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The COVID-19 pandemic gives humankind a lesson that the outbreak of an emerging

infectious disease (EID) is sudden and uncertain. Accurately mastering its dynamics

and putting forward an efficient and fair humanitarian logistics plan for personal

protective equipment (PPE) remains difficult. This study examines the decision making

for humanitarian logistics to answer the question that how to coordinate fairness and

efficiency when facing supply-demand imbalance during humanitarian logistics planning

in an EID environment. The main contributions include two aspects: (1) The victims’

losses in terms of fairness and efficiency in receiving PPE are jointly explored by

evaluating their bearing capacity evolution, and then a novel loss function is built to

search for a reasonable compromise between fairness and efficiency. (2) Amulti-objective

optimization model is built, which is solved using the combined use of goal programming

approach and improved branch and bound method. Finally, the practicability of the

proposed model is tested by an EID case study. The potential advantages of the

proposed model and improved approach are discussed.

Keywords: humanitarian logistics, emerging infectious diseases, personal protective equipment, multi-objective

optimization, branch and bound method

INTRODUCTION

In the past decade, public health emergencies have caused widespread concern around the world,
and emerging infectious diseases (EIDs) have become intractable in terms of prevention and control
of public health emergencies in all countries (1). The COVID-19 pandemic, broke out worldwide
in 2020 and lasted 2 years, is the most prominent example which has led to the numerous infected
cases worldwide (2). Evidence from different cases shows that it can spread through close contact
with infected persons and contaminated surfaces (3). It is important to note that the personal
protective equipment (PPE) is the last barrier to prevent people being infected (4). Therefore, the
appropriate humanitarian logistics planning for PPE is of great significance, such as mitigating the
potential disease spread risk, weakening the impacts on victims’ losses resulting from an undergoing
pandemic, and therefore benefiting the public safety and social welfare.

As one of the most impactive public health emergencies, an EID refers to such an infectious
disease that has a sudden occurrence in a short time (like a “black swan event”), spreads
across a large region and results in a large number of cases (5). It is very likely to cause
catastrophic damages to human health and even deprive their life. There are following three
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characteristics of an EID. First, once an EID breaks out, it may
spread rapidly and widely, so that it not only brings the physical
damage to the infected people, but also does harm to those who
are uninfected yet but psychologically distressed by the potential
risk (6). Therefore, when facing a humanitarian logistics planning
problem for PPE, the traditional cost function such as unmet-
demand cost cannot represent the whole loss, and a more proper
loss function is worth exploring. Second, the dynamics and
mutability of EID evolution reduce the accuracy and reliability of
gathered data and information (7). Under this premise, exploring
the law of EID evolution and quantification of the losses caused
by EID are both not easy. More particularly, the quantification of
losses caused by EID immediately influences the follow-up PPE
allocation decision-making quality. Third, there is an imbalance
between PPE demand and supply under an EID scenario (8,
9). PPE is usually insufficient, therefore such an imbalance is
often manifested by supply shortage during EID development,
which will cause the tradeoffs between the fairness and efficiency
issues when designing humanitarian logistics planning for PPE.
Moreover, the quantification of losses caused by EID is also
closely-related to PPE supply-demand imbalance.

By jointly considering the all three characteristics, two core
questions then arise as follows.

1. How Should the Losses Caused by EID be Exactly Quantified
by a Proper Approach in a More Scientific way?

2. How Should the Quantification of Losses Caused by EID
be Integrated With the Tradeoffs Between the Fairness and
Efficiency Issues?

This study seeks to answer these two questions by exploring the
victims’ losses in terms of fairness and efficiency in receiving
PPE and building a novel loss function to evaluate their bearing
capacity evolution. In previous studies, fairness and efficiency are
considered respectively in an independent way, e.g., represented
by two conflicting objectives (10–12). Then, search for a
proper compromise between them is difficult due to the non-
comparability between any two non-dominated solutions in a
Pareto Front. However, our proposed bearing capacity evolution
can overcome this drawback and reach a real compromise
between fairness and efficiency in humanitarian logistics.

