of the gene

according to the w-PGP metric (see Materials and Methods). As

shown in Figure 1E, readouts of known enhancers were modeled

accurately for each of the four genes, suggesting that the

GEMSTAT model captures the combinatorial action of multiple,

heterotypic binding sites in those enhancers. (The enhancers

responsible for stripes 2, 4, and 6 of run are not known.) This

exercise is shown schematically in Figure 3A. We used a

constrained parameter estimation strategy here to guard against

over-fitting. (See Materials and Methods.)

Intergenic locus readout under the thermodynamic
model does not agree with multi-stripe expression
pattern

Having confirmed that GEMSTAT can model enhancer

readouts accurately, we next tested if GEMSTAT can model the

multi-stripe patterns of the genes of interest from their respective

intergenic regions (Figure 3B). By doing so, we hoped to answer

the following question raised in the introductory section: Do the

rules for interpreting a collection of binding sites in an enhancer

apply unchanged to the larger collection of sites present

throughout the locus? The intergenic region or ‘‘locus’’ was

defined here as the sequence bounded by the immediate

neighboring genes on either side (Figure 1C), and was of length

17 Kbp, 68 Kbp, 58 Kbp, and 17 Kbp for eve, h, run, and gt,

respectively (Table S1).

We performed two exercises, under different assumptions about

the range of regulatory influence of repressors. In the first exercise,

we assumed that repressor molecules bound to their cognate

binding sites can directly affect the transcriptional machinery

(‘‘DIRECT INTERACTION’’ mode of GEMSTAT [11]).

However, as shown in Figure S1A, GEMSTAT was unable to

find any set of parameters for which the predicted gene expression

profiles match the multi-stripe profiles. One possible explanation

for this failure is the phenomenon of ‘‘short range repression’’

(SRR). Some of the repressors of this regulatory system (e.g., GT,

KNI, and KR) are known to act over short ranges only, i.e., their

binding sites mediate a repressive action only if located within

100–150 bp of activator sites [28]. Therefore, in our second set of

tests we trained GEMSTAT in the ‘‘SRR’’ mode [11], which

captures short range repression, on each gene’s locus (Figure 3C).

However, this test was also unsuccessful (Figure S1B), i.e., no

parameter setting was found for which predicted expression

profiles match the real gene expression profiles. We note that all of

these failed experiments were performed with an unconstrained

parameter estimation strategy (which is GEMSTAT’s default

strategy, see Materials and Methods). Therefore, failures of these

experiments were presumably not due to shortcomings of the

parameter optimization algorithm.

The finding that GEMSTAT successfully models enhancer

functions but fails on the entire locus has at least two possible

explanations. The first explanation is that binding sites within

certain segments in the locus contribute to gene expression while

sites outside of these segments do not contribute, and their

inclusion in the model is somehow detrimental to the goodness-of-

fit. To test this, we concatenated the known enhancers of each

gene (Figure 3D) and searched for the best fit between GEMSTAT

predictions and data. No satisfactory fit was found (Figure S1C),

suggesting that the above explanation is not sufficient. A second

explanation for the failure of GEMSTAT on locus-level modeling

has to do with the way GEMSTAT models the sequence. It

computes the readout as a single non-linear function of (the

strengths of) all binding sites in the sequence. Perhaps the readout

of the locus is not best described as computing this function on all

sites in the locus, even though the readout of individual enhancers

does conform to this model. An emerging hypothesis was that local

clusters of sites act together in ways captured by the GEMSTAT

model (as demonstrated by the enhancer modeling exercise above)

but contributions from different clusters of sites do not interfere

with each other and these clusters should not be interpreted

together. This hypothesis reflects the conventional wisdom about

cis-regulatory architecture, and was reached here on the basis of

the failed modeling exercises described above. We explored this

hypothesis next, within a modeling framework, and found it being

supported by all the genes modeled in this work.

A two-tiered model based on GEMSTAT accurately
predicts expression from the entire gene locus

Our working hypothesis now was that distinct segments in the

gene locus are interpreted separately based on the collection of

sites within each segment, and their individual readouts are then

aggregated to produce the overall pattern. Thus, it presents a

‘‘two-tiered’’ gene expression model. The main challenges in

formulating and training such a model are: (i) determining the

segments whose readouts are aggregated, and (ii) choosing an

appropriate aggregator function. The quantitative model may not

assume prior knowledge of enhancers in the locus since such a

strategy is not generalizable to poorly characterized loci. Gene

expression profiles should be modeled solely from the gene locus

and TF data (concentrations and motifs).

Pursuing the above hypothesis, we implemented a two-tiered

model that uses contributions from a number of sequence windows

in the locus, and predicts gene expression as a weighted sum of

these contributions (Figure 3E; see Figure 2 for more details). We

call this new model ‘‘GEMSTAT-GL’’, with ‘‘GL’’ abbreviating

for ‘‘gene-locus level’’. The sequence windows were allowed to be

of varying lengths, even mutually overlapping if necessary, and

their separate readouts were predicted using GEMSTAT. The

the green window first gets included in the solution since it fits the green stripe satisfactorily. Next, the first window from the red stripe’s candidate
set is added to the solution and weights for the two windows are optimized so that a weighted summation of their readouts (denoted by function
GL) fits the expression pattern consisting of the green and the red stripes. The model shows improved performance and hence, the red window is
retained in the solution. However, when the second window from the red stripe’s candidate set is added to the solution, it deteriorates model
performance. The window is therefore discarded. Similarly, the blue window from the blue stripe’s candidate set is checked and found to improve
model performance – resulting in its inclusion to the solution. After completing the second phase, the model re-estimates the thermodynamic
parameters and loops back to Phase 1.
doi:10.1371/journal.pcbi.1003467.g002
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number and locations of contributing sequence windows, as well as

the weight of each window’s contribution were left to be

automatically discovered during model training. Model training

was performed iteratively, with a new sequence window being

included for contributing to gene expression only if its inclusion

significantly improved the agreement between predicted and real

expression profiles. In this way, the complexity of the model was

kept under control. Details of this two tiered model and its

parameter estimation procedure are described in Materials and

Methods. Roughly speaking, this procedure (a) finds a window

whose GEMSTAT readout matches one aspect (e.g., a stripe) of

the gene expression pattern, (b) tests if a weighted summation of

this window’s readout and the readouts of already selected

windows improves the overall prediction, and (c) includes the

window if such an improvement is noted. The model parameters

were fit separately for each gene; hence we adopted a

‘‘constrained’’ parameter estimation strategy to avoid over-fitting

(see Materials and Methods and Discussion).

Predictions from the GEMSTAT-GL model agreed very well

with the real expression profiles of each of the four target genes,

eve, h, run, and gt (Figure 4A–D). For instance, we noted that the

seven-stripes of eve and h expression were faithfully captured by the

model (Figure 4A,B), while the seven-striped pattern of run was

well approximated by a six-striped predicted pattern, with the

model failing to separate stripes 4 and 5. Both domains of gt

expression and their experimentally characterized assignments to

three different enhancers were reproduced by the model. The

agreement between model and data seen here for the eve and h

stripes is qualitatively superior to corresponding fits in previous

work on enhancer modeling [11,14], and this may be attributed to

the fact that GEMSTAT-GL fits parameters on each gene

separately. However, subsequent control experiments (described

next) largely ruled out the possibility of obtaining such accurate

models through over-fitting and highlighted the significance of the

reported models. From each gene’s locus, the model chose a small

number of segments (at most seven) in the first tier before

aggregating their GEMSTAT-based readouts in the second tier.

The segments selected from a locus received comparable weights,

with their values differing by at most two-fold (see Figure S2).

Moreover, these automatically chosen segments showed strong

overlap with previously characterized enhancers of the respective

genes (Figure 4A–D and Figure S3), even though the enhancers

were not known to the model training procedure. In particular, of

the 21 regulatory segments chosen from the four gene loci, 16

overlapped with REDFly enhancers [60]. The extent of overlap

between GEMSTAT-GL selected regulatory segments and RED-

Fly enhancers are shown in Figure S3.

