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Soret–Dufour impact 
on a three‑dimensional Casson 
nanofluid flow with dust particles 
and variable characteristics 
in a permeable media
Naila Shaheen1, Muhammad Ramzan1, Ahmed Alshehri2, Zahir Shah3,4* & Poom Kumam5,6*

In this study, the effects of variable characteristics are analyzed on a three-dimensional (3D) dusty 
Casson nanofluid flow past a deformable bidirectional surface amalgamated with chemical reaction 
and Arrhenius activation energy. The surface is deformable in the direction of the x-axis and y-axis. 
The motion of the flow is induced due to the deformation of the surface. The impression of Soret and 
Dufour’s effects boost the transmission of heat and mass. The flow is analyzed numerically with the 
combined impacts of thermal radiation, momentum slip, and convective heat condition. A numerical 
solution for the system of the differential equations is attained by employing the bvp4c function in 
MATLAB. The dimensionless parameters are graphically illustrated and discussed for the involved 
profiles. It is perceived that on escalating the Casson fluid and porosity parameters, the velocity field 
declines for fluid-particle suspension. Also, for augmented activation energy and Soret number, the 
concentration field enhances. An opposite behavior is noticed in the thermal field for fluctuation 
in fluid-particle interaction parameters for fluid and dust phase. Drag force coefficient increases on 
escalating porosity parameter and Hartmann number. On amplifying the radiation parameter heat and 
mass flux augments. A comparative analysis of the present investigation with an already published 
work is also added to substantiate the envisioned problem.

Nomenclature
b	� Positive constant
B0	� Magnetic field strength
c	� Positive constant
cs	� Concentration susceptibility
cp	� Specific heat capacity of the fluid
Cw	� Concentration at the surface
C∞	� Fluid ambient concentration
cm	� Specific heat of dust particle
Cf 	� Skin friction coefficient
DT	� Thermophoretic diffusion coefficient
DB	� Brownian diffusion coefficient

OPEN

1Department of Computer Science, Bahria University, Islamabad 44000, Pakistan. 2Department of Mathematics, 
Faculty of Sciences, King Abdulaziz University, Jeddah  21589, Saudi Arabia. 3Department of Mathematical 
Sciences, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa 28420, Pakistan. 4Center of Excellence 
in Theoretical and Computational Science (TaCS‑CoE), Faculty of Science, King Mongkut’s University of Technology 
Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok  10140, Thailand. 5Fixed Point 
Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical 
and Computational Science (TaCS‑CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi 
(KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok  10140, Thailand. 6Department of Medical 
Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan. *email: zahir@
ulm.edu.pk; poom.kum@kmutt.ac.th

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93797-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14513  | https://doi.org/10.1038/s41598-021-93797-2

www.nature.com/scientificreports/

DB(C)	� Variable molecular diffusivity
DB∞	� Ambient diffusion coefficient
d	� Variable thermal conductivity parameter
Df = DTk

∗
t (Cw−C∞)

νcscp(Tw−T∞)
	� Dufour number

Ea	� Activation energy
E = Ea

kT 	� Activation energy parameter
e	� Variable molecular diffusivity parameter
h1	� Convective heat transfer coefficient
Ha = σB2o

ρc 	� Hartmann number
H1 = h1

k∞

√

ν
c 	� Heat transfer Biot number

K = 6πµr	� Stoke’s drag constant
k(T)	� Temperature-dependent thermal conductivity
k̄	� Mean absorption coefficient
K∗	� Permeability of porous medium
k2r 	� Chemical reaction parameter
k∗t 	� Thermal diffusion
L = S

√

c
ν

	� Velocity slip parameter
m	� Mass of dust particle
n	� Fitted rate constant
Nb = τ(Cw−C∞)DB

ν
	� Brownian motion parameter

Nt = τDT (Tw−T∞)
νT∞

	� Thermophoretic parameter
Nux	� Local Nusselt number
P = b

c	� Stretching ratio parameter
Pr = µcp

k∞
	� Prandtl number

qr	� Radiative heat flux
Qw	� Heat flux
Qm	� Mass flux
Re = c(x+y)

2

ν
	� Local Reynold number

Rd = 4σ̄T3
∞

k̄k∞
	� Radiation parameter

r	� The radius of a dust particle
S	� Velocity slip factor
Sc = ν

DB
	� Schmidt number

Sr = DTk
∗
t (Tw−T∞)

νTm(Cw−C∞)
	� Soret number

Shx	� Local Sherwood number
T	� Temperature of fluid
Tp	� The temperature of the dust particle
Tw	� The temperature at the surface of a sheet
T∞	� Fluid ambient temperature
u, v,w	� Component of velocity
up, vp,wp	� The velocity of dust particles
x, y, z	� Cartesian coordinate

Greek symbols
ρ	� Fluid density
� = Nm

ρ
	� Mass concentration of dusty granules

σ1	� Electrical conductivity
β	� Casson parameter
τ	� The quotient of effective heat capacity of nanoparticle to the heat capacity of liquid
τv = m

K 	� The relaxation time of the dust particle
ρp = mN	� The density of dust particle
σ̄	� Stefan Boltzmann constant
�1 = ν

K∗c	� Porosity parameter
δv = 1

τvc
	� Fluid particle interaction parameter for velocity

τT	� Thermal equilibrium time
ν	� Kinematic viscosity
ζ	� Dimensionless variable
α = Tw−T∞

T∞
	� Temperature difference

γ = cp
cm

	� The ratio of specific heat

δ = k2r
c 	� Dimensionless reaction rate

τzx	� Shear stress in the x-direction
τzy	� Shear stress in the y-direction
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The dusty fluid is formed with the amalgamation of dust granules with base fluid. Researchers have immensely 
emphasized fluid-particle suspension past an elongated surface as it has enormous applications in industry, 
engineering, and in the field of medicine such as power technology, cooling of nuclear reactors, power plant 
piping, retrieval of crude oil, sedimentation process, wastewater treatment, the formation of raindrops, emis-
sion of smoke from vehicles and environmental pollution. Hady and Mahdy1 presented the convective flow of 
an electrically conducting dusty Micropolar fluid in a porous chamber with convective heat conditions. It is 
observed here that the temperature field of dusty granules elevates on incrementing the fluid-particle interaction 
parameter. A numerical solution for time-independent two-phase Jeffery fluid flow is presented by Zokri et al.2 
past a shrinking surface. The flow is incorporated with the effect of suction and Newtonian heating. It is found 
that the velocity of dusty flow upsurges on increasing the fluid-particle interaction parameter, whereas, for fluid 
flow, an opposite behavior is observed. Bio convective dusty nano liquid flow is numerically probed by Dey et al.3 
over a vertical elongated surface. It is reported that the concentration of microorganisms augments for rising 
values of the Brownian motion parameter. Bibi et al.4 numerically inspected time-dependent nonlinear radia-
tive two-phase pseudoplastic fluid flow over an elongated surface. It is perceived that enhancing the nonlinear 
thermal radiation parameter temperature for both phases escalates. Subsequently, exploration in this regard with 
different physical aspects can be seen in Refs.5–9.