Regarding the modeling and solution, a multi-objective
optimization model is built, which is solved by the combined use
of the goal programming approach and the improved branch and
bound (B&B)method. Although the goal programming approach
is frequently employed in the previous studies involving multi-
objective optimization issues, how to design the following-
up solution procedure to simultaneously pursue efficiency and
accuracy is worth exploring, especially when facing a large-scale
problem (11, 13). Moreover, integrating the goal programming
approach and the improved B&B method is also rare in the
previous humanitarian-logistics-related studies.

The remainder of this study is organized as follows. Section
2 conducts a literature review about the decision making on
humanitarian logistics for PPE. Section 3 introduces the network
structure, the mathematical model, and the solution procedure
for humanitarian logistics for PPE. Section 4 presents the
numerical results and Section 5 discusses the advantages of the

proposed model and solution. Section 6 presents the conclusions
and future directions.

LITERATURE REVIEW

Many related studies have been conducted and made different
contributions. The main research status is introduced as follows.

Humanitarian Logistics
Humanitarian logistics has become a popular topic in the last two
decades, comprehensive reviews about humanitarian logistics
have been proposed by Altay and Green (14), Caunhye et al. (15)
and Besiou and Van Wassenhove (1). Early research focuses on
vehicle routing problems (16, 17) and facility location problems
(18). Then, an increasing number of research turns the eyes to the
integration of those subproblems, for instance, Zhan et al. (19),
Rodríguez-Espíndola et al. (20) and Seraji et al. (21) both discuss
the location-allocation problem, while Moreno et al. (22) studies
the location-routing-allocation problem related to humanitarian
logistics. Duhamel et al. (23) and Shavarani (24) both deal with
the location-routing problem to optimize the humanitarian
relief distribution decision-making. Eisenhandler and Tzur (11)
address the routing-allocation problems to guide the decision-
making in collecting food donations from suppliers in the food
industry and delivering them to humanitarian relief agencies that
serve individuals in need. Most of the aforementioned studies
do not consider dynamics such as emergencies evolution and
information updates. Not-enough-accurate and even incorrect
information may cause catastrophic consequences. Therefore,
considering the dynamics in humanitarian logistics has
important practical significance. Early studies pay considerable
attention to forecasting the evolution law of emergencies,
but ignore the follow-up decision making on humanitarian
logistics. For example, Sheu (25) focuses on the relief demand
management based on an imperfect information environment,
but omits relief allocation decision-making. To make up this
lack, in another study of Sheu (26), he deduces the “perception-
attitude-resilience” evolution relationship of demanders through
psychological and cognitive theories to aid the relief goods
allocation. Lu et al. (27) present a rolling horizon approach
enabling the established model to conform to the evolution law
of demand information. Haghi et al. (28) consider the changes
in demand to build a model for the distribution of relief supplies
and transfer of the wounded. Recent studies combine the
dynamics and the follow-up decision-making together to present
an integrated event-oriented relief logistics plan, for instance,
Zhang et al. (29) examine the emergency resource allocation
problem by simultaneously considering three stages including
pre-, primary- and secondary-event stage. Cao et al. (30)
address a dynamic multi-time-period relief distribution model
considering supplies uncertainty, hierarchal decision levels and
conflicting objectives. Uichanco (31) develops an integrated
stochastic prepositioning model in which the probabilities
of demand and supply damage are both dependent on the
event outcome.

The distribution of humanitarian supplies in response to
EID is also very important, but the research on this issue is
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relatively limited. Most research still focuses on the humanitarian
logistics of large-scale natural disasters without considering
the characteristics of EID (33–35). Only a few studies have
considered the dynamics and mutability of EID evolution. Zaric
and Brandeau (36) develop a dynamic resource allocation model
for epidemic control over multiple time periods to interventions
that affect multiple populations. Wang et al. (37) construct
a multi-objective stochastic programming model with time-
varying demand based on the epidemic diffusion rule, and
Genetic algorithm and Monte Carlo simulation are used to
solve the problem. He and Liu (38) present a new medical
emergency logistics model based on the time-varying forecasting
and relief distribution to deal with public health emergencies.
Büyüktahtakin et al. (39) build an epidemics-logistics mixed-
integer programming model to determine the optimal amount,
timing and location of resources to control an infectious disease
outbreak. Qin et al. (40) propose an even swaps method based
on the prospect theory with hesitant fuzzy linguistic term sets
to put forward emergency logistics plans under the COVID-19
pandemic outbreak. However, the dynamics of demand depicted
in these studies are related to time or scenario, not to the victims’
bearing capacity which is more direct and accurate. Therefore,
the present study aims to overcome this drawback and reexamine
the dynamics of demand by building the victims’ losses function
based on their bearing capacity evolution.