This initial success of the model motivated us further to test its

generalizability. We therefore applied the model to all 27 A/P

genes considered in [13]. These 27 genes, which are expressed

between stages 4 and 6 during Drosophila embryogenesis, include

several gap genes, pair-rule genes, and anterior, posterior, trunk,

and terminal genes. They are, with the exception of secondary

pair-rule genes (Text S1), likely to be regulated primarily by the

maternal and the early zygotic proteins, and therefore are

reasonable targets for modeling using the same input TFs as

above. (We also used the TFs Capicua (CIC), Forkhead (FKH),

and Huckebein (HKB) in modeling these genes, as in [13].) The

four genes modeled above – eve, h, run, and gt – are included in

Figure 3. A hypothetical example illustrating the different
attempts at developing a locus-level model of gene expres-
sion. Notations used in the figure are explained in the bottom panel.
The hypothetical gene here is expressed in four stripes, as shown in the
panel for notations using four blue stripes within a rectangle. The thick
purple line near the base of each panel denotes the locus; red circles
and green triangles denote activator and repressor TFs bound to their
cognate sites within the locus, respectively. The bold pink arrow
indicates GEMSTAT prediction of an expression readout on a given
segment. (A) GEMSTAT accurately models the 2-striped expression
patterns driven by ‘‘known’’ enhancers for this hypothetical gene. (B)
GEMSTAT fails to model the four-striped readout of entire locus in the
‘‘Direct Interaction’’ mode. (C) GEMSTAT fails to model the locus
readout in the ‘‘Short Range Repression’’ mode (quenching effect of
repressors is shown using the dark-red colored dashed arrows
connecting repressors to activators bound at nearby sites). (D)
GEMSTAT also fails to model the gene’s four-striped expression from
the concatenation of its two ‘‘known’’ enhancers. (E) A two-tiered

model, that first selects a handful of variable-length windows (putative
enhancers) from the locus and then takes a weighted summation of the
GEMSTAT-predicted readouts of those windows to model gene
expression. This model produces accurate fits.
doi:10.1371/journal.pcbi.1003467.g003
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these 27 genes; hence we show the modeled expression patterns of

the additional 23 genes in Figure 5. GEMSTAT-GL was able to

accurately fit the expression pattern for most of the genes,

demonstrating its wide applicability for gene-locus modeling. The

model fits were less accurate for the secondary pair-rule genes ftz,

odd, and prd, where 4, 3 and 5 stripes were correctly reproduced (out

of seven stripes of each gene). This relative lack of accuracy is

probably because the direct regulators of these genes include the

primary pair-rule proteins [61], which were not among the input

TFs (see Text S1). Another case of model failure was ttk, presumably

because the precise seven-striped pattern of ttk occurs later than

stage 6 of embryogenesis [62] and it requires other regulators than

the used TFs (e.g., Biniou [63]). To model these additional 23 genes,

GEMSTAT-GL selected 29 regulatory segments, 23 of which were

overlapping with REDFly enhancers (see Figure S3 for the extent of

overlap). As above, a constrained parameter fitting strategy was

used here. The w-PGP scores of GEMSTAT-GL for all the 27

genes modeled above are shown in Table S2.

Control experiments suggest that the trained model is not

over-fit. Over-fitting was a concern in the above modeling

exercise, since our framework does not allow testing of predictions

on unseen data. We performed a number of control experiments,

described next, to address this concern. As ‘‘negative controls’’, we

repeated the above model-training exercise on the following types

of artificial data sets (see Materials and Methods): (a) the locus of

one gene was used to model the expression pattern of a different

gene, (b) the locus of a given gene was used to model a ‘‘random’’

expression pattern, and (c) a gene’s expression pattern was

modeled from a randomly generated sequence of the same length

as the gene’s locus, and (d) a gene’s expression pattern was

modeled from a random relocation of TF binding sites in its locus.

Each negative control experiment failed, as expected: no

parameter settings were found for which model predictions agreed

with data (Figure S4). Moreover, experiment (d) allowed us to

assess the significance of our original model fits by comparing the

goodness-of-fit score (value of objective function) of the trained

model to an empirical distribution of scores from 100 negative

controls for each gene. As shown in Figure S5, the original models

were highly significant, with goodness-of-fit scores greater than all

negative controls and with values 30–40 standard deviations above

the mean from negative controls. We note that, as opposed to the

constrained parameter estimation strategy in the modeling of real

data, there was no constraint on parameter values in the control

experiments. As an additional test, we trained the model on

D. melanogaster gene expression profiles of eve, h, run and gt using

sequence from the loci of their respective D. pseudoobscura orthologs.

We assumed that the expression profile characterized experimen-

tally in D. melanogaster remains unchanged in this related species

[14]. The trained model was found to capture the real expression

profiles well (Figure 4E), although not as accurately as in

D. melanogaster: for the seven-striped patterns of eve, h, and run,

the model reproduced the locations of 6, 7, and 6 stripes

respectively, though the inter-stripe boundaries were not as

prominent as in the D. melanogaster models. The model fits on gt

reproduced both anterior and posterior domains of endogenous

expression, though the model-predicted domains were shifted

posteriorly. We note again that we are unable to test the trained

model by direct prediction of the readout of an unseen gene locus,

since the locations and weights of contributing sequence windows

have to be learned from that locus.

A sampling strategy reveals the cis-regulatory
architecture of a gene locus

The two-tiered model described above discovered a small

number of segments whose readouts could be aggregated to match

the gene expression profile. This set of segments describes the

‘‘regulatory architecture’’ of the gene locus (Figure 4A–D), as a

checkered pattern of putative enhancers (green boxes in the

genome browser views) interspersed with large spacer regions that

do not contribute to gene expression. However, since the model

was trained with a local search algorithm and was designed to

utilize only as many segments as necessary, it is possible that the

learned architecture is one of many possible architectures, each of

which has its own locations of putative enhancers and intervening

spacers. To investigate this possibility, we performed Markov

Chain Monte Carlo sampling of the space of architectures. (See

Materials and Methods for details.) Each architecture was

represented by the locations of sequence segments that contribute

to gene expression, and their respective weights. Also, each

architecture was sampled with probability proportional to its w-

PGP score, which quantifies how well the model predictions for

that architecture agree with gene expression. A summary of the

large number (50,000) of architectures sampled by this scheme

from the eve locus is shown in Figure 6A. Similar depictions for the

h and run locus are given in Figure S6. It shows the average weight

that a segment received over all samples. (A weight of zero

indicates that the segment was part of the spacer regions between

putative enhancers in that architecture, and weights cannot be

negative.) We see that the average weights are heavily peaked at a

handful of locations, while most other segments within the locus

have very low average weights. Moreover, the high weight

locations are coincident with the contributing segments from the

optimal architecture found above (Figure 4A). This indicates the

existence of a unique regulatory architecture at the gene locus. We

also noted that the high weight segments of this architecture

overlap known enhancers of the gene.

On the other hand, there were many segments with average

weight close to 0 (Figure 6A), that were not included in any

sampled architecture. Such segments either (a) have no regulatory

information within them, or (b) their readout as predicted by the

GEMSTAT model is inconsistent with and must not be

aggregated with the readouts of other segments. The latter

possibility suggests that there may be segments that exert an

irreconcilable impact on the gene’s expression pattern and thus

have to be explicitly ‘‘shut down’’ by the model. A direct

examination of their predicted readouts confirmed that this was

indeed the case for some segments (Figure 6B). While most of the

non-contributing segments had no noticeable readout, some such

segments led to predicted expression at levels comparable to the

known enhancers but at inappropriate axial positions, i.e., outside

the stripe domains.

