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Abstract 

Background:  Researchers developing prediction models are faced with numerous design choices that may impact 
model performance. One key decision is how to include patients who are lost to follow-up. In this paper we perform a 
large-scale empirical evaluation investigating the impact of this decision. In addition, we aim to provide guidelines for 
how to deal with loss to follow-up.

Methods:  We generate a partially synthetic dataset with complete follow-up and simulate loss to follow-up based 
either on random selection or on selection based on comorbidity. In addition to our synthetic data study we investi-
gate 21 real-world data prediction problems. We compare four simple strategies for developing models when using a 
cohort design that encounters loss to follow-up. Three strategies employ a binary classifier with data that: (1) include 
all patients (including those lost to follow-up), (2) exclude all patients lost to follow-up or (3) only exclude patients lost 
to follow-up who do not have the outcome before being lost to follow-up. The fourth strategy uses a survival model 
with data that include all patients. We empirically evaluate the discrimination and calibration performance.

Results:  The partially synthetic data study results show that excluding patients who are lost to follow-up can 
introduce bias when loss to follow-up is common and does not occur at random. However, when loss to follow-up 
was completely at random, the choice of addressing it had negligible impact on model discrimination performance. 
Our empirical real-world data results showed that the four design choices investigated to deal with loss to follow-up 
resulted in comparable performance when the time-at-risk was 1-year but demonstrated differential bias when we 
looked into 3-year time-at-risk. Removing patients who are lost to follow-up before experiencing the outcome but 
keeping patients who are lost to follow-up after the outcome can bias a model and should be avoided.

Conclusion:  Based on this study we therefore recommend (1) developing models using data that includes patients 
that are lost to follow-up and (2) evaluate the discrimination and calibration of models twice: on a test set including 
patients lost to follow-up and a test set excluding patients lost to follow-up.
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Background
Prediction models in healthcare can be used to iden-
tify patients who have a high risk of developing some 
undesirable outcome. An outcome is the occurrence of 
some medical event of interest and when implementing 
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binary classification, patients are either labelled as hav-
ing the outcome during some time-at-risk period or not 
having the outcome during the time-at-risk. Examples 
include the development of a new illness or illness pro-
gression, experiencing some adverse event and achieving 
some treatment response or adherence. Patients that are 
deemed as being at high-risk of an outcome can then be 
targeted for suitable interventions with the aim of reduc-
ing their risks. For example, numerous risk models are 
being clinically used to identify patients with a high risk 
of cardiovascular issues who may benefit from modifi-
cation of blood lipids [1]. Prediction models address the 
patient’s question: ‘what is my probability of develop-
ing < insert outcome > during the next N years?’. However, 
many developed prediction models removed patients 
from the training data who left the database before the 
N year follow-up and therefore implicitly answered ‘what 
is my probability of developing < insert outcome > dur-
ing the next N years given I remain in the data’. Loss to 
follow-up is the situation where a patient enters into a 
cohort study but stops being observable before the end 
of the study (e.g., they are not observed during the full 
time-at-risk period). Sometimes the cause of leaving the 
study is unknown. Many published papers did not inves-
tigate the impact that loss to follow-up may have on their 
model [2] and this has been highlighted as a challenge is 
risk prediction development [2].

Our recent framework for standardizing the develop-
ment of patient-level prediction models [3] recommends 
defining some index date for each patient where the data 
prior to index are used to construct potential predictors 
and the data post index are used to identify whether the 
patient has the health outcome of interest during some 
follow-up period. The prediction question can be stand-
ardized into three parts: (1) the target population (the 
patients you want to apply the model to) and an index 
date when they enter the cohort, (2) the outcome (the 
medical event you want to predict) and (3) the time-at-
risk (a time period relative to the target cohort index date 
where you wish to predict the outcome occurring). The 
prediction problem becomes: ‘Predict which patients 
in < Target Cohort > will experience < outcome > dur-
ing the < time-at-risk > following target cohort entry.’ For 
example, we may wish to ‘predict which patients with 
depression who are pharmaceutically treated will experi-
ence nausea 1 day until 3 years after they are first diag-
nosed with depression’.