In the fluid flow, two mechanisms are involved in the conduction of heat. First, when the collision amid the 
molecules increases. Second, thermal conductivity plays a key role in escalating the random movement among 
the molecules. Thermal conductivity has significant applications in steam generators, electrolytes, concrete heat-
ing, and laminating. The characteristics of temperature-dependent thermal conductivity assimilated with mass 
diffusion on a radiative Casson fluid embedded in a porous medium past an elongated surface are analytically 
exhibited by Sohail et al.10. The findings disclosed that on escalating the Hartmann number and thermal radiation 
parameter, thermal field upsurges. The time-dependent flow of Pseudoplastic fluid past an extendable surface 
incorporated with homogeneous heterogeneous (h–h) reaction is numerically scrutinized by Hamid11. In this 
study, a substantial upsurge is noticed in the temperature field on augmenting the variable thermal conductiv-
ity. The features of the heat flux model on a time-independent 3D flow of non-Newtonian fluid are studied by 
Ramadevi et al.12 with irregular heat source/sink past an elongated surface. It is noticed that the coefficient of 
mass transfer upsurges for rising values of the chemical reaction and stretching ratio parameter. Lu et al.13 analyti-
cally explored the outcome of temperature-dependent thermal conductivity combined with nonlinear thermal 
radiation on a magnetohydrodynamic Oldroyd-B nanofluid flow over a bidirectional elongated sheet with robin 
conditions. Further analysis of temperature-dependent thermal conductivity is mentioned in Refs.10,14–22.

The Soret–Dufour factor plays a key role in the transmission of heat and mass on a moving fluid. It has a 
vital role in several applications which include the design of nuclear reactors, geothermal energy, groundwater 
pollutant migration, oil reservoirs, isotopes separation, manufacture of rubber and plastic sheets, the mixture of 
gases, compact heat insulation exchanger, and nuclear waste disposal. Radiative flux with Soret–Dufour effect 
on a Darcy Forchheimer (DF) nano liquid flow past a linear elongated sheet is illustrated by Rasool et al.23. It 
is noticed that for growing values of Soret number, solutal field augments. Similar behavior is observed in the 
thermal field for the Dufour number. Using the Boungirono model Prasad et al.24 explored the mechanism of 
Soret–Dufour effect on a 3D convective Oldroyd-B fluid flow past a deforming surface with velocity slip and 
convective heat condition. It is reported that fluid velocity upsurges on incrementing the Deborah number. On a 
Micropolar nanofluid flow, Ibrahim et al.25 investigated the impact of the Soret and Dufour factor with multiple 
slip conditions past a bidirectional surface. The characteristic of heat and mass transfer on a mixed convective 
Jeffery fluid flow over a bidirectional stretchable sheet amalgamated with Soret–Dufour effect and chemical reac-
tion is examined by Iftikhar et al.26. Significant researches in this direction are mentioned in Refs.27–38.

Researchers have manifested concern about fluid flow across the permeable surface. The flow through the 
porous chamber is very common and has widespread applications in industries, petroleum, chemical engineer-
ing for instance crude oil extraction, storage of nuclear waste material, movement of oil and water across the oil 
reservoir, heat exchangers, drying process, MHD generators, seepage of water in river beds, filtration, and water 
purification process. On a radiative Maxwell nanofluid flow, Jawad et al.39 analytically investigated the impact 
of the Soret–Dufour factor on a nonlinear elongated porous surface. Variable characteristics of Newtonian fluid 
with thermal radiation on a deforming sheet immersed in a porous medium are explored by Megahed et al.40. It 
is reported that on enhancing the viscosity and magnetic parameter, heat flux diminishes. Irfan et al.41 reported 
the influence of chemical reaction and internal heat generation/absorption on a radiative bio-nanofluid flow 
past a deforming surface with stagnation point flow in a porous chamber. On a time-dependent viscous fluid 
flow, Rosali et al.42 investigated transmission of heat amalgamated with stagnation point flow past a deforming 
surface with porosity effect. Substantial research past a permeable deformable surface with several physical 
aspects is cited in Refs.43–57.

The aforementioned studies revealed that a good number of studies may be quoted that discuss the nano-
fluid flow with Soret–Dufour effects past an extended surface. However, the 3D two-phase Casson nanofluid 
flow amalgamated with dust particles and variable thermal conductivity amalgamated with mass diffusion is 
still scarce. The impression of the Soret and Dufour effect boosts the transmission of heat and mass. The flow is 
analyzed numerically with the combined impact of thermal radiation, chemical reaction with activation energy, 
momentum slip, and convective heat condition. The mathematical model is deciphered through MATLAB soft-
ware bvp4c. The outcome of numerous parameters is examined via tabular and graphical illustrations. The 
novelty of the presented mathematical model is illustrated in Table 1 by comparing it with the published studies.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14513  | https://doi.org/10.1038/s41598-021-93797-2

www.nature.com/scientificreports/

Formation of the mathematical model
An incompressible, time-independent 3D magnetohydrodynamic dusty radiative Casson nano liquid flow is 
examined past a deformable surface embedded in a porous medium. The nano-liquid model describes the attrib-
utes of Brownian motion and thermophoresis. For the geometry of the problem, a Cartesian coordinate system 
is considered in such a manner that z-axis is perpendicular to xy − plane. The flow of the subject nanofluid is at 
the surface z > 0 which is generated by a linear bidirectional stretchable surface. The surface is deformable with 
velocities  uw =

(

x + y
)

c and vw =
(

x + y
)

b in the direction of x- and y-axis (Fig. 1). Transfer of heat and mass 
is enhanced with temperature-dependent thermal conductivity, variable molecular diffusivity incorporated with 
Soret and Dufour effect. Moreover, the impression of chemical reaction with activation energy and convective 
heat condition is also analyzed.

For an incompressible flow of Casson fluid extra stress tensor is delineated as15:

where

The equations governing the mathematical model with fluid particle suspension1,23,31,62,63 are:
For fluid flow:

(1)τij =



















�

µc +
Sy

(2π̃ )0.5

�

2γ̃ij , if π̃ > π̃c

�

µc +
Sy

(2π̃c)
0.5

�

2γ̃ij , if π̃ < π̃c ,

(2)

Sy is the yield stress of the fluid
π̃ = γ̃ijγ̃ij is the product of the components of deformation rate

γ̃ij = 1
2

(

vxi + vyj
)

is the rate of the strain tensor
π̃c is the critical value of the product of the components of deformation rate tensor.

(3)ũx + ṽy + w̃z = 0,

Table 1.   Literature survey for the originality of the presented mode with contemporary published studies.