A regulatory network of transcription factors
determining ‘‘stripes’’ of gene expression

One of the advantages of a quantitative model of gene

expression is that it allows us to predict the effects of

Figure 4. (A) Results of applying GEMSTAT-GL on the intergenic region of eve in D. melanogaster. Left panel shows the real (red) and
predicted (green) expression profiles along the A/P axis. Right panel shows the locations of selected windows (green boxes) in the locus and
their predicted expression patterns (top), along with locations of known eve enhancers (red boxes). (B), (C), and (D), same information for h, run, and
gt, respectively. (E) Expression patterns modeled by GEMSTAT-GL from the intergenic regions of eve, h, run, and gt in the D. pseudoobscura genome.
doi:10.1371/journal.pcbi.1003467.g004
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perturbations in cis- (the regulatory sequence) or in trans- (the

transcription factors) on expression. For example, a ‘‘knock-down’’

of a TF is easily simulated by setting the TF’s concentration to

zero. Such in silico knock-downs may then be used to infer

regulatory influences of any TF on the gene, and a transcriptional

regulatory network may be constructed. In our past work [13], we

constructed such a regulatory network at the level of individual

enhancers, i.e., the network predicted when a TF’s knock-down

would significantly affect an enhancer’s readout. Such an effect

does not necessarily translate to a change in gene expression, as

there may be redundancy of information in the locus [44,46,64].

An advantage of having a quantitative model of the readout of

the entire gene locus is that regulatory networks may be

constructed at the level of genes rather than enhancers. An edge

in such a network would correspond to a TF’s knock-down

affecting the gene expression; such an effect can be then be

probed experimentally through an in situ hybridization assay in

TF2 condition. (Testing a TF-enhancer association experimen-

tally would involve reporter gene assays, which are more

expensive.)

Figure 5. Results of fitting the GEMSTAT-GL model on the intergenic locus of 23 additional genes studied in [13]. Quantitative data on
target expression patterns were obtained from the companion website of the same study, and were originally derived from in situ expression images
at the FlyExpress [81] database. For each gene, the red and the green plots represent the target (real) and the modeled expression patterns,
respectively.
doi:10.1371/journal.pcbi.1003467.g005

Figure 6. Outcome of MCMC sampling to reveal the cis-regulatory architecture of eve intergenic region. (A) Top panel shows the eve
intergenic locus along with the known enhancers of eve and windows selected by GEMSTAT-GL to model eve expression pattern. Bottom panel
shows the average weight of segments in the locus as estimated by MCMC sampling. The horizontal axis of the bottom panel spans the eve locus;
green diamonds in the plot represent the starting positions of the sequence segments that comprise the MCMC samples (segments corresponding to
two different green diamonds might therefore differ in length). The vertical axis denotes the average weight (on a relative scale between 0 and 1)
that each segment received over 50,000 samples. (B) Predicted readouts of three zero-weight segments that could have an irreconcilable effect on
the gene expression pattern, and were not selected by the two-tiered model.
doi:10.1371/journal.pcbi.1003467.g006
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Here, we used in silico knock-downs to predict TF-gene

regulatory interactions, and described the predicted interactions

as a ‘‘TF-stripe’’ network where edges connect TFs to specific

stripes in the gene’s expression profile, reflecting an effect of the

TF on establishment of that particular stripe. The TF-stripe

network for the eve gene (Figure 7A) shows 35 edges (12 activating,

23 repressive influences) between nine TFs and seven stripes of eve

expression. The activators BCD and CAD regulate the anterior

and posterior stripes, as expected from their concentration profiles.

Each of the two borders (anterior and posterior) of any stripe is

regulated by one or two TFs. This automatically constructed

network is in very high agreement with the literature: 30 of the 35

edges have been previously confirmed or hypothesized based on

genetic evidence, and only two interactions (small dashed edges:

BCDRStripe 5 and HBRStripe 2) with experimental evidence

were not recovered by our procedure. The ‘‘HBRStripe 2’’

interaction cannot be recovered by our model because we assign a

fixed role (activator or repressor) to each TF, while the literature

points to an activating role for HB at stripe 2 [65,66] and a

repressive role elsewhere [67]. Overall, the strong agreement

between the predicted and previously characterized TF-stripe

network strongly argues for the usefulness of our approach, when we

consider the vast amount of experimental work that has gone into

characterizing those 30 recovered edges. Moreover, our model-

based approach predicts three regulatory interactions that were not

known previously (large dashed edges). These include roles for TLL

and SLP in setting up the anterior border of Stripe 1 and a role for

TLL at the posterior border of Stripe 5. Similar TF-stripe networks

were constructed for h, run, and gt; these networks are shown, along

with known interactions from the literature, in Figure 7B–D. As in

the network for eve, we missed very few of the known edges in these

latter three networks, and most of the missed edges correspond to

‘‘indirect’’ activation (i.e., if A is a repressor of B and B is a repressor

of C, then A indirectly activates C) which can only be captured by a

network level model of gene regulation [68].

A comparison of the networks predicted by GEMSTAT-GL

with the ones deduced in previous computational studies [13,53]

highlights several edges that previous models had failed to identify

Figure 7. (A)–(D) Networks showing regulatory influences of TFs on individual stripes of eve, h, run, and gt, respectively. Red edges
denote repressive and green edges denote activating role of the corresponding TF. Solid edges denote predicted influences that are already known
in the literature. Edges with large dashes denote predicted influences that were not reported in the literature before (false positive or novel
predictions), while edges with small dashes denote predicted influences already known in literature but missed by our model (false negatives).
doi:10.1371/journal.pcbi.1003467.g007
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but have been corroborated by in vivo experiments. For example,

the ‘‘TLLRh Stripe 6’’ and ‘‘TLLRh Stripe 7’’ edges in our

network were suggested previously through experiments involving

tll mutant embryos [25,69], but the enhancer-based model of our

previous work [13] misses both of these edges. Several such

examples were also noted with respect to the network reported in

[53] (not shown).

An important observation from the TF-stripe networks of

Figure 7 is the major role played by Zelda in setting up pair rule

gene expression. Recent studies have shown Zelda (Zld) to be a

master regulator of early embryonic development [58,59,70], and

Nien et al. [59] have specifically shown the effect of Zelda

knockdown on pair-rule expression. While all four genes (eve, h, run,

and gt) showed severely modified expression in zld2 experiments, a

closer examination of Figure 5 in [59] reveals specific effects that

are in agreement with our TF-stripe network. For instance, the h

gene shows complete abolishment of stripes 1, 2, 4, consistent with

our predictions of direct Zelda influence on stripes 1, 2, 3, and 4 of

this gene. Similarly, the most pronounced effect of Zelda

knockdown on run expression is the abolishment of stripes 1, 2,

5, and 6, and our network predicts direct effects of Zelda of stripes

1 and 2. We are not aware of any previous computational

modeling effort that predicts these specific effects of Zelda.

We should note that, our reported success in recapitulating

known regulatory edges is based on our own literature survey

where we have tried to be as exhaustive as possible, but admittedly

we might have missed some results. As such, the high rate of

recapitulated network edges is a preliminary, rather than an

absolute, assessment of the accuracy of these networks.

Modeling cross-talk between enhancers results in
aberrant expression readouts

Several studies make a case for interactions between enhancers

of a gene [47–49,71–74], raising doubts about enhancer modu-

larity or independence [44,75]. Our experience in computational

modeling of gene expression, as reported above, seems to suggest

that enhancer independence is the common case. GEMSTAT-

GL, which assumes independence of enhancer activities and linear

aggregation of their readouts, fits expression data accurately, while

GEMSTAT, which interprets all binding sites in the locus

together, completely failed to fit the data. We investigated the

source of this dichotomy in a systematic way, by modifying

GEMSTAT-GL to allow for a limited degree of interaction (non-

independence) between enhancers and noting cases where such

interaction leads to a marked deterioration in model fits. We

report this analysis for the enhancers of eve, h, run, and gt.