Sometimes patients are not observed for the complete 
time-at-risk period due to numerous reasons. Possible 
reasons include that they may change insurance, relocate 
to outside the database capture area, or die during the 
time-at-risk period. Continuing with the example, some 
patients with depression may change insurance, they may 

move to another country or they may die from other ill-
nesses within the 3  years. We refer to these patients as 
being ‘lost to follow-up’ as they were not observed for 
the complete time-at-risk. There are four possibilities for 
each patient in training data: (1) having complete follow-
up and no record of the outcome during time-at-risk 
means the patients is a ‘non-outcome’ patient, (2) having 
complete follow-up and a record of the outcome during 
time-at-risk means the patients is an ‘outcome’ patient, 
(3) having incomplete follow-up and a record of the out-
come during the partially observed time-at-risk means 
the patients is an ‘outcome’ patient or (4) having incom-
plete follow-up and no record of the outcome during the 
partially observed time-at-risk means the patient’s label 
is unknown as they could have the outcome after being 
lost to follow-up. Should the patients who are lost to fol-
low-up be included in training data, potentially making 
the labels noisy, or should they be excluded, which might 
cause generalizability issues or impact the model due to 
the data containing less patients with the outcome?

Researchers developing prediction models are faced 
with various design choices which may have significant 
impacts on the model performance. Some guidelines 
have been proposed for certain best practices in develop-
ing patient-level prediction models such as best practices 
for model development [4], considerations for mak-
ing clinically useful models [5] and reporting prediction 
models [6]. However, there is currently no experiment-
driven guidelines that inform researchers about how 
design choices to address loss to follow-up can impact 
prediction performance, so non-optimal design choices 
may commonly be leading to sub-optimal models. As a 
result, the developed prediction model may not perform 
as well as desired when applied in a real-world setting.

Binary classification models, such as logistic regres-
sion, aim to learn a mapping from the predictor space 
to a value between 0 and 1 that corresponds to the risk 
of the outcome occurring during the time-at-risk. These 
models are unable to incorporate loss to follow-up, so a 
choice is needed whether to (1) include patients who are 
lost to follow-up and assume whether they have the out-
come prior to loss to follow-up is the ground truth or (2) 
exclude patients who are lost to follow-up. A third option, 
not considered in this paper, is to include all patients but 
apply imputation strategies to impute the missing out-
comes in patients lost to follow-up. Cox regression aims 
to learn hazard rates per predictor and is a method that 
can include patients lost to follow-up. The baseline haz-
ard function needs to be calculated if the Cox model is 
required to estimate outcome probability during the 
time-at-risk and this can often be complex. It is unknown 
whether it is preferable to use a survival model rather 
than a binary classifier when loss to follow-up is frequent. 
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There have been various one-off comparisons between 
logistic regression and Cox regression for effect estima-
tion [7, 8] and prediction [9, 10]. One key study com-
pared various ways to deal with loss to follow-up for a 
single prediction question [11]. They developed a unique 
way of dealing with loss to follow-up by assigning weights 
based on survival probability to the datapoints used to 
train various machine learning models. Their results 
showed that the discrimination performance of the dif-
ferent methods was similar, but the calibration was better 
using their weighting approach. However, it is unclear to 
what extent these findings generalize to other prediction 
problems. There is currently no large-scale data-driven 
guideline based on empirical evidence that can help 
model developers decide the approach to take for predic-
tion problems where patients are lost to follow-up.

We investigate the hypothesis that there is no impact 
on model performance estimates due to the strategy for 
addressing loss to follow-up when using a cohort design. 
We use synthetic data studies and an empirical assess-
ment across 21 prediction questions using real world 
data to evaluate the impact of various simple strategies 
for dealing with loss to follow-up. These results will be 
used to provide best practice guidelines for dealing with 
loss to follow-up in healthcare prediction. We picked 
simple strategies that don’t require editing classifier soft-
ware, so these strategies can be easily implemented by 
researchers.

Methods
Data
In this study we use data extracted from a US electronic 
healthcare record database Optum® de-identified Elec-
tronic Health Record Dataset (Optum EHR). This data-
base contains medical records for 93,423,000 patients 
recorded between the years 2006–2018. The medical 
record data includes clinical information, inclusive of 
prescriptions as prescribed and administered, lab results, 
vital signs, body measurements, diagnoses, procedures, 
and information derived from clinical notes using Natu-
ral Language Processing (NLP).