Authors

Soret 
Dufour 
effect 3D flow Dusty fluid

Temperature-dependent 
thermal conductivity Thermal radiation

Variable molecular 
diffusivity Porous medium Activation energy

Bibi et al.4 No Yes Yes No Yes No No No

Sohail et al.10 No Yes No Yes Yes Yes No No

Ramadevi et al.12 No Yes No Yes No No No No

Joshi et al.58 No Yes No No No No No No

Ramzan et al.59 No Yes No No No No No Yes

Reddy et al.60 Yes Yes No No Yes No No No

Waqas et al.61 No Yes No Yes Yes No No Yes

Present Yes Yes Yes Yes Yes Yes Yes Yes

Figure 1.   Flow representation of the model.
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The mathematical form of radiative heat flux31,64 is as follows:

In Eq. (6), temperature-dependent thermal conductivity16,65 is stated as:

In Eq. (7), variable molecular diffusivity49 is expressed as:

For dusty particle flow:

with boundary conditions1,7,66,67

Using appropriate subsequent transformation10:

(4)ũũx + ṽũy + w̃ũz = ν

(

1+
1

β

)

ũzz −
σ1B

2
0

ρ
ũ−

ν

K∗ ũ+
KN

ρ

(

ũp − ũ
)

,

(5)ũṽx + ṽṽy + w̃ṽz = ν

(

1+
1

β

)

ṽzz −
σ1B

2
0

ρ
ṽ −

ν

K∗ ṽ +
KN

ρ

(

ṽp − ṽ
)

,

(6)

ũT̃x + ṽT̃y + w̃T̃z =
1

ρcp

(

k(T̃)T̃z

)

z
+

DTk
∗
t

cscp
C̃zz + τ

(

DBC̃zT̃z +
DT

T̃∞

(

T̃z

)2
)

−
1

ρcp
qz(r)+

ρpcp
(

ρcp
)

f
τT

(

T̃P − T̃
)

,

(7)

ũC̃x + ṽC̃y + w̃C̃y =
(

DB(C̃)C̃z

)

z
+

DTk
∗
t

T̃∞
T̃zz +

ρp

ρτc

(

Cp − C
)

− k2r

(

T̃

T̃∞

)n
(

C̃ − C̃∞
)

exp

(

−Ea

kT̃

)

.

(8)qr = −
4

3

σ̄

k̄
T4
z , where T4 = 4T3

∞T − 3T4
∞.

(9)k(T) = k∞

(

1+ d

(

T̃ − T̃∞

T̃w − T̃∞

))

.

(10)DB(C) = DB∞

(

1+ e

(

C̃ − C̃∞

C̃w − C̃∞

))

.

(11)ux(p)+ vy(p)+ wz(p) = 0,

(12)u(p)ux(p)+ v(p)uy + w(p)uz =
KN

ρp

(

u− u(p)
)

,

(13)u(p)vx(p)+ v(p)vy(p)+ w(p)vz(p) =
KN

ρp

(

v − v(p)
)

,

(14)u(p)Tx(p)+ v(p)Ty(p)+ w(p)Tz(p) =
cp

cmτT

(

T − T(p)
)

,

(15)u(p)Cx(p)+ v(p)Cy(p)+ w(p)Cz(p) =
mN

ρτc

(

C − C(p)
)

,

(16)

cc ũ|z=0 = c
(

x + y
)

+ S

(

1+
1

β

)

ũz , ṽ|z=0 = b
(

x + y
)

+ S

(

1+
1

β

)

ṽz ,

w̃|z=0 = 0, − kf

(

T̃
)

T̃z

∣

∣

∣

z=0
= h1

(

T̃w − T̃
)

, C̃
∣

∣

z=0
= C̃w ,

u|z→∞ → 0, v|z→∞ → 0, up
∣

∣

z→∞ → 0, vp
∣

∣

z→∞ → 0,

wp

∣

∣

z→∞ → w, T|z→∞ → T∞, Tp

∣

∣

z→∞ → T∞, C|z→∞ → C∞, Cp

∣

∣

z→∞ → C∞.

(17)

u =
(

x + y
)

cf ′, v =
(

x + y
)

cj′, w = −
(

f + j
)√

cv, ζ =
( c

v

)0.5

z, up =
(

x + y
)

cF ′,

vp =
(

x + y
)

cJ ′, wp = −(F + J)
√
cv,

T = (Tw − T∞)θ + T∞, Tp = (Tw − T∞)θp + T∞, C = (Cw − C∞)φ + C∞, Cp = (Cw − C∞)φp + C∞.
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Equations (3) and (11) are trivially equated. Though Eqs. (4)–(7) and (12)–(15) are transmuted as:
For fluid flow:

For the dusty flow:

and the boundary conditions take the form:

The mathematical forms of shear stress at the wall (drag force coefficient), local Nusselt, and Sherwood 
number are specified as:

By employing Eq. (17), the dimensionless form of Eqs. (27)–(30) are as follow:

(18)
(

1+
1

β

)

d3f

dζ 3
−

(

df

dζ

)2

−
dj

dζ
.
df

dζ
+

(

j + f
) d2f

dζ 2
− (Ha+ �1)

df

dζ
+ �.δv

(

dF

dζ
−

df

dζ

)

= 0,

(19)
(

1+
1

β

)

d3j

dζ 3
−

(

dj

dζ

)2

−
dj

dζ
.
df

dζ
+

(

j + f
) d2j

dζ 2
− (Ha+ �1)

dj

dζ
+ �.δv

(

dJ

dζ
−

dj

dζ

)

= 0,

(20)
�

(1+ dθ)+
4

3
Rd

�

d2θ

dζ 2
+ d

�

dθ

dζ

�2

+ Pr











�

f + j
�dθ

dζ
+ Df

d2φ

dζ 2
+ Nb

dθ

dζ

dφ

dζ

+Nt

�

dθ

dζ

�2

+ �δT
�

θp − θ
�











= 0,

(21)(1+ eφ)
d2φ

dζ 2
+ e

�

dφ

dζ

�2

+ Sc









�

f + j
�dφ

dζ
+ �δc

�

φp − φ
�

+ Sr
d2θ

dζ 2

−δφ(1+ αθ)n exp

�

−E

1+ αθ

�









= 0.

(22)(J + F)
d2F

dζ 2
−

(

dF

dζ

)2

−
dJ

dζ
.
dF

dζ
+ δv

(

df

dζ
−

dF

dζ

)

= 0,

(23)(J + F)
d2J

dζ 2
−

(

dJ

dζ

)2

−
dJ

dζ
.
dF

dζ
+ δv

(

dj

dζ
−

dJ

dζ

)

= 0,

(24)(J + F)
dθp

dζ
+ γ δT

(

θ − θp
)

= 0,

(25)(F + J)
dφp

dζ
+ �.δc

(

φ − φp
)

= 0,

f (ζ ) = 0, j(ζ ) = 0,
df

dζ
= 1+ L

(

1+
1

β

)

d2f

dζ 2
,
dj

dζ
= P + L

(

1+
1

β

)

d2j

dζ 2
,

dθ

dζ
= −H1

(

1− θ(0)

1+ dθ

)

, φ(ζ ) = 1 at ζ = 0,

(26)
df

dζ
→ 0,

dj

dζ
→ 0,

dF

dζ
→ 0,

dJ

dζ
→ 0, F(ζ ) → f (ζ ),

J(ζ ) → j(ζ ), θ(ζ ) → 0, θp(ζ ) → 0,φ(ζ ) → 0, φp(ζ ) → 0 as ζ → ∞.

(27)Cfx =
τ(zx)|z=0

ρu2w
, τ(zx) = µ

(

1+
1

β

)

uz ,

(28)Cjy =
τ(zy)

∣

∣

z=0

ρu2w
, τ(zy) = µ

(

1+
1

β

)

vz ,

(29)Nu(x) =
xQw

k∞
(

T̃w − T̃∞
) , Qw = −k(T)Tz + q(r)

∣

∣

z=0
,

(30)Sh(x) =
xQm

DB∞(Cw − C∞)
, Qm = −DB(C)Cz |z=0.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14513  | https://doi.org/10.1038/s41598-021-93797-2

www.nature.com/scientificreports/

Numerical procedure
The coupled nonlinear ODEs are computed numerically by employing the bvp4c function in MATLAB. Men-
tioned numerical code is used, we obtain ODEs which are of order one.