Let C1 and C2 be two non-overlapping enhancers (and the only

two enhancers) in a locus. Let E denote the gene expression profile

and let G(Ci) denote the readout predicted by GEMSTAT for any

enhancer Ci. As described in the previous sections, GEMSTAT-

GL tests how well C1 and C2 explain E by computing w-PGP(E,

G(C1)+G(C2)), i.e., the similarity between gene expression profile E

and the integrated output of C1 and C2. (We ignore weights of

summands here, for simplicity.) Now, let us consider any sub-

segment c of C2 and represent by G(C1, c) the GEMSTAT

prediction on the set of binding sites in C1 and c considered

together. This simulates an interaction between C1 and a part of

C2. We may now use w-PGP(E, G(C2)+G(C1,c)) as the accuracy of

a model where the outputs of C1 and C2 are no longer

independent, and in particular, the output of C1 is shaped by

contributions from a part of C2. Let G1 and G2 denote two

GEMSTAT-GL models (i.e., two different parameter settings)

trained to optimize w-PGP(E, G1(C2)+G1(C1)) and w-PGP(E,

G2(C2)+G2(C1,c)), respectively. Our goal is to find a c such that

w-PGP(E, G2(C2)+G2(C1,c)),w-PGP(E, G1(C2)+G1(C1)), i.e.,

where the model with enhancer interaction is significantly

worse than the additive model. Likewise, we search for a subseg-

ment c of C1 such that w-PGP(E, G3(C1)+G3(C2,c)),w-PGP(E,

G1(C1)+G1(C2)) where G3 is a new GEMSTAT-GL model trained

to optimize w-PGP(E, G3(C1)+G3(C2,c)). The discovery of any such

subsegment of either C1 or C2 will point to an avoided interaction

between the two enhancers, i.e., a specific example in support of

the enhancer independence assumed in GEMSTAT-GL.

We show in Figure 8, using a heat map, the outcome of the

above analysis performed on the five enhancers contributing

towards the eve gene’s expression. Rows in this heat map represent

binding sites within the enhancers, and columns represent

enhancers. The cell at row i and column j represents the effect

(on model fits) of allowing the binding site i to interact with

enhancer j. Red indicates that modeling this interaction leads to

worse fits, suggesting that the interaction is avoided in reality

through unknown mechanisms of enhancer independence. Green

color in the heat map suggests a synergistic interaction.

Heat maps for the four genes modeled in this study (Figure 8

and Figure S7) highlighted the necessity of their enhancers to act

autonomously. The many red cells indicate that such interaction

must be explicitly avoided. For instance, we noted that a segment

containing KR sites within the eve stripe 2 enhancer (Segment S1,

Figure 8) adversely affects the predicted readout of the eve stripe

3+7 enhancer. These KR sites, when included in modeling the

stripe 3+7 enhancer result in a weaker stripe 3, since the

expression domain of KR covers eve stripe 3. A similar effect is

noted for a second segment in the stripe 2 enhancer (Segment S2,

Figure 8) that contains four KNI sites, which adversely influence

modeling of the stripe 3+7 enhancer. Although the latter contains

several KNI sites, the four additional KNI sites impart more

repression than necessary and hence a deterioration in the quality

of fit. (This deterioration is, however, less severe than that caused

by the first segment.) These examples provide more detailed

insights into why we failed in our initial attempts to model gene

expression from an entire locus using GEMSTAT, where all such

interactions were allowed.

Discussion

We have presented for the first time a quantitative model that

relates gene expression to the sequence of an entire gene locus,

using information on the trans-regulatory context (TF concentra-

tions). We started by showing that the thermodynamics-based

model ‘‘GEMSTAT’’ accurately models individual enhancer

readouts, but fails to model the entire locus. We then performed

a series of tests where we changed the way the GEMSTAT model

was applied to the locus, all of which resulted in failure. We

developed a new model called GEMSTAT-GL where the

expression readout of the locus is two-tiered: sites within each

enhancer act together to produce that enhancer’s contribution,

and contributions from multiple enhancers are aggregated to

produce the gene’s expression pattern. This model shows very

good fits to the data (Figure 4 and Figure 5) for the 27 genes

studied here, and most remarkably for the complex, seven-stripe

patterns of eve, h, and run. The process of training the model on a

gene locus automatically predicts enhancers in that locus, without

relying on chromatin accessibility data, and makes accurate

assignments of regulatory activity to each of the predicted

enhancers. We will make available, upon publication, a general-

purpose implementation of the GEMSTAT-GL model that may

be applied to any gene for which the relevant inputs (TFs, TF

motifs, TF concentrations) and output (gene expression) are
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known. The implementation also allows users to include chroma-

tin accessibility data as a filter on the locus being modeled.

We note that the GEMSTAT-GL model, as presented here, is

given an intergenic sequence and its expression readout, and it

finds a plausible explanation of whether and how the sequence

could drive that expression. As such, it can be applied, in principle,

to any of the thousands of genes whose embryonic expression

patterns are known from in situ hybridization assays [76]. Once

trained, the model reveals the cis-regulatory architecture of the

locus (locations and readouts of individual enhancers), and can

predict the effects of perturbations in cis (sequence) or trans (TF

concentration).

However, the model cannot currently be used to predict the

expression readout of a gene locus from sequence only. This is

because the locations of contributing segments in the locus are free

parameters of the model and can be learnt only if the gene

expression readout is known. Thus, the model performance

reported here refers only to ‘‘training data accuracy’’, and leaves

open the possibility of over-fitting. However, the model training

failed on a variety of different ‘‘negative control’’ tests, where there

was no link between the given sequence and expression, thus

addressing concerns of over-fitting. We expect future work to

address the current limitation that prevents the new model from a

full-fledged application to the genome. One way this may be

achieved is through intelligent use of accessibility and chromatin

state information [33,77] from the locus when selecting segments

that contribute to gene expression.

Another potential limitation of this work is its reliance on prior

knowledge of the TFs relevant to the regulatory system being

studied (the A/P patterning system here). Ideally, the model

should be able to automatically identify the TFs that are needed to

explain the data, but this ability was not tested in this work. In a

separate work [52], we address the question of systematically

identifying the TFs to use when modeling enhancers using

GEMSTAT.

A basic principle underlying GEMSTAT-GL is the modular

view of the gene locus’ readout, which holds that individual

enhancers drive discrete aspects (e.g., one or two stripes) of the

gene’s expression pattern, through combinatorial action of the

binding sites within them, and the overall gene expression pattern

results from a superposition of these separate enhancer readouts.

Our tests showed that a model that violates this modular view and

Figure 8. A heatmap visualization of the changes in GEMSTAT-GL’s goodness-of-fit owing to interactions between the enhancers
selected for the eve gene. The heatmap has 5 columns and Neve rows, where Neve denotes the total number of binding sites in the five eve
enhancers. Each row in the heatmap represents a binding site; the ordering of the rows, from top to bottom, reflects the 59 to 39 order of the
respective binding sites in the locus. Each horizontal dot-dash line demarcates binding sites from two different enhancers. Each column in the
heatmap represents an enhancer; the columns are ordered, from left to right, according to the 59 to 39 order of the corresponding enhancers in the
locus. The cell at row i and column j represents, on a green-to-red color scale (green: high, red: low), the effect of allowing the binding site i to interact
with enhancer j. This effect quantifies how the goodness-of-fit improves (green) or decreases (red) when interactions are allowed (see Materials and
Methods for details). Two segments S1 and S2 within the eve stripe 2 enhancer are shown on the left of the heatmap, along with their constituent
binding sites for TFs KR, TLL, KNI, BCD. Each of these segments has binding sites that, when allowed to interact with the eve_3_7 enhancer, result in
poorer fits.
doi:10.1371/journal.pcbi.1003467.g008
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instead interprets all binding sites in the locus as acting together is

unlikely to fit the data. In other words, the rules for interpreting

the set of sites across all enhancers are not the same as the rules

that apply to sites within an enhancer. The final subsection of

RESULTS provides details of this principle in action: the different

enhancers have the potential to interfere with each other, i.e., if

some sites in one enhancer, say Si, are interpreted together with

sites of another enhancer, say Sj, the combined readout may be

different from the readout of Sj itself.