The use of Optum EHR was reviewed by the New Eng-
land Institutional Review Board (IRB) and were deter-
mined to be exempt from broad IRB approval.

Strategies for developing patient‑level prediction models 
with data containing loss to follow‑up
We investigate four possible simple design choices for 
dealing with patients lost to follow-up, both with pros 
and cons, see Table  1. For all four designs a patient is 
labelled as having the outcome if she has the outcome 
recorded during the observed time-at-risk (the observed 

time-at-risk ends when a patient is lost to follow-up or 
the cohort study period ends).

We used a least absolute shrinkage and selection opera-
tor (LASSO) logistic regression model as the classifier 
for solutions 1–3. For solution 4 we used a LASSO Cox 
regression model [17].

Synthetic data study
We created partially synthetic data in two steps:

Step 1: Create partially synthetic data with no right censoring
We created a partially synthetic dataset using the follow-
ing real-world prediction problem: ‘within patients who 
are pharmaceutically treated for depression, who will 
experience nausea within 3  years of the initial depres-
sion diagnosis?’ We extracted real world data on predic-
tors, outcomes, and follow-up time from Optum EHR. 
The extracted data contained 86,360 randomly sampled 
patients in the target population (we sampled 100,000 
but 13,640 patients had nausea prior to index and were 
excluded), of which 52,325 (60.5%) lacked complete 
3-year time-at-risk follow-up. To create a dataset with 
complete follow-up, we trained a prediction model to 
predict nausea on this dataset and then applied it to 
the patients lost to follow-up to impute whether they 
had the outcome. For each patient lost to follow-up we 
drew a number from a uniform distribution X ~ U(0,1) 
and if this value was less than or equal to the predicted 
risk of the patient experiencing the outcome then the 
patient was labelled as an outcome patient, otherwise 
they were labelled as non-outcome. This resulted in 8944 
patients lost to follow-up being labeled as having the 
outcome and 43,381 labeled as not having the outcome. 
For each patient with the outcome imputed, we also ran-
domly selected the date at which they had the outcome 
by randomly picking uniformly between their start date 
and 3  years following. Full details of the method used 
to create the partially synthetic data are available in 
“Appendix 3”.

We chose to impute the outcome for patients lost 
to follow-up rather than restrict to patients who were 
not lost to follow-up due to potential bias issues. If the 
patients lost to follow-up were systematically differ-
ent to the patients not lost to follow-up, then the results 
observed when analyzing the impact of loss to follow-up 
restricted to patients with complete follow-up may not 
generalize to the whole population.

Step 2: Simulating loss to follow‑up
Starting with the partially synthetic dataset from step 
1 that considers every patient to have complete follow-
up, we then partition this set into 75% training data and 
25% test data. We then simulate loss to follow-up in the 
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training data based on either random selection or mor-
bidity-based selection:

1.	 To simulate random loss to follow-up at a rate of 
thres% (thres in {10,20,30,40,50,70,90}) we draw from 
a uniform distribution per patient i, X1i ~ U(0,1), and 
censor the ith patient if the number is less than the 
censoring rate X1i < thres/100 (e.g., if the censoring 
rate is thres = 10, then patients are censored if their 
randomly drawn number is 0.1 or less).

2.	 To simulate morbidity-based loss to follow-up at 
a rate of thres% we calculate each patient’s baseline 
Charlson comorbidity index score and then find the 
score where thres% of patients have a score equal or 
higher. We then consider all patients with that score 
or higher to be censored.

For patients who are identified as being lost to follow-
up, we then simulate when they were lost. To simu-
late the date a patient is lost to follow-up, we uniformly 
picked the date during the 3-year follow-up (1095 days). 
For example, to simulate the date we draw a number from 
a uniform distribution, X2j ~ U(0,1), per patient j and 
set their censored date as start_datej + floor(1095*X2j) 
where start_datej is the date patient j entered the tar-
get cohort. If a patient has the outcome at a date after 
their loss to follow-up date, then the outcome would 
have been observed after loss to follow-up, so we revise 
these patients to be labelled non-outcome patients. If 
the patient has the outcome on a date before the loss to 
follow-up date, then we would have seen the outcome 
prior to loss to follow-up, so they are still considered to 
be labelled as outcome patients.