Analysis of results
For the graphical analysis of the dimensionless parameters versus involved profiles appearing in the highly 
nonlinear mathematical problem in Eqs. (18)–(25). This problem is elucidated numerically by utilizing bvp4c, 
an implemented function in MATLAB. Figures 2, 3, 4, 5 demonstrate the influence of Casson fluid parameter 
β , porosity parameter �1 , velocity slip parameter L , and fluid-particle interaction parameter δv on the velocity of 
the fluid f ′(ζ ), j′(ζ ) (in x and y direction) and dust phase F ′(ζ ) and J ′(ζ ). The aftermath of β on velocity field 
for both phases is illustrated in Fig. 2a–d. These figures depict that β is inversely proportional to yield stress Sy . 

(31)(Rex)
0.5Cfx =

(

1+
1

β

)

d2f

dζ 2

∣

∣

∣

∣

ζ=0

,

(32)(Rex)
0.5Cjy =

(

1+
1

β

)

d2j

dζ 2

∣

∣

∣

∣

ζ=0

,

(33)Nu(x)(Rex)
−0.5 = −

(

1+
4

3

(

Rd

1+ dθ

))

dθ

dζ

∣

∣

∣

∣

ζ=0

,

(34)Sh(x)(Rex)
−0.5 = −

1

(1+ eφ(ζ ))

dφ

dζ

∣

∣

∣

∣

ζ=0

.

f = Y1, f
′ = Y2, f

′′ = Y3, f
′′′ = Y ′

3 = YY1, F = Y4, F
′ = Y5, F

′′ = Y ′
5 = YY2,

j = Y6, j
′ = Y7, j

′′ = Y8, j
′ = Y ′

8 = YY3, J = Y9, J
′ = Y10, J

′′ = Y ′
10 = YY4,

YY1 =
1

�

1+ 1
β

�

�

Y2
2 + Y7 · Y2 − (Y1 + Y6)Y3 + (Ha+ �1)Y2 − � · δv(Y5 − Y2)

�

,

YY2 =
1

(Y9 + Y4)

�

Y2
5 + Y10 · Y5 − δv(Y2 − Y5)

�

,

YY3 =
1

�

1+ 1
β

�

�

Y2
7 + Y7 · Y2 − (Y6 + Y1)Y8 + (Ha+ �1)Y7 − � · δv(Y10 − Y7)

�

,

YY4 =
1

(Y9 + Y4)

�

Y2
10 + Y10 · Y5 − δv(Y7 − Y10)

�

,

θ = Y11, θ
′ = Y12, θ

′′ = Y ′
12 = YY5, θp = Y13, θ

′
p = Y ′

13 = YY6,

φ = Y14,φ = Y15,φ
′′ = Y ′

15 = YY7,

φp = Y16,φ
′
p = Y ′

16 = YY8.

YY8 =
1

(Y9 + Y4)
(� · δc(Y16 − Y14))

YY5 =
1

�

(1+ d · Y11)+ 4
3Rd

�

�

−d · Y2
12 − Pr

�

(Y1 + Y6)Y12 + Df .YY7 + Nb · Y12 · Y15

+Nt · Y2
12 + � · δT (Y13 − Y11)

��

,

YY6 =
1

(Y9 + Y4)
(−γ · δT (Y11 − Y13)),

YY7 =
1

(1+ e · Y14)



−e · Y2
15 + Sc





δ · Y14(1+ α · Y11)
n exp

�

−E

1+ α · Y11

�

−(Y1 + Y6)Y15 − Sr · YY5 − � · δc(Y16 − Y14)







,

(35)

and the boundary conditions are enumerated as

Y1(0) = 0,Y6(0) = 0,Y2(0) = 1+ L ·
(

1+
1

β

)

Y3(0),Y7(0) = P + L ·
(

1+
1

β

)

Y8(0),

Y12(0) = −H1

(

(1− Y11(0))

1+ d · Y11(0)

)

,Y14(0) = 1 At ζ = 0

Y2(∞) → 0,Y7(∞) → 0,Y5(∞) → 0,Y10(∞) → 0,Y4(∞) → Y1(∞),

Y9(∞) → Y6(∞),Y11(∞) → 0,Y13(∞) → 0,Y14(∞) → 0,Y16(∞) → 0. As ζ → ∞.
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It is found that on escalating β yield stress decreases. This generates a resistive force that causes hindrance to the 
fluid flow. Consequently, both phases deteriorate as β escalate. The effect of the porosity parameter �1 on fluid 
and dust phase is illustrated in Fig. 3a–d. Since �1 is the quotient of kinematic viscosity to the permeability of the 
porous medium. Growing values of �1 escalates the kinematic viscosity of the fluid. This accelerates the resistance 
in the system. It is witnessed that rising values of �1 results in deterrence to the motion of the fluid. Therefore, the 
velocity field for both phases diminishes. Figure 4a–d are sketched to depict the impact of slip parameters L on 
both phases. It is found that growing values of H1 strengthens the friction force. This causes more liquid to slip 
past the deformable bidirectional surface. Thus, the fluid flow depreciates for both phases. The impression of δv 
on both phases is illustrated in Fig. 5a–d. It is observed that for rising values of δv relaxation time of suspended 
particles decays. Dusty granules generate a force that will resist the flow. Therefore, fluid velocity depreciates on 
mounting δv , however, an opposite upshot is perceived for dusty flow. Figures 6, 7, 8, 9, 10, 11, 12 depict the out-
come of sundry parameters on the temperature field of fluid and dusty granules i.e., θ(ζ ) and θp(ζ ) . The outcome 
of the radiation parameter Rd on θ(ζ ) and θp(ζ ) is discussed in Fig. 6a,b. Since Rd = 4σ̄T3

∞
3k̄ k

, so by up surging Rd 
the mean absorption coefficient decreases. It is perceived that on escalating Rd additional heat is produced in 
the system. Therefore, due to growing values of Rd more heat is transmitted to the fluid. Hence, θ(ζ ) and θp(ζ ) 
rise for suspended particle and fluid phase. Figure 7a,b is sketched to analyze the behavior of heat transfer Biot 
number H1 on θ(ζ ) and θp(ζ ) . For growing values of H1 heat transfer coefficient intensifies. On elevating H1 fluid 
flow accelerates. Thus, θ(ζ ) and θp(ζ ) escalates on augmenting H1 . The performance of the thermal conductiv-
ity parameter d on θ(ζ ) and θp(ζ ) is addressed in Fig. 8a,b. On accelerating d temperature-dependent thermal 
conductivity amplifies. It is seen that rising values of d , results in an amplified collision among the particles. This 
leads to more exchange of heat through the fluid. Thus, θ(ζ ) and θp(ζ ) elevates on augmenting d for both phases. 
Consequently, thicker penetration depth increases due to convective heat transfer at the surface. Figure 9a,b 