Another defining aspect of our model is the use of a ‘‘weighted

sum’’ as the aggregator of multiple enhancer readouts. We note

that the weights assigned by the model to different contributing

segments (enhancers) are comparable to each other (Figure S2),

and that a simple unweighted sum captures the seven stripe

pattern of gene expression qualitatively (Figure S2), but fails to

capture the ‘‘valley’’ between stripes 2 and 3 for eve and between

stripes 4 and 5 for run; whereas the prediction for h remains

relatively unaffected. Thus, the use of non-uniform weights may be

a way for our model to correct for inaccuracies of the GEMSTAT

model in predicting enhancer readout, especially at stripe borders.

These weights need not be a reflection of any fundamental

biochemical preference for one enhancer over another.

One may speculate on biochemical mechanisms that implement

the two-tiered readout of the regulatory information at the locus, and

the additive aggregator function. An obvious possibility is that each

contributing segment interacts with the promoter separately, as

shown in Figure 9A. In the example shown, there are two enhancers

and three possible configurations of enhancer-promoter interaction.

The ‘‘Boltzmann weight’’ of each configuration is assumed to

depend only on the enhancer interacting with the promoter in that

configuration. Let these weights be 1, gB and gA for the

configurations at the top, middle and bottom respectively. Assuming

that gene expression ‘E’ is proportional to the total probability ‘plocus’

of configurations with any enhancer-promoter interaction, we get:

E!plocus~
gAzgB

gAzgBz1

First, let us consider a trans-regulatory context where one of the

enhancers (say A) drives expression and the other (say B) does not.

This can be formulated as:

gA

gAz1
~p and

gB

gBz1
%p

Under these conditions, we get plocus&p, i.e., the contributions of the

two enhancers add up to produce the expression driven by the locus.

Thus, if a gene is under the control of multiple enhancers and if a

single enhancer dominates all others in any particular trans-

regulatory context (position along the A/P axis, for pair rule genes),

we expect the combined readout of the multiple enhancers to be a

sum of their individual readouts.

Now consider a trans-regulatory context where both enhancers

A and B (of Figure 9A) have comparable outputs. We may

formulate this as:

gA

gAz1
~

gB

gBz1
~p

It is easily shown that in this case

plocus~
2p

1zp

We plot this function, representing the combined readout of the

locus, in Figure 9B. For small values of p (,0.2), this function is

reasonably approximated by 2p, indicating that the enhancer

contributions add up. Note that a value of p = 0.2 does not

necessarily mean low gene expression; under the Shea & Ackers

theory, expression levels are only proportional to p as defined here.

For larger values of p, we see that plocus is better approximated by

the function 12(12p)2, which represents the model of enhancer

synergy proposed by Perry et al. [43]. In this case, the separate

readouts of enhancers do not combine additively. Another

scenario in which additivity is not expected is where multiple

enhancers can interact simultaneously with the promoter, as is the

case in the ‘‘long range dominant repression’’ model of Perry et al.

[43]. We explicitly prohibited such a configuration in the model of

Figure 9A. We should also note that, the aforementioned

assumptions do not preclude overlapping enhancers. Discovery

of overlapping enhancers, in this modeling framework, is not

therefore a violation of the linearity assumption.

Figure 9. (A) A gene locus with two enhancers (A and B) can be
in one of three different configurations of enhancer-promoter
interaction: (top) neither enhancer interacts with promoter,
(middle) only B interacts and (bottom) only A interacts. In a
configuration where A interacts with promoter, B does not interact, and
vice versa. (B) Combining contributions from two enhancers. If each
enhancer’s contribution is given by the gene expression probability p
due to that enhancer, the combined contribution of the two enhancers
(assuming independent interactions with the promoter) is 2p/(1+p),
plotted in red. For small values of p, this is well approximated by 2p
(green), the sum of their contributions. For larger values of p, a better
approximation is provided by the function 12(12p)2, in blue.
doi:10.1371/journal.pcbi.1003467.g009
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In light of the simplistic arguments presented above, we suggest

that the model illustrated in Figure 9A, with the strength of each

enhancer-promoter interaction being unaffected by other enhanc-

ers in the locus, as a mechanistic basis of the GEMSTAT-GL

model. Additivity of enhancer contributions in any given trans-

regulatory context can be explained by this model as arising out of

(a) one enhancer’s contribution dominating all others or (b) each

enhancer’s contribution being at a relatively low level, i.e., the

probability p defined above being not close to 1.

A note on parameter estimation for the locus-level
modeling problem

A locus-level model of gene expression requires more precision

than an enhancer-level model. The success of an enhancer-level

model is typically assessed from its precision in modeling the

position of the peaks of the expression domains driven by an

enhancer. Consequently, the most successful enhancer-level

models produce qualitatively accurate expression patterns for

each enhancer but may not capture the peak amplitude of

expression domains correctly. That is, relative peak amplitudes of

readouts from two enhancers are often inconsistent with model

predictions. Another type of imprecision noted in enhancer-level

models is the inability to predict the sharp boundaries of

expression domains. A locus-level model cannot afford to tolerate

such imprecision, especially when it is applied to model complex

multi-stripe expression patterns. The two weaknesses of enhancer-

level model fits mentioned above can cause our locus-level model

to predict qualitatively inaccurate expression patterns (e.g., miss an

inter-stripe boundary), and are likely to lead to false regulatory

sequence discovery and wrong inference about the roles of TFs. At

the same time, the quantitative imprecision in predicted enhancer

readouts may be unavoidable at this time due to fundamental

limitations of the thermodynamic model, e.g., biochemical

mechanisms that are not modeled.

Our strategy of optimizing the thermodynamic parameters for

each gene separately was a pragmatic decision made to compensate

for the minor inaccuracies of enhancer-level modeling. As shown in

Figure S8, when GEMSTAT-GL was optimized without re-

training the thermodynamic parameters (thus, the locations and

the weights of the windows were the only free parameters in the

model), it could still capture the correct locations for five of the

seven stripes of eve expression but suffered severely in terms of

modeling the inter-stripe valleys. Thus, fitting the thermodynamic

parameters in a locus-specific manner helps GEMSTAT-GL to

achieve the desired accuracy. It is plausible that this strategy might

lead to over-fit GEMSTAT-GL for the single intergenic locus being

modeled. This is why we performed four different types of negative

controls, to demonstrate that the constraints imposed on the

parameters during model optimization are strongly guarding us

against over-fitting the model for any specific locus.

In a recent study [18], Kim et al. trained thermodynamics-

based models on a collection of eve enhancers in order to provide

deeper insights into combinatorial cis-regulatory logic, which, as

they pointed out, is a pre-requisite for locus-level modeling of gene

expression. Among other findings, they reported a model that

predicts eve stripes 2, 3, and 7 from the sequence upstream of the

gene, and a different model (i.e., different parameter settings) that

predicts stripes 4, 5, and 6 from the sequence downstream of the

gene. Their results, in addition to providing insights about

functioning of enhancers, highlight the difficulty of modeling the

readout of an entire gene locus using pre-determined parameters,

even when the models are accurate at the enhancer level. This

agrees with our own view mentioned above, and suggests that

fitting thermodynamic parameters for individual loci, with

appropriate constraints, is a necessary step at the current stage

of computational modeling of gene expression from the locus.

Materials and Methods

Data collection
We collected enhancers previously reported to regulate the genes

eve, h, run, and gt from the REDfly database [60]. We also extracted

the embryonic expression pattern of each of these genes during the

temporal class 5 in nuclear division cycle 14A, from the FlyEx

database [57]. The FlyEx database provides the expression level as a

function of the A/P axis, obtained after appropriate normalization

and averaging over embryos. Expression profiles for known

enhancers were derived from respective gene expression profiles

based on prior knowledge about which stripes correspond to each

enhancer (See Figure S9 for details). We note that, although the real

expression profiles being modeled in GEMSTAT and GEMSTAT-

GL are shown in the figures as scaled between 0 and 1, it is not a

requirement of the models. The output of our models is a probability

value, and the gene expression is assumed to be proportional to this

probability. As such, the models’ output (probability) can be scaled

and compared against any quantitative expression level. Position

weight matrices (PWMs) of all the TFs were taken from the Fly

Factor Survey database [78]. Protein concentration profiles of the

TFs along the A/P axis were obtained from the FlyEx database [57]

and the data set used in [13]. The data sets are made available at

http://veda.cs.uiuc.edu/gemstat-gl/index.htm.