We do not simulate loss to follow-up on the 25% test 
set, as this ‘silver standard’ is used to evaluate the impact 
of the four different solutions for developing patient-level 
prediction models in data containing loss to follow-up. 
The creation of the synthetic data is illustrated in Fig. 1.

Empirical real‑world data study
In addition to investigating the impact of dealing with 
loss to follow-up using a partially synthetic data set with 
ground truth labels, we repeated the investigation using 
real word data. For each simple loss to follow-up strat-
egy we empirically investigate the performance when 
addressing 21 different prediction problems for two 
different follow-up periods (time-at-risk of 1  year and 
3 years after index) using real world data. In a previous 
study we developed models to predict 21 different out-
comes in a target population of pharmaceutically treated 
depressed patients [3]. For consistency, here we picked 
the same 21 prediction problems.

The target population of pharmaceutically treated 
depressed patients are defined as:

•	 Index rule defining the target population index dates:
•	 First condition record of major depressive disorder

Inclusion criteria:

•	 Antidepressant recorded within 30  days before to 
30 days after the target population index date

•	 No history of psychosis
•	 No history of dementia
•	 No history of mania
•	 ≥ 365 days prior observation in the database
•	 ≥ 30 days post observation in the database

The 21 outcomes were: gastrointestinal hemorrhage, 
acute myocardial infarction, stroke, suicide and suicidal 
ideation, insomnia, diarrhea, nausea, hypothyroidism, 
constipation, seizure, delirium, alopecia, tinnitus, vertigo, 
hyponatremia, decreased libido, fracture, hypotension, 
acute liver injury and ventricular arrhythmia and sud-
den cardiac death. All definitions and logic used to define 

Fig. 1  Creating the synthetic data and using it for model 
development and validation
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these outcomes are supplied in Additional file 1: Supple-
ment A.

Real world labelled data were extracted from Optum 
EHR for each prediction problem. We created labels for 
each patient and time-at-risk (1-year and 3-years). For 
each prediction problem, the binary classifier outcome 
label was 1 if the patient had the outcome recorded dur-
ing the time-at-risk following index and 0 otherwise. We 
did not impute any outcomes for patients lost to follow-
up in the real-world data. The predictors were the pres-
ence of medical conditions and drugs that occurred prior 
to index or demographics at index. We created binary 
indicator variables for every condition and drug one 
or more of the target population had recorded prior to 
index. For example, if a patient had a record of type 1 
diabetes prior to index, we could create a variable ‘type 1 
diabetes any time prior’. Any patient who had type 1 dia-
betes recorded prior to index would have a value 1 for the 
variable ‘type 1 diabetes any time prior’ and any patient 
who did not have a type 1 diabetes record prior to index 
would have a value of 0. In total we extracted 204,186 
variables.

We then partitioned the labelled data into 75% training 
set and 25% test set. The four design choices were each 
independently applied for each prediction problem and 
models were developed using the training data.

Performance evaluation
We evaluate the models’ performances by calculating the 
area under the receiver operating characteristic curve 
(AUROC) on the test data with and without the patients 
lost to follow-up. An AUROC of 0.5 is equivalent to ran-
dom guessing and an AUROC of 1 corresponds to per-
fect discrimination (able to identify the people who will 
develop the outcome at a specific risk threshold). The Cox 
regression AUROC was calculated using the exponential 

of the sum of the effect parameters multiplied by the 
covariate values (without the baseline hazard function).

Results
Partially synthetic data studies
The results of the analysis on the synthetic data are pre-
sented in Tables 2 and 3. In these results the ‘silver stand-
ard’ test data contained complete follow-up for each 
patient, but in the train data we simulated that thres% of 
patients were lost to follow-up. Table  2 corresponds to 
when loss to follow-up is randomly simulated, whereas 
Table 3 corresponds to when loss to follow-up was based 
on a patient’s health. If a patient with the outcome (when 
they had full follow-up) had a simulated loss to follow-up 
then two situations were possible i) the outcome date was 
before the date they were lost to follow-up (before loss 
to follow-up date) or ii) the outcome date was after the 
date they were lost to follow-up (after loss to follow-up). 
If the outcome date was after the simulated loss to fol-
low-up date, then the patient’s label in the train data was 
set to non-outcome (noisy data). When loss to follow-up 
was random the solutions performed similarly in terms 
of discrimination (Table 2). When loss to follow-up was 
more common in sicker patients, more outcome patients 
were lost to follow-up and the solution ‘Logistic remove 
lost to follow-up non-outcomes’ performed worse in 
terms of discrimination on the test set (Table 3).