Multi-Objective Optimization
Numerous studies formulate humanitarian logistics problem as
a multi-objective optimization model. Traditional studies have
optimized over efficiency-related and fairness-related criteria.
For example, Tzeng et al. (41) propose the time, cost and
demand satisfaction as main pursued objectives, Vitoriano et al.
(42) consider more highly-relevant criteria, such as reliability,
security, priority and ransack probability, Huang et al. (43) add a
new metric called efficacy which denotes the extent to which the
goals of quick and efficient logistics are met, Tofighi et al. (44)
focus on the timely and fair provision of aid and propose a multi-
objective model from two novel aspects including egalitarian
aspect and utilitarian aspect. In comparison, the recent studies
propose multiple criteria from much wider viewpoints. Roughly
speaking, the utility (45), risk (46), sustainability-related metrics
such as carbon-emissions (30) are main new-added criteria.
In some recent research, the criteria are deepened in detail
to the operational level. For instance, Zhou et al. (47) tackle
two objectives involving minimizing the unmet demand and
minimizing the risk of choosing the damaged road for dynamic
emergency resource scheduling problems, Cao et al. (13) pursue
simultaneously the maximization of the victims’ satisfaction and
minimization of the deviation on satisfaction in humanitarian
relief distribution, Uichanco (31) coordinates two objectives
involving minimizing the unmet demand and minimizing the
unmet proportion of demand for prepositioning humanitarian
relief items, Mohammadi et al. (32) consider three objectives
where the first objective minimizes the total logistics costs and
the third one minimizes the variation between upper and lower
bounds of transportation cost. According to incomplete statistical

survey involving the recent three-year studies on humanitarian
relief logistics optimization, the timeliness (e.g. minimizing total
time) and fairness (e.g. minimizing unmet demand) are still the
main concerns, but how to coordinate them and search for a
proper compromise is still under discussion.

Regarding the methodologies for multi-objective
optimization, the Pareto front is worth exploring by some
popular methods, such as ε-constrained method (31, 48),
augmented ε-constrained method (10) and fuzzy goal constraint
approach (29). When facing large-scale numerical examples,
the solution approaches, developing two main streams which
include either exact approach and the heuristics, have beenwidely
examined. With respect to exact approach, Dalal and Üster (49)
build a robust optimization model to aid emergency relief
supply planning and solve the model by Benders decomposition
method, Cao et al. (30) employ a hybrid global criterion method
by incorporating a primal-dual algorithm, expected value
and branch-and-bound approach to solve the multi-period
humanitarian relief distribution model, Mohammadi et al. (32)
solve the humanitarian facility location and vehicle routing
model by using GAMS software and the BARON optimization
solver. Regarding heuristics, the evolutionary algorithm (47),
genetic algorithm (13, 50), bi-level algorithm (51), colony
optimization algorithm (52) and NSGA-II (12) are employed
in different multi-objective optimization studies. The common
limits of the above studies lie in the non-comparability between
any two non-dominated solutions in a Pareto Front. However,
our proposed bearing capacity evolution, and the follow-up
solution approach integrating the goal programming approach
and the improved B&B method can overcome this drawback
and reach a real compromise between fairness and efficiency in
humanitarian logistics.