Figure 2.   (a) Upshot of β on f ′(ζ ). (b) Upshot of β on j′(ζ ). (c) Upshot of β on F ′(ζ ). (d) Upshot of β on J ′(ζ ).
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illustrate the fluctuation in fluid-particle interaction parameter δr for both phases θ(ζ ) and θp(ζ ) . It is witnessed 
that on incrementing δr fluid flow slows down. This corresponds to a decline in fluid flow. However, growing 
values of δr in suspended particles strengthen the frictional force. Hence, a reverse trend is observed for θp(ζ ) . 
The impact of thermophoresis parameter Nt on θ(ζ ) and θp(ζ ) is displayed in Fig. 10a,b. It is observed that on 
enhancing Nt , thermophoretic force is strengthened. As a result, fluid particles move from hot to cold fluid. 
Thus, θ(ζ ) and θp(ζ ) augment. Figure 11a,b illustrate the impression of the Brownian motion parameter Nb on 
θ(ζ ) and θp(ζ ) . For growing values of Nb collision among the fluid particles increases due to which more heat is 
generated. Therefore, θ(ζ ) and θp(ζ ) rises. To understand the variation of Dufour number Df  on θ(ζ ) and θp(ζ ) 
Fig. 12a,b is plotted. On escalating Df   concentration gradient enhances which results in heat transmission. Thus, 
a prominent upsurge is found in the thermal state of θ(ζ ) and θp(ζ ) . The impression of varying Schmidt number 
Sc on the concentration field φ(ζ ) is discussed in Fig. 13. As Sc is the quotient of kinematic viscosity v to Brownian 
diffusion coefficient DB . It is observed that rising values of Sc diminishes the Brownian motion parameter. Thus, 
mass diffusion reduces for growing values of Sc . This results in the reduction of the concentration of the fluid. 
Therefore, deteriorating nature is exhibited by φ(ζ ) on boosting Sc . Figure 14 is drawn to elucidate the upshot of 
dimensionless chemical reaction parameter δ on φ(ζ ) . On up surging δ chemical molecular diffusivity reduces 
owing to its consumption in the reaction. A slight decrement is observed in the boundary layer thickness. Thus, 
the concentration of the fluid deteriorates. The influence of variable molecular diffusivity e on φ(ζ ) is exhibited in 
Fig. 15. Since e is proportionate to φ(ζ ) . For mounting values of e variable mass diffusion elevates. Consequently, 
φ(ζ ) augments. The impact of rising values of activation energy E is deliberated in Fig. 16. It is noticed that esca-
lating values of E lead to a decrease in the Arrhenius function. Consequently, the generative chemical reaction 
decelerates. Thus, on accelerating E , the fluid concentration upsurges. Figure 17 is sketched to analyze the effect 

Figure 3.   (a) Upshot of �1 on f ′(ζ ). (b) Upshot of �1 on j′(ζ ). (c) Upshot of �1 on F ′(ζ ). (d) Upshot of �1 on 
J ′(ζ ).
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of Soret number Sr on φ(ζ ) . Sr is the quotient of difference in temperature and concentration. On escalating Sr , 
the temperature gradient rises. It is perceived that molecular diffusion increases. Thus, the rate of mass transfer 
intensifies for growing values of Sr . Consequently, φ(ζ ) enhances.

The outcome of tabulated values of dimensionless parameters �1,Ha, δ, and L on drag force coefficient is 
depicted in Table 2. It is perceived that on escalating �1,Ha, and δ. shear stress increases. The influence of 
Pr,Rd,Df ,Nb, Sc , δ, Sr , and δT on local Nusselt number and Sherwood number is portrayed in Table 3. It is 
perceived that on escalating Rd heat and mass flux both augments. For growing values of Df ,Nb, Sc , and δ heat 
flux diminishes, whereas, mass flux upsurges. A deteriorating nature is exhibited by mass transfer on amplify-
ing Sr and δr , however, the rate of heat transfer amplifies. A comparative analysis of the present investigation is 
exhibited in Table 4 with Wang68. A good association between the results is seen.

Concluding remarks
Numerical solution for dusty radiative Casson nanofluid flow with temperature-dependent thermal conductivity 
and variable molecular mass diffusion has been investigated past a deformable bidirectional surface. Transfer of 
heat and mass is enhanced by inspecting the impression of the Soret–Dufour factor amalgamated with chemical 
reaction and activation energy. The flow is incorporated with additional effects of momentum slip and convective 

Figure 4.   (a) Upshot of L on f ′(ζ ). (b) Upshot of L on j′(ζ ). (c) Upshot of L on F ′(ζ ). (d) Upshot of L on J ′(ζ ).
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heat conditions. The mathematical model is deciphered through bvp4c, an implemented function in MATLAB. 
The perceptible analyses of the present exploration are:

•	 For growing values of β , �1, and L velocity field declines for fluid-particle suspension.
•	 A reverse trend is noticed in the velocity field for enhancing δv for both phases.
•	 An increasing behavior is exhibited by the thermal field for growing values of Rd,H1,Df  and Nt for fluid and 

dust phase.
•	 An opposite behavior is noticed in the thermal field for fluctuation in fluid-particle interaction parameters 

for the fluid and dust phase.
•	 For larger values of Sc , and δ, the concentration field declines.
•	 The concentration field augments on amplifying E and S.
•	 Drag force coefficient increases on escalating �1,Ha, and δv .
•	 The mass transfer exhibits a deteriorating impact on amplifying Sr , and δr , however, the rate of heat transfer 

amplifies.
•	 Heat and mass flux augments on escalating RdRd.

Figure 5.   (a) Upshot of L on f ′(ζ ). (b) Upshot of L on j′(ζ ). (c) Upshot of L on F ′(ζ ). (d) Upshot of L on J ′(ζ ).
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Figure 6.   (a) Upshot of Rd on θ(ζ ). (b) Upshot of Rd on θp(ζ ).

Figure 7.   (a) Upshot of H1 on θ(ζ ). (b) Upshot of H1 on θp(ζ ).
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Figure 8.   (a) Upshot of d on θ(ζ ). (b) Upshot of d on θp(ζ ).

Figure 9.   (a) Upshot of δT on θ(ζ ). (b) Upshot of δT on θp(ζ ).
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Figure 10.   (a) Upshot of Nt on θ(ζ ). (b) Upshot of Nt on θp(ζ ).

Figure 11.   (a) Upshot of Nb on θ(ζ ). (b) Upshot of Nb on θp(ζ ).
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Figure 12.   (a) Upshot of Df  on θ(ζ ). (b) Upshot of Df  on θp(ζ ).

Figure 13.   Upshot of Sc on φ(ζ ).
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Figure 14.   Upshot of δ on φ(ζ ).

Figure 15.   Upshot of e on φ(ζ ).
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Figure 16.   Upshot of E on φ(ζ ).

Figure 17.   Upshot of Sr on φ(ζ ).

Table 2.   Computational values of friction drag coefficient for distinct values of �1,Ha, L and L.