The GEMSTAT model
This is described in detail in our previous work [11], and here

we review its main ideas. As per the model, transcriptional

regulation takes place through the interaction of three major

components: (a) DNA sequence, (b) TF molecules, and (c) the basal

transcriptional machinery (BTM). A TF molecule may bind the

sequence at any binding site, with site-specific affinity. The BTM

may bind at the core promoter of the gene, and it initiates

transcription when thus bound. Interactions between bound TF

molecules and the BTM (possibly through co-factors, which are

not explicitly modeled) determine the occupancy, i.e., probability

of binding, of the BTM at the promoter. We assume, following

Shea & Ackers [50], that the level of gene expression depends

primarily on the rate of transcription initiation, and in particular

on the BTM occupancy.

Being a statistical thermodynamics model, GEMSTAT consid-

ers an ensemble of molecular configurations of the transcriptional

regulatory machinery; each configuration, denoted by s, specifies

which sites in the DNA sequence are bound by cognate TFs. For

every configuration s, GEMSTAT computes two quantities: (a)

the Boltzmann weight of s, denoted by W(s), and (b) the

transcriptional effect of s on the BTM, denoted by Q(s). The

Boltzmann weight W(s) is calculated based on TF concentration

and the binding affinity of every bound site in s, which in turn is

estimated from the sequence and the TF motif [79]. The

transcriptional effect Q(s) represents interactions between bound

TF molecules of configuration s and the promoter-bound BTM,

and is modeled with free parameters (one per TF) reflecting such

interactions. Every configuration s of the regulatory sequence

corresponds to two configurations of the entire regulatory

apparatus, depending on whether the BTM is bound or not.

The relative probability of bound BTM is given by

E~

X
s

W sð ÞQ sð ÞX
s

W sð ÞQ sð Þz
X

s
W sð Þ

and the gene expression level

is assumed proportional to E. GEMSTAT models self-cooperative
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DNA-binding by any TF through a free parameter (cooperativity

term) that is multiplied with W(s) for every occurrence of an

adjacent pair of bound sites within a fixed distance from each other.

Modeling enhancers with GEMSTAT
We performed simultaneous training of GEMSTAT parameters

on all known enhancers of a gene. The inputs were the sequence of

each enhancer, and the motifs and A/P concentration profiles of

nine relevant TFs. GEMSTAT learns optimal parameters such

that its predictions for A/P expression pattern of each enhancer

matches the corresponding real pattern. GEMSTAT was used in

the ‘‘DIRECT INTERACTION’’ mode (see [11]) unless stated

otherwise. The number of free parameters is 28 (three per TF, plus

one global parameter), and raises concerns about over-fitting. To

address this, a ‘‘constrained parameter estimation strategy’’ was

used, as described below.

Constrained parameter estimation strategy
To guard against over-fitting, we used the following model

training strategy. We first trained GEMSTAT on ,40 enhancers

with A/P patterned expression [14], while excluding enhancers of

the given gene. Training on this large data set greatly constrains

the model and rules out over-fitting. We used the parameter values

thus obtained as the starting point of the parameter training

procedure on regulatory sequences of the given gene. Thereafter,

the training procedure was prohibited from altering any param-

eter’s value by more than two fold from its initial value. This

strategy ensured that the final model trained on the given gene is

largely consistent with a model that reflects other regulatory parts

of the genome.

Modeling a gene locus with GEMSTAT
This was performed just as any individual enhancer would be

modeled by GEMSTAT. The inputs were the sequence of the

locus, and the motifs and concentration profiles of the nine TFs.

GEMSTAT’s goal was to learn parameters such that its prediction

for the readout of the entire locus matches the gene expression

pattern, as quantified by the ‘‘weighted Pattern Generating

Potential’’ (w-PGP) score described in the next paragraph. Also,

since we claim (see RESULTS) that GEMSTAT is unable to

model gene loci, we used an unconstrained parameter estimation

strategy where the model training procedure was free to use any

parameter values within a reasonable range.

Evaluation of model predictions using ‘‘weighted pattern
generating potentials’’

Two obvious approaches to assess the agreement between real

and predicted expression profiles are the ‘‘sum of squared errors’’

or ‘‘correlation coefficient’’. However, as shown in our previous

work [13], these do not always capture the salient features of an

A/P expression pattern. We devised a new scoring function, called

‘‘weighted pattern generating potential’’ (w-PGP) to address this

issue. The score is explained in Figure S10 and its legend. It is a

modification of the ‘‘PGP’’ score of [13]. The essence of w-PGP is

to reward the agreement between real and predicted readouts and

penalize the disagreement. We have performed detailed explora-

tions of the w-PGP score in a separate work [52] and found it to be

superior to the sum of squared errors or the correlation coefficient.

GEMSTAT-GL model for predicting gene expression from
intergenic sequence

The new quantitative model for predicting gene expression from

the entire locus of a gene operates in two tiers (Figure 2). Recall

that the inputs to the model are (i) the sequence of the locus, TF

motifs, and TF concentration profiles along the A/P axis, and (ii)

the gene’s expression profile (assumed here to be multiple stripes

along the axis). The trained model comprises (i) a set of windows

(possibly of varying length, and possibly overlapping each other) in

the locus, and their ‘‘window weights’’ (positive numbers), and (ii)

values for GEMSTAT parameters reflecting TF-DNA, TF-BTM,

and TF-TF interactions. The model’s prediction of gene

expression is the weighted sum of readouts from every window

in the model, the readouts being predicted by GEMSTAT, and

the weights being the window weights mentioned above. More

specifically, we optimize the following function.

arg max
W ,s,h

w-PGP E W ,s,hð Þ,Tð Þ

where,

N T is a vector representing the expression pattern of the gene

being modeled. The i-th element of this vector denotes the

relative level of gene expression at the i-th position along the

spatial axis;

N h is a vector representing the thermodynamic parameters;

N s is a vector representing the window-weights. The i-th
element of this vector denotes the weight of the i-th window

included in the solution;

N W is a matrix of dimension n|2, where n denotes the

number of windows included in the solution (hence, sj j~n).

The first and second elements in the i-th row of Wdenote

the i-th window’s location and length, respectively; and

N E W ,s,hð Þ denotes the dot-product s.G W ,s,hð Þ, with

G W ,s,hð Þ being a matrix whose i-th row represents the

readout of the i-th window as predicted by GEMSTAT

using the parameters h. Note that, the location and the

length of the i-th window are specified by the i-th row of W .

We describe here the procedure for training the two-tiered

model, given its input. The procedure learns optimal values of the

GEMSTAT parameters as well as ‘‘window weight’’ parameters

(see above) that maximize the w-PGP score between the gene

expression profile and the model’s prediction. A model is denoted

by M = (W, s, h) where W is a set of sequence windows from the

locus, s is the set of window weights, one for each window in W,

and h is a set of GEMSTAT parameters. The model training

happens in two phases. In the beginning, h is set to GEMSTAT

parameters learned from a large set of known enhancers excluding

any known enhancers of the target gene.

Phase 1. In the first phase, the algorithm scans the intergenic

sequence to find N = 5 best sequence windows for each stripe in

the gene expression pattern. To do so, it examines every window

starting at 100 bp intervals in the locus, and of length between

500 bp and 2500 bp. (These are user-configurable parameters.) It

scores every window W against every stripe S of the target gene

expression, based on how well the expression read-out of W

(predicted by GEMSTAT) fits the expression profile of S. The fit is

quantified by the w-PGP score. At the end of this phase, the

algorithm has found a set of N best windows for each stripe S,

denoted by C(S).

Phase 2. Next, the algorithm iteratively selects windows to

include in the model, and learns their corresponding window

weights. In the ith iteration, it builds a model Mi = (Wi, si, h) for

the first i stripes of gene expression. A pseudo-code is provided

next.
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Given: GEMSTAT parameters h and a candidate set of

windows C(S) for every stripe S.