HUMANITARIAN LOGISTICS MODEL
BASED ON VICTIMS’ BEARING CAPACITY
EVOLUTION

Problem Description
This study examines a three-layer location-allocation network
considering multiple PPEs and multiple vehicles. Three network
layers, including reserve centers, distribution centers (DCs),
and affected areas, respectively have different roles, capacities,
and locations. Reserve centers denote warehouses, with fixed,
predetermined locations and capacities, that store multiple PPEs
and emergency vehicles. Multiple PPEs shows actual demand in
an EID scenario, such as masks, gloves, gown and face shields,
which have different importance to victims. Multiple vehicles
refer to the diversified transportationmodes that combine several
kinds of vehicles with different loading weights. DCs gather and
integrate the multiple PPEs and multiple vehicles transported
from the reserve centers, and then deliver them to the affected
areas. Borrowing the idea of Li et al. (53), the locations of
DCs are undetermined, and needed to be chosen from several
candidate locations which have different capacities for PPEs and
vehicles. Decision makers have to select optimal locations for
DCs before an EID occurs and allocate PPEs after the EID.
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FIGURE 1 | The humanitarian logistics network.

Multiple objectives should be addressed during decision making.
Figure 1 shows the network structure.

The Model
Sets and Parameters
H is set of reserve centers, h ∈ H.
I is set of candidate locations of DCs, i ∈ I.
J is set of affected areas, j ∈ J.
K is set of PPEs, k ∈ K.
M is set of vehicle types,m ∈ M.
N is set of objective functions, n ∈ N.
Dhij is the distance from reserve center h to DC i and then to

affected area j (m).
C is the maximum coverage range of vehicles in the reserve

centers, that is, the longest transportation distance that
vehicles can travel (m).

wk is the weight, reflecting the importance of PPE k to victims.
Vm is the maximum loading weight of vehiclem (kg/vehicle).
Uhm is the supply of vehiclem in the reserve center h (vehicles).
Whk is the supply of PPE k in the reserve center h (kg).
Pim is the maximum capacity of vehiclem in DC i (vehicles).
Qik is the maximum capacity of PPE k in DC i (kg).
djk is the demand quantity of the affected area j for PPE k (kg).
fm is the transportation cost of vehicle m per unit

distance (yuan/m).
em is the transportation time of vehicle m per unit

distance (s/m).
ci is the renting cost of DC i (yuan).

Decision Variables
zi is location variable, indicates whether the candidate location i

is used as the DC.
xhijm is routing variable, indicates the number of vehicle m to

transport PPE from the reserve center h to the DC i and then
to the affected area j (vehicles).

FIGURE 2 | Unit cost curve of victims’ waiting for PPE k.

yhijkm is allocation variable, indicates the quantity of PPE k
which are delivered by vehicles m from the reserve center h
to the DC i and then to the affected area j (kg).

Objective Function G1: Minimizing Total Losses in

Waiting for PPE
In an EID scenario, victims’ bearing capacity evolution is actually
a process of loss accumulation. Long waiting time leads to
increase in victims’ losses. In this study, such losses are quantified
by costs. Suppose the cost curve of victims waiting for one unit
of PPE k is λk (t), where t is the waiting time. When facing
PPE supply shortage, victims’ physiological and psychological
bearing capacity continuously decreases as time passes. This
decline rate is continuously intensifying. Hence, the cost curve
increases in a limited time range by an increasing growth rate

(see Figure 2). In other words, λ
′

k (t) > 0 and λ
′′

k (t) > 0. Victims
that do not receive any PPE for a long time will receive the
maximum cost after a certain time point. At this point onward,
correspondingly, the cost curve of victims becomes a horizontal
straight line (λMAX

k
).

A loss function (Ljk) that uses waiting time as the independent
variable is designed as follows, which reflects victims’ total losses
caused by waiting for PPE k in the affected area j.

Ljk =

(

djk −
∑

h

∑

i

∑

m

yhijkm

)

· λMAX
k

+
∑

h

∑

i

∑

m

yhijkm · λk (t) (1)

where

t = em · Dhij. (2)

This loss function contains two parts. The first part indicates
victims’ losses caused by unmet demands (influences the
realization of the fairness objective), and can be viewed as
victims’ losses caused by infinite delay of PPE. The second part
denotes victims’ losses caused by delayed supply (influences the
realization of the efficiency objective), and can also be viewed as
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victim’s losses caused by finite delay of PPE. Therefore, this loss
function measures both the fairness and efficiency, and is in fact,
a compromise between these two conflicting objectives.

After building the loss function, the objective function G1 can
be formulated as follows.