�1 Ha δv L −(Rex)
0.5Cfx −(Rex)

0.5Cfy

0.5 1.0587562 0.10587562

0.6 1.0719469 0.10719469

0.7 1.0845045 0.10845045

0.3 0.98104151 0.098104151

0.4 0.99841054 0.099841055

0.5 1.0147795 0.10147795

0.3 1.0060463 0.10060463

0.5 1.0147795 0.10147795

0.7 1.0213022 0.10213022

0.4 1.1423770 0.1142377

0.5 1.0147795 0.10147795

0.6 0.9139351 0.09139351



18

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14513  | https://doi.org/10.1038/s41598-021-93797-2

www.nature.com/scientificreports/

Received: 20 March 2021; Accepted: 28 June 2021

References
	 1.	 Hady, F. M., Mahdy, A., Mohamed, R. A. & Zaid, O. A. A. Modeling non-Darcy natural convection flow of a micropolar dusty fluid 

with convective boundary condition. Int. J. Aerosp. Mech. Eng. 14(2), 41–47 (2020).
	 2.	 Zokri, S. M., Arifin, N. S., Kasim, A. R. M., Salleh, M. Z. & Arifin, N. A. N. Jeffrey fluid embedded with dust particles over a shrink-

ing sheet: A numerical investigation. J. Adv. Res. Fluid Mech. Therm. Sci. 74(2), 196–209 (2020).
	 3.	 Dey, D., & Chutia, B. Dusty nanofluid flow with bioconvection past a vertical stretching surface. J. King Saud Univ. Eng. Sci. https://​

doi.​org/​10.​1016/j.​jksues.​2020.​11.​001 (2020).
	 4.	 Bibi, M., Zeeshan, A. & Malik, M. Y. Numerical analysis of unsteady flow of three-dimensional Williamson fluid-particle suspen-

sion with MHD and nonlinear thermal radiations. Eur. Phys. J. Plus 135(10), 1–26 (2020).
	 5.	 Reddy, M. G., Rani, M. S., Kumar, K. G., Prasannakumar, B. C. & Lokesh, H. J. Hybrid dusty fluid flow through a Cattaneo–Christov 

heat flux model. Phys. A Stat. Mech. Appl. 551, 123975 (2020).
	 6.	 Reddy, M. G. & Ferdows, M. Species and thermal radiation on micropolar hydromagnetic dusty fluid flow across a paraboloid 

revolution. J. Therm. Anal. Calorim. 143, 1–19 (2020).
	 7.	 Souayeh, B. et al. Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with 

suspension of dusty fluid. J. Mol. Liq. 290, 111223 (2019).
	 8.	 Gireesha, B. J., Mahanthesh, B., Thammanna, G. T. & Sampathkumar, P. B. Hall effects on dusty nanofluid two-phase transient 

flow past a stretching sheet using KVL model. J. Mol. Liq. 256, 139–147 (2018).

Table 3.   Computational values of NuxRe−0.5
x and ShxRe

−0.5
x  against different estimation of 

Pr,Rd,Df ,Nb, Sc , δ, Sr and δT .

Pr Rd Df Nb Sc δ Sr δT Nux(Rex)
−0.5 Shx(Rex)

−0.5

3 0.26287551 0.27159206

5 0.28311948 0.26845204

7 0.2946139 0.26679483

0.3 0.24448878 0.27460726

0.6 0.29656071 0.27649881

0.9 0.34511853 0.27805908

0.3 0.22529783 0.39278698

0.5 0.20025387 0.39816084

0.7 0.17477315 0.40337968

0.2 0.24141581 0.27734281

0.5 0.23190415 0.27863757

0.7 0.2253281 0.27953848

0.6 0.20919744 0.49599463

0.8 0.19513655 0.58476006

1.2 0.17110717 0.73964817

0.4 0.23334648 0.34198783

0.6 0.22529783 0.39540692

0.8 0.21795961 0.44369725

0.4 0.17026475 0.42250068

0.6 0.17169455 0.41714266

0.8 0.17319573 0.41215419

0.3 0.22529789 0.42526637

0.6 0.25082223 0.41921075

0.9 0.26650763 0.41543192

Table 4.   Comparison of f ′′(0), j′′(0), f (∞) and j(∞) for numeric values of P with Wang68.

P

f ′′(0) j′′(0) f (∞) j(∞)

68 Present 68 Present 68 Present 68 Present

0 − 1 − 1 0 0 1 1 0 0

0.25 − 1.048813 − 1.048762 − 0.194564 − 0.194534 0.907075 0.907052 0.257986 0.257974

0.5 − 1.093097 − 1.093092 − 0.465205 − 0.465127 0.842360 0.842325 0.451671 0.451635

0.75 − 1.134485 − 1.134453 − 0.794622 − 0.794612 0.792308 0.792353 0.612049 0.612026

1 − 1.173720 − 1.173628 − 1.173720 − 1.173724 0.751527 0.751516 0.751527 0.751525

https://doi.org/10.1016/j.jksues.2020.11.001
https://doi.org/10.1016/j.jksues.2020.11.001


19

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14513  | https://doi.org/10.1038/s41598-021-93797-2

www.nature.com/scientificreports/

	 9.	 Firdous, H., Husnine, S. M., Hussain, F. & Nazeer, M. Velocity and thermal slip effects on two-phase flow of MHD Jeffrey fluid 
with the suspension of tiny metallic particles. Phys. Scr. 96(2), 025803 (2020).

	10.	 Sohail, M., Shah, Z., Tassaddiq, A., Kumam, P. & Roy, P. Entropy generation in MHD Casson fluid flow with variable heat conduct-
ance and thermal conductivity over non-linear bi-directional stretching surface. Sci. Rep. 10(1), 1–16 (2020).

	11.	 Hamid, A. Numerical study of temperature dependent thermal conductivity and homogeneous–heterogeneous reactions on Wil-
liamson fluid flow. J. Phys. Commun. 4(8), 085009 (2020).

	12.	 Ramadevi, B., Kumar, K. A., Sugunamma, V. & Sandeep, N. Influence of non-uniform heat source/sink on the three-dimensional 
magnetohydrodynamic Carreau fluid flow past a stretching surface with modified Fourier’s law. Pramana 93(6), 1–11 (2019).

	13.	 Lu, D. C., Ramzan, M., Bilal, M., Chung, J. D. & Farooq, U. Upshot of chemical species and nonlinear thermal radiation on Oldroyd-
B nanofluid flow past a bi-directional stretched surface with heat generation/absorption in a porous media. Commun. Theor. Phys. 
70(1), 071 (2018).

	14.	 Ramzan, M., Bilal, M., Kanwal, S. & Chung, J. D. Effects of variable thermal conductivity and non-linear thermal radiation past 
an Eyring Powell nanofluid flow with chemical Reaction. Commun. Theor. Phys. 67(6), 723 (2017).

	15.	 Gbadeyan, J. A., Titiloye, E. O. & Adeosun, A. T. Effect of variable thermal conductivity and viscosity on Casson nanofluid flow 
with convective heating and velocity slip. Heliyon 6(1), e03076 (2020).

	16.	 Irfan, M., Khan, M. & Khan, W. A. Interaction between chemical species and generalized Fourier’s law on 3D flow of Carreau fluid 
with variable thermal conductivity and heat sink/source: A numerical approach. Results Phys. 10, 107–117 (2018).

	17.	 Lu, D. et al. MHD boundary layer flow of Carreau fluid over a convectively heated bidirectional sheet with non-Fourier heat flux 
and variable thermal conductivity. Symmetry 11(5), 618 (2019).