Initialization: W0: = NULL; BESTSCORE0: = 0.

For i: = 1 to K (the number of stripes in gene expression pattern)

do:

1. Wi: = Wi21; BESTSCOREi: = BESTSCOREi21;

2. For each window w in C(Si) do

a. Define a new set W9 = Wi U {w}

b. Let s be a set of window weights, one weight for each

window in W9. Let Scorei(W9, s) denote the w-PGP

score that compares (i) the two-tiered model predictions

using windows of W9 and window weights s, and (ii) the

gene expression pattern limited to the first i stripes or

expression domains. (The stripes were considered

arbitrarily from anterior to posterior.)

c. Find s that maximizes Scorei(W9, s) over all possible s.

This maximization is performed through alternating

between the Simplex and the Gradient Descent

algorithms for numerical optimization. Denote maxs

Scorei(W9, s) by Score(w).

3. Let w* denote the window that maximizes Score(w) in the

previous step.

4. If Score(w*) is greater than BESTSCOREi, then

a. Wi: = Wi U {w*}

b. C(Si): = C(Si)\w*

c. BESTSCOREi: = Score(w*)

d. Loop back to (2).

At the end of this phase, a model M = (W, s, h) has been found for

the entire expression pattern. Now, the GEMSTAT parameters h are

retrained while keeping W and s fixed. The algorithm then loops

back to Phase 1. It iterates through these two phases until a constant

number NI of iterations have been completed or the improvement in

the model’s w-PGP score is less than a small constant d.0. We set

NI = 100 and d = 1024 for training the models in this paper.

We note that, the GEMSTAT model [11] is used in two

contexts while training GEMSTAT-GL. First, to compute the

initial estimates for GEMSTAT-GL’s thermodynamic parameters,

we optimize GEMSTAT for ,40 A/P patterning enhancers

associated with genes other than the gene being modeled. The

objective function used to optimize GEMSTAT for this purpose

was the average of the w-PGP scores of all enhancers in the

dataset. Starting from these initial values, GEMSTAT-GL then

searches the parameter space for better estimates of its thermo-

dynamic parameters. In the second scenario, GEMSTAT is used

to compute the readout of every window that GEMSTAT-GL

examines within the locus (i.e., in Phase 1 described above). In this

case, GEMSTAT-GL inputs its thermodynamic parameters and a

sequence window to GEMSTAT, which then outputs the readout

of the given window resulting from the input parameters.

Control experiments
(1) One of the negative control experiments involved modeling a

gene’s expression pattern from a randomly generated sequence of

the same length as the gene locus. The random sequence was

generated by independently sampling each nucleotide from a

common frequency distribution. (2) Another negative control

experiment involved modeling a ‘‘random’’ expression pattern

from the sequence of a gene locus. Random expression patterns

were generated based on the gene’s real expression pattern, as

follows. First, for any axial position, let us define the gene to be

OFF if the expression value is less than 0.5 and ON otherwise.

Then, for a gene G whose actual expression profile has N stripes

and K axial positions where it is ON, we defined a ‘‘random’’

expression profile as one where: (a) the number of stripes is a

randomly chosen number between N/2 and N, (b) the stripes are

located randomly along the A/P axis, and (c) there are K data

points where it is ON. Computation of such a random expression

is detailed in Figure S11. (3) In the final set of negative control

experiments we used a ‘‘variant’’ of a gene’s locus, where the TF

binding sites were relocated to randomly selected positions within

the locus, to model the gene’s expression pattern.

Constructing a regulatory network of TF-stripe
interaction through in silico TF knockdown

In order to infer edges in the TF-stripe interaction networks, we

repeated the following steps for each TF. First the relative

concentration of the TF being examined was set to zero at every

position along the A/P axis (the relative concentration profiles of

all other TFs were left unchanged). This was essentially an in silico

knock-down of the TF being examined. A GEMSTAT-GL model

trained earlier using real data for the target gene was then re-run

on this new data (but not optimized anew). We then observed the

resulting output and inferred edges in the network as follows. If

knock-down of the TF was found to weaken a stripe’s expression

(by at least 2%), we inferred an activation edge from the TF to the

stripe. In case the knock-down was found to strengthen the stripe’s

expression (by at least 2%) and/or shift the stripe’s boundary (by at

least 1% of the A/P axis at the position of half-maximum peak

expression), we inferred a repression edge.

Sampling the two-tiered model
As noted above, a model is denoted by M = (W, s, h) where W is

a set of sequence windows from the locus, s is the set of window

weights, one for each window in W, and h is a set of GEMSTAT

parameters. We described above a local search algorithm to find

the optimal model. We also performed MCMC sampling of the

space of all possible windows and window-weights, i.e., (W, s) for

a global examination of the expression contributions of segments

in the locus.

Sample space. Each sample is an extended weight vector s
that has one real number for every possible window in the locus.

Recall that this includes windows of length between 500 and 2500

(in increments of 50), with start positions that are multiples of

100 bp. Note also that any s corresponds to a particular model

Ms: the window set W is determined by the non-zero weights in s,

and the GEMSTAT parameters h are assumed fixed. The w-PGP

score of model Ms is denoted by Score(s), and the MCMC

attempts to sample s with probability proportional to Score(s).

Sampling algorithm. We used the Metropolis-Hastings

algorithm to sample s. The allowed moves from a current sample

si are determined as follows. Let bi be a bit vector of the same

dimensionality as si and its jth bit being defined as bij = 1 if sij.0

and bij = 0 otherwise. That is, bi indicates which windows have

positive weights in si. The samples reachable in one move from

the current sample si (with bit vector bi) are those with bit vectors

within a Hamming distance of 2 from bi. In other words, any

move adds or deletes at most two windows from consideration in

the first tier of the model. The proposal distribution of the

Metropolis Hastings algorithm is described next. Given a current

sample si (with bit vector bi), we choose two bits at random and

toggle each bit with probability 1/2. This samples a bit vector bj

that is (a) identical to bi with probability J, (b) 1 Hamming
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distance from bi with probability K, and (c) 2 Hamming distance

from bi with probability J. All bit vectors with a particular

Hamming distance are equally likely. There are L = |bi| of these at

Hamming distance 1, and
L

2

� �
of these at Hamming distance 2.

The newly sampled bit vector bj is then used as the ‘‘shape vector’’

of a Dirichlet distribution, from which a probability vector is

sampled. This is the newly sampled weight vector sj. As prescribed

by the Metropolis Hastings algorithm, this proposed sample sj is

then accepted with probability min(1, Score(sj)/Score(si)).

Constructing heatmaps to study enhancer interactions
Our goal was to probe potential interactions between binding

sites from two different enhancers. In particular, we wanted to

determine if interpreting the sites of one enhancer together with

sites from another enhancer leads to better model predictions than

the baseline of GEMSTAT-GL where each enhancer is interpret-

ed independently. A natural way to represent such potential

interactions is with a hypergraph. Hypergraphs generalize the

concept of graphs by allowing each edge (called ‘‘hyperedge’’) to

represent a relationship shared among more than two nodes. In

our formulation, every binding site in every enhancer is a node in

a hypergraph, and any subset of sites from two different enhancers

defines a hyperedge. The evidence in favor of that subset of sites

being interpreted together, as if they were sites in the same

enhancer, is the weight of the hyperedge. Such weights can be

negative also, indicating that the particular subset of sites if

interpreted together will make model predictions worse. We

limited our attention to hyperedges defined by including (a) all sites

of one enhancer and (b) sites within a sub-segment of a different

enhancer, thus simplifying the space of enhancer interactions

considered. Our model-based predictions of potential interactions

(or avoidance of interactions) can be captured by this weighted

hypergraph. However, a hypergraph is hard to visualize and less

likely to lead to biological insights via direct examination. We

therefore mapped the constructed hypergraph to a weighted graph

where the weight of every edge represents the effect of allowing

interaction between the two binding sites that the edge represents.