G1 = min
∑

j

∑

k

Ljk · wk. (3)

Objective Function G2: Minimizing Total Logistics

Costs

G2 = min





∑

i

ci · zi +
∑

h

∑

i

∑

j

∑

m

Dhij · fm · xhijm



 . (4)

This objective function also contains two parts. The first part is
the renting cost of DCs, whereas the second is the transportation
costs of PPEs.

Constraints

xhijm =















≥ 0,Dhij ≤ C

= 0,Dhij > C

,∀h, i, j,m. (5)

∑

i

∑

j

xhijm ≤ Uhm,∀h,m. (6)

∑

i

∑

j

∑

m

yhijkm ≤ Whk,∀h, k. (7)

∑

h

∑

j

xhijm ≤ Pim · zi,∀i,m. (8)

∑

h

∑

j

∑

m

yhijkm ≤ Qik · zi,∀i, k. (9)

∑

k

yhijkm ≤ Vm · xhijm,∀h, i, j,m. (10)

∑

h

∑

i

∑

m

yhijkm ≤ djk,∀j, k. (11)

zi = 0 or 1,∀i. (12)

xhijm is non−negative integer, ∀h, i, j,m. (13)

yhijkm ≥ 0,∀h, i, j, k,m. (14)

Constraint (5) involves vehicle coverage, which indicates that
each vehicle is only responsible for the delivery of PPEs to
the affected area within a permitted distance. This constraint
not only ensures the timeliness but also the quality and safety
of PPEs. In an EID scenario, long-distance transportation is
often unreliable because of the implementation of lockdown
policies. Constraints (6) and (7) concern the reserve capacity
of reserve centers that represent the maximum supply of
vehicles and PPEs in reserve centers. Constraints (8) and (9)
concern the maximum capacity of DCs for routing vehicles
and allocating PPEs respectively. In addition, only chosen DCs

are ensured to have flows of vehicles and PPEs. Constraint
(10) is the maximum load capacity of vehicles for filling with
PPEs. Constraint (11) indicates that the quantity of delivered
PPEs is no more than the demand of victims, because excessive
delivery is a considerable waste given the premise of shortage
of PPEs. Finally, constraints (12)–(14) define the value ranges of
decision variables.

Solution Procedure
The proposed model is obviously a multi-objective optimization
model and a complicated mixed-integer programming model
if being applied to a large-scale numerical example. To
simultaneously deal with these two within a reasonable runtime
and with high accuracy is difficult in real-world practice. Under
this consideration, this study puts forward a solution procedure
by integrating goal programming approach and an improved
B&B method.

In a humanitarian logistics optimization problem, the timely
and effective delivery is vital. Cost minimization is often regarded
as a less important goal. Therefore, two objective functions
have clear priorities in terms of importance: G1 is far superior
to G2. For such multi-objective programming problems, goal
programming is an effective approach. Thus, the multi-objective
programming model is transformed to a goal programming
model, such as:

min
(

λ1 · θ
+
1 + λ2 · θ

+
2

)

(15)

where λ1 and λ2 are priorities of the two objective functions.
According to above analysis, λ1 >> λ2. θ

+
1 and θ

+
2 are

positive deviation variables, indicating that the original objective
functions are larger than the quantity of ideal levels R1 and
R2. Accordingly, negative deviation variables θ

−
1 and θ

−
2 exist,

reflecting that the original objective functions are smaller than
the quantity of ideal levels. However, given that the two objectives
pursue minimization, only the positive deviation variables have
to be minimized.