	18.	 Samrat, S. P., Reddy, M. G. & Sandeep, N. Buoyancy effect on magnetohydrodynamic radiative flow of Casson fluid with Brownian 
moment and thermophoresis. Eur. Phys. J. Spec. Top. 230, 1–9 (2021).

	19.	 Magagula, V. M., Shaw, S. & Kairi, R. R. Double dispersed bioconvective Casson nanofluid fluid flow over a nonlinear convective 
stretching sheet in suspension of gyrotactic microorganism. Heat Transf. 49(5), 2449–2471 (2020).

	20.	 Shaw, S., Mabood, F., Muhammad, T., Nayak, M. K., & Alghamdi, M. Numerical simulation for entropy optimized nonlinearradia-
tive flow of GO‐Al2O3 magneto nanomaterials with auto catalysis chemical reaction. Numer. Methods Partial Differ.Equ. https://​
doi.​org/​10.​1002/​num.​22623 (2020).

	21.	 Ramzan, M., Bilal, M., Chung, J. D., Lu, D. C. & Farooq, U. Impact of generalized Fourier’s and Fick’s laws on MHD 3D second 
grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions. Phys. Fluids 29(9), 093102 
(2017).

	22.	 Nawaz, M., Rafiq, S., Qureshi, I. H. & Saleem, S. Combined effects of partial slip and variable diffusion coefficient on mass and 
heat transfer subjected to chemical reaction. Phys. Scr. 95(3), 035222 (2020).

	23.	 Riasat, S., Ramzan, M., Su, Y. L., Malik, M. Y. & Chinram, R. Comparative analysis of Yamada-Ota and Xue models for hybrid 
nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics. Case Stud. Therm. Eng. 26, 101039 
(2021).

	24.	 Prasad, K. V., Vaidya, H., Vajravelu, K., Manjunatha, G., Rahimi-Gorji, M., & Basha, H. Heat transfer analysis of three-dimensional 
mixed convective flow of an oldroyd-B nanoliquid over a slippery stretching surface. In Defect and Diffusion Forum, vol. 401, 
164–182. (Trans Tech Publications Ltd, 2020).

	25.	 Ibrahim, W. & Zemedu, C. Numerical solution of micropolar nanofluids with Soret, Dufor effects and multiple slip conditions. J. 
Phys. Commun. 4(1), 015016 (2020).

	26.	 Iftikhar, N., Baleanu, D., Husnine, S. M. & Shabbir, K. Magnetohydrodynamic mixed convection flow of Jeffery fluid with ther-
mophoresis, Soret and Dufour effects and convective condition. AIP Adv. 9(3), 035251 (2019).

	27.	 Prasannakumara, B. C., Reddy, M. G., Thammanna, G. T. & Gireesha, B. J. MHD Double-diffusive boundary-layer flow of a Maxwell 
nanofluid over a bidirectional stretching sheet with Soret and Dufour effects in the presence of radiation. Nonlinear Eng. 7(3), 
195–205 (2018).

	28.	 Khan, M. I., Hayat, T., Afzal, S., Khan, M. I. & Alsaedi, A. Theoretical and numerical investigation of Carreau–Yasuda fluid flow 
subject to Soret and Dufour effects. Comput. Methods Programs Biomed. 186, 105145 (2020).

	29.	 Bhatti, M. M., Khalique, C. M., Bég, T. A., Bég, O. A. & Kadir, A. Numerical study of slip and radiative effects on magnetic 
Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Mod. Phys. 
Lett. B 34(02), 2050026 (2020).

	30.	 Ramzan, M., Yousaf, F., Farooq, M. & Chung, J. D. Mixed convective viscoelastic nanofluid flow past a porous media with Soret–
DuFour effects. Commun. Theor. Phys. 66(1), 133 (2016).

	31.	 Ramzan, M., Inam, S. & Shehzad, S. A. Three dimensional boundary layer flow of a viscoelastic nanofluid with Soret and Dufour 
effects. Alex. Eng. J. 55(1), 311–319 (2016).

	32.	 Hamid, M., Usman, M. & Haq, R. U. Wavelet investigation of Soret and Dufour effects on stagnation point fluid flow in two dimen-
sions with variable thermal conductivity and diffusivity. Phys. Scr. 94(11), 115219 (2019).

	33.	 Sulochana, C., Payad, S. S., & Sandeep, N. Non-uniform heat source or sink effect on the flow of 3D Casson fluid in the presence of 
Soret and thermal radiation. In International Journal of Engineering Research in Africa, vol. 20 112–129. (Trans Tech Publications 
Ltd., 2016).

	34.	 Tlili, I., Samrat, S. P. & Sandeep, N. A computational frame work on magnetohydrodynamic dissipative flow over a stretched region 
with cross diffusion: Simultaneous solutions. Alex. Eng. J. 60(3), 3143–3152 (2021).

	35.	 Sulochana, C., Samrat, S. P. & Sandeep, N. Numerical investigation of magnetohydrodynamic (MHD) radiative flow over a rotating 
cone in the presence of Soret and chemical reaction. Propuls. Power Res. 7(1), 91–101 (2018).

	36.	 Shaw, S., Mahanta, G. & Das, M. Thermal and solutal Marangoni stagnation point Casson fluid flow over a stretching sheet in the 
presence of radiation, Soret and Dofour effect with chemical reaction. Heat Transf. Asian Res. 48(1), 323–342 (2019).

	37.	 Ullah, I., Khan, I. & Shafie, S. Soret and Dufour effects on unsteady mixed convection slip flow of Casson fluid over a nonlinearly 
stretching sheet with convective boundary condition. Sci. Rep. 7(1), 1–19 (2017).

	38.	 Ramzan, M., Bilal, M., & Chung, J. D. Soret and Dufour effects on three dimensional upper-convected Maxwell fluid with chemical 
reaction and non-linear radiative heat flux. Int. J. Chem. React. Eng. 15(3), 2016–0136 (2017).

	39.	 Jawad, M., Saeed, A. & Gul, T. Entropy generation for MHD Maxwell nanofluid flow past a porous and stretching surface with 
Dufour and Soret effects. Braz. J. Phys. 51, 1–12 (2021).

	40.	 Megahed, A. M., Ghoneim, N. I., Reddy, M. G., & El-Khatib, M. Magnetohydrodynamic fluid flow due to an unsteady stretching 
sheet with thermal radiation, porous medium, and variable heat flux. Adv. Astron. 2021, 6686883. https://​doi.​org/​10.​1155/​2021/​
66868​83 (2021).

	41.	 Irfan, M., Farooq, M. A., Mushtaq, A. & Shamsi, Z. H. Unsteady MHD bionanofluid flow in a porous medium with thermal radia-
tion near a stretching/shrinking sheet. Math. Problems Eng. 2020, 1–14 (2020).

	42.	 Rosali, H., Badlilshah, M. N., Johari, M. A. M. & Bachok, N. Unsteady boundary layer stagnation point flow and heat transfer over 
a stretching sheet in a porous medium with slip effects. CFD Lett. 12(10), 52–61 (2020).

	43.	 Fatunmbi, E. O., Ogunseye, H. A. & Sibanda, P. Magnetohydrodynamic micropolar fluid flow in a porous medium with multiple 
slip conditions. Int. Commun. Heat Mass Transf. 115, 104577 (2020).