Visualization of the edge weights of this graph through heatmaps

then revealed how any binding site could affect the readout of any

enhancer in our model.

Hypergraph construction. For a gene g, suppose the

GEMSTAT-GL model selects n contributing enhancers C1, C2,

…, Cn. Let SITES(Ci) denote the set of TF binding sites in

enhancer Ci. Then, for every binding site in every set SITES(Ci),

we include one node in a hypergraph. There are two types of

hyperedges in our hypergraph. First, every subset of SITES(Ci)

constitutes one hyperedge, and every such hyperedge was assigned

a weight of zero. Each of the remaining hyperedges represents a

collection of binding sites from two different enhancers, and was

constructed as follows. Let eh denote a hyperedge that consists of

binding sites from enhancers C1 and C2. Then the hyperedge eh

would include all the binding sites of one enhancer (say, C1) and

between one and five contiguous binding sites of the other

enhancer (C2 in this case). For each hyperedge eh constructed in

this way, we optimized a new GEMSTAT-GL model where the

contributing enhancers are C2, … Cn, as well as the newly

constructed set of sites eh treated as an ‘‘enhancer’’. The difference

between the w-PGP score of this new model and the original

model learned for gene g was then assigned as the weight of eh.

Mapping hypergraph to graph. A graph was constructed

with the same nodes as that in the hypergraph, with an edge for

each pair of nodes. The weight of an edge was computed by

averaging the weight of every hyperedge where the corresponding

pair of nodes appeared. This approach of approximating a

hypergraph through a graph was discussed in detail in [80]. By

construction, this graph has the property that the edge between

node i and node j has the same weight for all nodes j corresponding

to sites in the same enhancer.

Supporting Information

Figure S1 Results of failed attempts to model the seven-striped

expressions of eve (left panel), h (middle panel), and run (right panel)

from their respective intergenic regions. (A,B): GEMSTAT-

predicted readout of the entire locus in the ‘Direct Interaction’

(A) and the ‘Short Range Repression’ (B) modes respectively. (C)

GEMSTAT-predicted readout of the concatenation of all known

enhancers of the gene. No enhancer has been reported to date for

stripes 2, 4, and 6 of run. We therefore tried modeling only stripes

1, 3, 5, and 7 from the concatenation of the known enhancers of

run.

(TIF)

Figure S2 Role of the weight parameters in the two-tiered

model. For each gene (column), the top panel shows the un-scaled

readouts of individual segments selected by the model, the middle

panel shows an un-weighted summation of these readouts (green,

compared to real expression profile in red), and the bottom panel

shows the weighted summation reported by our model along with

the weight of each GEMSTAT-GL selected window in the inset.

(TIF)

Figure S3 Extent of overlap between REDFly enhancers and

GEMSTAT-GL selected windows. GEMSTAT-GL selected 50

windows to model the 27 genes mentioned in Table S1, Figure 4,

and Figure 5. Out of these 50 windows, 39 were found to overlap

with REDFly enhancers. No window overlapped with two

REDFly enhancers and no two windows overlapped with the

same REDFly enhancer. (A) Each bar represents the length of a

REDFly enhancer (normalized to 100%) mentioned in the vertical

axis. The green (red, resp.) bar shows the percentage of basepairs

in the REDFly enhancer that were found to be included (not

included, resp.) in the overlapping GEMSTAT-GL window. (B)

Each bar represents the length of a GEMSTAT-GL window

(normalized to 100%) that overlaps with the REDFly enhancer

mentioned in the vertical axis. The green (red, resp.) bar shows the

percentage of basepairs in the window that are common (not

common, resp.) with the overlapping REDFly enhancer. For

example, for the enhancer tll_P2, panel (A) shows that GEM-

STAT-GL used such a window, say W, in modeling the tll gene

that completely contains the tll_P2 enhancer, while panel (B)

shows that the tll_P2 sequence comprises about 90% of W.

(TIF)

Figure S4 Results of ‘‘negative control’’ experiments. (A)

Modeling a gene’s expression from the intergenic region of a

different gene. In each case, the model was trained to fit the real

expression profile of a gene (red) using sequence from a different

gene’s locus. The best-fit predictions (green) did not match the real

profiles well. (B) Modeling random expression patterns (red) from

the intergenic sequences of eve, h, and run. Best-fit predictions are

shown in green. (C) Modeling real expression patterns (red) from

random sequences of the same length as the locus of the

corresponding gene. Best-fit predictions are shown in green.

(TIF)

Figure S5 Histograms reflecting the empirical distributions of w-

PGP scores computed from a negative control experiment

(repeated 100 times) where a gene’s expression pattern was

modeled from its own locus but the binding sites within the locus
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were randomly relocated. (A)–(D) Histograms for eve, h, run, and gt,

respectively. Each histogram drawn with red bars was obtained

from models trained in the negative control experiment, while the

green bar corresponds to the original model.

(TIF)

Figure S6 Results of MCMC sampling for the genes h (A) and

run (B) along with the REDFly enhancers and GEMSTAT-GL

selected windows viewed in Genome Browser. Semantics of the

plots are described in the legend of Figure 6.

(TIF)

Figure S7 Heatmap visualizations of the changes in GEM-

STAT-GL’s goodness-of-fit owing to interactions between the

enhancers selected for the genes (A) h, (B) run, and (C) gt. Semantics

of the heatmaps are explained in the legend of Figure 8.

(TIF)

Figure S8 (A) Seven-stripe expression pattern of eve (red) and

GEMSTAT-GL prediction (green) when thermodynamic param-

eters were kept fixed during model fitting. (B–F) Model-predicted

readouts (green) of individual windows automatically discovered

by GEMSTAT-GL. These readouts are aggregated by the model

using weighted summation, to produce the locus-level readout

shown in (A).

(TIF)

Figure S9 Steps in extracting enhancer expression profile from

experimentally characterized gene expression profile.

(TIF)

Figure S10 An overview of the ‘weighted pattern generating

potential’ (w-PGP) scheme to score model predictions (design

choices have been explained in [82]). The red and the green

curves depict 16 data points of a real expression pattern and the

corresponding predicted expression pattern, respectively. While

scoring the predicted expression for similarity to the real

expression, w-PGP determines a reward and a penalty for each

data point of the predicted expression. Reward is based on

expression that has been predicted correctly and penalty is based

on expression that has been predicted erroneously (i.e., over

expression or missed expression). For example, as the reward term

at data point 10 (where the model missed some portion of the real

expression), w-PGP uses the product of c10 (predicted expression)

and r10 (real expression). As the penalty term at the same data

point, w-PGP uses the product of e10 (missed expression) and p10

(the maximum possible value of missed expression). On the other

hand, for data point 7 (where there is an over expression), w-PGP

does not assign any penalty but computes the reward term as the

product of c7 (predicted expression) and r7 ( = c7).

(TIF)

Figure S11 Steps in computing a random expression pattern

corresponding to the real expression pattern of a gene G, for

setting up one kind of ‘‘negative control’’ experiments. If G has N

stripes and is expressed in K axial positions, we first select a

random number (denoted by ‘stripe count’) between N/2 and N as

the number of stripes of the random expression. Next, we compute

stripe count number of segments such that the lengths of those

segments sum up to K. These segments denote the widths of the

stripes in our random expression. Similarly, assuming that G is not

expressed in K0 number of axial positions, we compute stripe

count +1 number of segments such that the lengths of those

segments sum up to K0. These segments denote the widths of the

gaps between successive stripes in our random expression. We

then start with a gap, and concatenate the stripes and the gaps

alternately to generate the desired random expression. In a final

step, we smooth this random expression through a logistic

function.

(TIF)

Table S1 Intergenic locus sizes of the 27 genes modeled in the

study.

(PDF)

Table S2 w-PGP scores of GEMSTAT-GL predicted expression

patterns.

(PDF)

Text S1 Lack of estimates for pair-rule TF parameters constrains

the initial focus on primary pair-rule genes.

(DOCX)
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