Apart from the constraints of the original model, other
constraints include the following:

Gn + θ−n − θ+n = Rn,∀n (16)

θ−n · θ+n = 0,∀n (17)

θ−n ≥ 0, θ+n ≥ 0,∀n (18)

Equation (16) shows the relationship between the original
objective function and the ideal level. Equation (17) is the
expression of logical relations between the positive and negative
deviation variables. When the objective function exceeds the
ideal level, the positive deviation variables are larger than
0 and the negative deviation variables are certainly 0. By
contrast, when the objective function does not exceed the
ideal level, the negative deviation variables are larger than
0 and the positive deviation variables are certainly 0. If the
objective function is only equal to the ideal level, then both
the positive and negative deviation variables are 0. Equation
(18) defines the value ranges of the positive and negative
deviation variables.
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After converted into goal programming, the original multi-
objective optimization model becomes a large-scale mixed-
integer programming model with a single objective. The B&B
method is used as a solution by decomposing the mixed-integer
programming model into a linear programming model and
subsequently solving the linear programming model repeatedly.
B&B, proposed by Land Doig and Dakin in the 1960s, is
an algorithm design paradigm for discrete and combinatorial
optimization problems, as well as mathematical optimization
(54). However, a traditional B&Bmethod cannot efficiently avoid
exponential expansion of B&B tree when using tree search.
This study uses the Xpress-MP software (developed by Dash
Optimization), which uses an improved B&B method to avoid
exponential node growth. A series of advanced algorithms used
by Xpress-MP, such as pre-solving, cutting planes, branching
variable selection, node preprocessing, and heuristics, can
overcome the disadvantages of the traditional B&B method. Key
procedures of improved B&B method are as follows. First, solve
the LP relaxation, and save the basis of the optimal solution.
Second, fix location variables to 0 if the corresponding routing
and allocation variables are close to 0, and to 1 if they have
relatively large values. Third, solve the resulting branched MIP
problem. Fourth, if an integer feasible solution was found, save
the value of the best solution. Five, restore the original problem
by resetting all variables to their original bounds, and load
the saved basis. Six, solve the original MIP problem, using
the heuristic solution as cutoff value. Branches without roles
in searching the best solution are cut; thus, the tree size will
not expand quickly. This method has been proved suitable
to solve large-scale complicated mixed-integer programming
problems (55, 56).

EXAMPLE OF DEMONSTRATION

Example Description
A hypothetical EID occurs in the south region of Wenzhou, a
southeastern city in China. Five areas are affected, namely,
Rui’an, Pingyang, Cangnan, Wencheng, and Taishun.
Demands for PPEs such as masks and protective clothing
are very large (see Table 1), with weights 0.6 and 0.4,
respectively. Officials gather vehicles (light, medium, and
heavy vehicles) in reserve centers in Shiqu, Yongjia, and
Yueqing to deliver PPEs to affected areas. Table 2 lists
the quantity of PPEs and vehicles in reserve centers.
Two candidate locations of DCs (DC1 and DC2) are
present. Table 3 shows the capacities of these two DCs,
and their renting costs are RMB 800,000 and 600,000,
respectively. To ensure timeliness of PPE allocation,
officials determine that the maximum transportation radius
of vehicles is 150 km. Table 4 shows the other parameter
settings. Additionally, the following is the cost function of
waiting for PPEs:

λk(t) =

{

t2

7315661 , 0 ≤ t ≤ 604800
50000, t > 604800

.

TABLE 1 | Demands in affected areas (1,000 kg).

Affected areas Masks Protective clothing

Rui’an 146 0

Pingyang 150 0

Cangnan 165 0.16

Wencheng 150 11.4

Taishun 320 3.04

TABLE 2 | Supplies in reserve centers (1,000 kg; vehicles).

Masks Protective Light Medium Heavy

clothing vehicles vehicles vehicles

Shiqu 500 6 30 15 10

Yongjia 150 2 10 5 2

Yueqing 300 4 20 10 5

TABLE 3 | Capacities of DCs (1,000 kg; vehicles).

Masks Protective Light Medium Heavy

clothing vehicles vehicles vehicles

DC1 800 10 50 25 12

DC2 600 8 40 20 10

TABLE 4 | Other parameters.