	44.	 Baitharu, A. P., Sahoo, S. & Dash, G. C. Heat and mass transfer effect on a radiative second grade MHD flow in a porous medium 
over a stretching sheet. J. Nav. Archit. Mar. Eng. 17(1), 51–66 (2020).

https://doi.org/10.1002/num.22623
https://doi.org/10.1002/num.22623
https://doi.org/10.1155/2021/6686883
https://doi.org/10.1155/2021/6686883


20

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14513  | https://doi.org/10.1038/s41598-021-93797-2

www.nature.com/scientificreports/

	45.	 Agrawal, P. et al. Lie similarity analysis of MHD flow past a stretching surface embedded in porous medium along with imposed 
heat source/sink and variable viscosity. J. Market. Res. 9(5), 10045–10053 (2020).

	46.	 Mabood, F. & Das, K. Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with 
radiation. Heliyon 5(2), e01216 (2019).

	47.	 Ahmad, K. & Ishak, A. Magnetohydrodynamic (MHD) Jeffrey fluid over a stretching vertical surface in a porous medium. Propuls. 
Power Res. 6(4), 269–276 (2017).

	48.	 Al-Hossainy, A. F., Mohamed, R. E. & Mohamed, S. Z. SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous 
medium. Phys. Scr. 94(10), 105208 (2019).

	49.	 Kumar, B., Seth, G. S. & Nandkeolyar, R. Regression model and successive linearization approach to analyse stagnation point 
micropolar nanofluid flow over a stretching sheet in a porous medium with nonlinear thermal radiation. Phys. Scr. 94(11), 115211 
(2019).

	50.	 Tlili, I., Ramzan, M., Kadry, S., Kim, H. W. & Nam, Y. Radiative mhd nanofluid flow over a moving thin needle with entropy 
generation in a porous medium with dust particles and hall current. Entropy 22(3), 354 (2020).

	51.	 Tlili, I., Samrat, S. P., Sandeep, N. & Nabwey, H. A. Effect of nanoparticle shape on unsteady liquid film flow of MHD Oldroyd-B 
ferrofluid. Ain Shams Eng. J. 12(1), 935–941 (2021).

	52.	 Shaw, S., Dogonchi, A. S., Nayak, M. K. & Makinde, O. D. Impact of entropy generation and nonlinear thermal radiation on 
Darcy–Forchheimer flow of MnFe2O4-Casson/water nanofluid due to a rotating disk: Application to brain dynamics. Arab. J. Sci. 
Eng. 45, 1–20 (2020).

	53.	 Mahanta, G. & Shaw, S. 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition. Alex. 
Eng. J. 54(3), 653–659 (2015).

	54.	 Mishra, S. R., Khan, M. I. & Rout, B. C. Dynamics of dust particles in a conducting dusty nanomaterials: A computational approach. 
Int. Commun. Heat Mass Transf. 119, 104967 (2020).

	55.	 Nagaraja, B., Gireesha, B. J., Sowmya, G. & Krishnamurthy, M. R. Slip and radiative flow of shape dependent dusty nanofluid over 
a melting stretching sheet. Int. J. Ambient Energy 1, 1–12 (2020).

	56.	 Nabwey, H. A. & Mahdy, A. Transient flow of Micropolar dusty hybrid nanofluid loaded with Fe3O4–Ag nanoparticles through a 
porous stretching sheet. Results Phys. 21, 103777 (2021).

	57.	 Ramzan, M., Abid, N., Lu, D. & Tlili, I. Impact of melting heat transfer in the time-dependent squeezing nanofluid flow containing 
carbon nanotubes in a Darcy–Forchheimer porous media with Cattaneo–Christov heat flux. Commun. Theor. Phys. 72(8), 085801 
(2020).

	58.	 Joshi, N., Upreti, H., Pandey, A. K. & Kumar, M. Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidi-
rectional porous surface with volumetric heat generation. Int. J. Appl. Comput. Math. 7(3), 1–17 (2021).

	59.	 Ramzan, M., Gul, H., Kadry, S. & Chu, Y. M. Role of bioconvection in a three dimensional tangent hyperbolic partially ionized 
magnetized nanofluid flow with Cattaneo–Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 120, 104994 
(2021).

	60.	 Reddy, M. V. & Lakshminarayana, P. Cross-diffusion and heat source effects on a three-dimensional MHD flow of Maxwell nano-
fluid over a stretching surface with chemical reaction. Eur. Phys. J. Spec. Top. 230, 1–9 (2021).

	61.	 Waqas, H., Imran, M. & Bhatti, M. M. Bioconvection aspects in non-Newtonian three-dimensional Carreau nanofluid flow with 
Cattaneo–Christov model and activation energy. Eur. Phys. J. Spec. Top. 230, 1–14 (2021).

	62.	 Mahanthesh, B. & Gireesha, B. J. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni 
convective two-phase flow of Casson fluid with fluid-particle suspension. Results Phys. 8, 869–878 (2018).

	63.	 Mohaghegh, M. R., & Rahimi, A. B. Three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching 
sheet. J. Heat Transfer. 138(11), 112001 (2016).

	64.	 Sajid, T., Sabir, Z., Tanveer, S., Arbi, A., & Altamirano, G. C. Upshot of radiative rotating Prandtl fluid flow over a slippery surface 
embedded with variable species diffusivity and multiple convective boundary conditions. Heat Transf. 50(3), 2874–2894 (2020).

	65.	 Sajid, T., Sagheer, M., & Hussain, S. Impact of temperature-dependent heat source/sink and variable species diffusivity on radiative 
Reiner–Philippoff fluid. Math. Problems Eng. 2020, 9701860. https://​doi.​org/​10.​1155/​2020/​97018​60 (2020).

	66.	 Mallikarjuna, H. B., Jayaprakash, M. C. & Mishra, R. Three-dimensional boundary layer flow and heat transfer of a fluid particle 
suspension over a stretching sheet embedded in a porous medium. Nonlinear Eng. 8(1), 734–743 (2019).

	67.	 Gireesha, B. J., Shankaralingappa, B. M., Prasannakumar, B. C., & Nagaraja, B. MHD flow and melting heat transfer of dusty Cas-
son fluid over a stretching sheet with Cattaneo–Christov heat flux model. Int. J. Ambient Energy, 785938. https://​doi.​org/​10.​1080/​
01430​750.​2020.1 (2020).

	68.	 Wang, C. Y. The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27(8), 1915–1917 (1984).

Author contributions
M.R. supervised and conceived the idea; N.S wrote the manuscript and did the software work. A.A. and P.K. 
helped in revising the manuscript. Z.S. worked on the software and the funding arrangements.

Funding
The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Com-
putational Science (TaCS-CoE), KMUTT. Moreover, this research project is supported by Thailand Science 
Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under project number 64A306000005.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.S. or P.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1155/2020/9701860
https://doi.org/10.1080/01430750.2020.1
https://doi.org/10.1080/01430750.2020.1
www.nature.com/reprints


21

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14513  | https://doi.org/10.1038/s41598-021-93797-2

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Soret–Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media
	Formation of the mathematical model
	Numerical procedure
	Analysis of results
	Concluding remarks
	References