Light Medium Heavy

vehicles vehicles vehicles

Load capacity of vehicles (kg/vehicle) 5,000 10,000 20,000

Unit transportation cost (yuan/m) 0.1 0.2 0.3

Unit transportation time (s/m) 0.06 0.07 0.09

Optimal Plans for Humanitarian Logistics
The proposed model is solved by using the Xpress-MP 8.13
on a computer with 3.4 GHz CPU and 8 GB RAM. First,
the single objective model of each objective function is solved
independently, and the best values are used as the ideal levels
of the two objectives. R1 = 1.26358e + 8 and R2 = 0 are
obtained and then both inserted into the goal programming
model on the premise of λ1 >> λ2, resulting in θ

+
1 = 0 and

θ
+
2 = 3.1975e+ 6. This means that the minimum victims’ losses
caused by waiting for PPEs amount to RMB 0.126 billion, which
fully reaches the ideal level. This also represents the compromise
between fairness and timeliness during the humanitarian aid
reaches an optimal level. Second, we regard the best values of two
single-objective models as the lower bounds of two objectives,
and the worst values [respectively resulting in 2.8222e +

10 solved by max
∑

j

∑

k Ljk · wk, and resulting in 3.7105e +

6 solved by max
(

∑

i ci · zi +
∑

h

∑

i

∑

j

∑

m Dhij · fm · xhijm

)]

of two single-objective models as the upper bounds of two
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FIGURE 3 | Gap between best solution and best bound.

objectives. Then, using a specified formula such as (current
value − lower bound)/(upper bound − lower bound), the
percentage deviations of two objectives are respectively obtained
as 0% and 86.17%. Although the second objective is not close
to its ideal level, the absolute deviation (i.e. RMB 3.1975
million) is also acceptable when standing on the viewpoint of
the humanitarians to pay the logistics costs of PPEs. Third,
as shown in Figure 3, the total runtime is < 1 s, which
highly meets the demand of timeliness in humanitarian aid.
Figure 3 also depicts the gap between the optimal solution and
the optimal bound, that is, the optimal solution reaches the
optimal bound, which infers the high accuracy of proposed
solution method.

Figure 4 shows specific plans for humanitarian logistics.
Vehicles in all reserve centers have been used thoroughly. Both
DC1 and DC2 are chosen to meet the demands of affected areas
as much as possible. Note that Rui’an and Taishun only receive
one vehicle route. According to further observation, Rui’an is
slightly affected and does not need too many vehicles. Taishun
is heavily affected and far away from DCs. Vehicles appointed
to Taishun all come from Shiqu, because the maximum coverage
of vehicles restricts long-term transportation. Therefore, two
interesting insights are gleaned, as follows: (i) the best solution
of PPE allocation is prioritizing heavily affected areas than
slightly affected areas to realize the fairness consideration; (ii)
the best solution ensures timeliness of PPE allocation through the
maximum coverage range of vehicles.

FIGURE 4 | Optimal plans for humanitarian logistics.

DISCUSSION

Tradeoffs Between the Two Objectives
To verify the rationality of the best solution of the model,
we analyze the changes of minimum logistics costs (second
objective function) by increasing the ideal level of total losses
(first objective function), which are depicted in Figure 5.
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Obviously, each dot in Figure 5 represents a tradeoff between
two conflicting objectives, and the fitted curve linking all the
dots forms the Pareto Front. From a traditional viewpoint,
it is hard to say which one is better between any two dots
in the Pareto Front. However, the minimum logistics cost

FIGURE 5 | Tradeoffs between the two objectives.

decreases mildly when the ideal level of total losses increases.
Even the ideal level of total losses increases by 100 times
(that is, the minimum total losses are RMB 12.6 billion), the
minimum logistics costs only decrease by 1.67 times (RMB
1.91 million). This implies that the increase of total losses
cannot significantly decrease logistics cost. In other words,
saving a certain amount of logistics costs will cause a dramatic
increase of victims’ losses, which is not acceptable because
social welfare must be superior to economic burdens in
humanitarian-aid practice. Nevertheless, the tradeoff between the
two objective functions are reasonable in the abovementioned
numerical results.

The Merit of the Improved B&B Method
The merit of the improved B&B method mainly lies in
three aspects.

First, the improved B&B method avoids the exponential
growth of the B&B tree. The B&B tree is mostly not large, even
if the most complicated B&B tree (which emerges when the ideal
level of total losses increases by 100 times) is acceptable (see
Figure 6). The reason is that many advanced technologies are
employed as the core components in the Xpress-MP, such as
pre-solving, cutting planes, branching variable selection, node
preprocessing, and heuristics. These technologies continuously
act on the formation and evolution of the B&B tree and
significantly influence the solution time.

FIGURE 6 | Most complicated B&B tree in this study.
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TABLE 5 | Comparisons between traditional and improved B&B.

Constraints Variables Non-zero elements Best solutionstatus Best solution error Runtime (s)

Traditional B&B 385 259 1397 Global opt. 0 12

Improved B&B 109 191 805 Global opt. 0 0.1

ց71.7% ց26.3% ց42.4% → → ց99.2%

FIGURE 7 | The steadiness of method under different parameter settings.

Second, the solution efficiency is given a big boost by the
improved B&B method. We compare it with the traditional
B&B method to respectively deal with the numerical case on the
premise of the same settings (i.e. R1 = 1.26358e + 8, R2 = 0,
and λ1 >> λ2). Benefiting from pre-solving and other advanced
technologies, the improved B&B leads to much smaller-scale
constraints, variables, and non-zero elements, and the resulting
much less runtime than the traditional B&B. It is worth noting
that, this significant improvement of solution efficiency is not
on the premise of sacrificing the solution accuracy. The solution
accuracy still stays unchanged (see Table 5).

Third, the result robustness is proved good by the improved
B&B method. Recall that in Figure 5, the curve of Pareto Front
results from the gradual increase of the ideal level of total losses.
Therefore, it is proper to regard the ideal level of total losses as
a key parameter. Then, we conduct a sensitivity analysis with
respect to the ideal level of total losses to show its effect on
solution error and runtime. As shown in Figure 7, when the ideal
level of total losses gradually increases from its original value
to 100-times expansion, the best solution error and runtime are
both very close to zero, and their changing curves both keep flat
with slight fluctuation. More precisely, the best solution error
ranges only from 0 to 0.2%, whereas the runtime ranges only
from 0 to 20 s. This implies that the improved B&B method can
ensure the result robustness regardless of which tradeoff reached
by the total losses and logistics cost. This is very important
for humanitarian logistics practice. The steady and high-quality
performance of not only accuracy but also efficiency of the
improved B&B method to solve the numerical case agrees with
the requirements on humanitarian logistics.

CONCLUSIONS

EID is an unforeseeable public health emergency, therefore
tackling the dynamics issue and putting forward reasonable and
efficient plans for humanitarian logistics is an important research
topic. This study examines the decision-making problem for
locating the DCs and allocating PPEs to victims based on victims’
bearing capacity evolution. In a three-layer network composed
of reserve centers, DCs, and affected areas, the location of DCs
and allocation of PPEs are simultaneously optimized. Logistics
time and demand satisfaction level are incorporated to build a
loss function on the victims’ side. Moreover, a multi-objective
optimization model is formulated and applied to a case study.
The following are the conclusions and insights.

First, the optimal level of the compromise between fairness
and timeliness is reached, because the optimal result of first
objective fully reaches the ideal level. The loss function plays
an important role on leading to this result, which can help the
decision maker put forward a reasonable, optimal humanitarian
logistics plan in practice.

Second, minimizing victims’ total losses is superior to
minimizing logistics costs. The decrease of the ideal level of
victims’ total losses cannot significantly improve the best value
of logistics costs. This finding conforms to the characteristics of
humanitarian logistics. Minimizing victims’ total losses, to some
extent, representing pursuing the social welfare, must be superior
to economic burdens.

Third, the combined use of the goal programming approach
and the improved B&B method has significant merit which
includes avoiding the exponential growth of the B&B tree,
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improving the solution efficiency, and ensuring the good result
robustness. In other words, the proposed solution approach
can simultaneously pursue efficiency and accuracy when facing
a large-scale problem, which meets the requirements of quick
response in practice.

However, this study still has several limitations. The real-
world decision making involves other more practical factors.
Further research can add the stochastic components to re-
building the loss function and re-formulating the model.
Considering a more complicated humanitarian logistics network
and the three-dimensional transportation modes based on
multiple transportation platforms are also an improved way.
Nonetheless, we hope this study can provide an efficient and
fair decision-making tool to deal with the humanitarian logistics
planning for PPEs, and relatively make up the gaps existed in the
present decision-making framework.
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