The calibration plots, see “Appendix  1”, show that 
the logistic models trained using data that excluded all 
patients lost to follow-up are generally well calibrated, 
but the other models were poorly calibrated when there 
was a high percentage of loss to follow-up (thres > 30%). 
The ‘keep all lost to follow-up’ LASSO logistic regres-
sion models appear to slightly underestimate the risk, 
whereas the ‘remove lost to follow-up non-outcomes’ 
solution substantially overestimated the risk. The 

Table 2  AUROC results when predicting the simulated outcome within 3 years, when loss to follow-up is at random

Percentage 
censored (thres) 
(%)

Number in training 
Target Pop (64,770) 
censored

Training Outcome count 
(10,104) with loss to follow-up

Logistic 
keep lost 
to follow-up

Logistic remove 
lost to follow-up

Logistic remove 
lost to follow-up 
non-outcomes

Cox 
keep lost 
to follow-up

Before loss 
to follow-up 
date

After loss 
to follow-up 
date

Test AUROC (train AUROC)

 ~ 10 6532 434 586 0.690 (0.703) 0.690 (0.705) 0.693 (0.714) 0.690 (0.702)

 ~ 20 12,914 836 1201 0.690 (0.703) 0.690 (0.715) 0.692 (0.716) 0.689 (0.701)

 ~ 30 19,536 1218 1813 0.691 (0.714) 0.691 (0.713) 0.691 (0.718) 0.684 (0.700)

 ~ 40 26,002 1668 2440 0.692 (0.712) 0.686 (0.715) 0.691 (0.716) 0.688 (0.699)

 ~ 50 32,460 2140 3054 0.688 (0.699) 0.697 (0.714) 0.691 (0.717) 0.688 (0.698)

 ~ 70 45,401 2924 4216 0.687 (0.699) 0.678 (0.712) 0.688 (0.718) 0.686 (0.695)

 ~ 90 58,356 3766 5339 0.685 (0.699) 0.664 (0.715) 0.679 (0.721) 0.684 (0.695)
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miscalibration was worse as the number of patients 
lost to follow-up increased. Figure  10 in “Appendix  1” 
shows the development data outcome rates as a func-
tion of percentage of loss to follow-up for each simple 
solution. The calibration results are clearly explained by 
the trends in Fig.  10. The Cox regression requires the 
calculation of the baseline hazard function before it can 
be used to calculate the probability that a patient expe-
riences the outcome during the time-at-risk period. 
The tool we used for LASSO Cox regression does not 
provide this function and calibration could not be 
calculated.

Empirical real‑world data studies
The results of each solution when predicting the various 
outcomes within 1-year or 3-years of the initial treatment 
for depression across the three test datasets are pre-
sented in Fig. 2. The results are also available as Table 4 
in “Appendix 2”.

Figure  2 shows the performance of the four solutions 
are similar when the time-at-risk is 1  year except when 
the outcome count is low (acute liver injury) or the out-
come is associated to loss to follow-up (ventricular 
arrythmia and sudden cardiac death). The performance 
is more varied when the time-at-risk is 3  years. When 

Table 3  AUROC results when  predicting the  simulated outcome within  3  years, when  loss to  follow-up is  based 
on Charlson comorbidity index

Percentage 
censored (thres) 
(%)

Number 
in training Target 
Pop (64,770) 
censored

Training Outcome count 
(10,104) lost to follow-up

Logistic 
keep lost 
to follow-up

Logistic remove 
lost to follow-up

Logistic remove 
lost to follow-up 
non-outcomes

Cox keep lost 
to follow-up

Before loss 
to follow-up 
date

After loss 
to follow-up 
date

Test AUROC (train AUROC)

 ~ 10 6488 527 901 0.685 (0.697) 0.684 (0.702) 0.675 (0.735) 0.685 (0.693)

 ~ 20 12,946 1024 1606 0.680 (0.695) 0.683 (0.711) 0.654 (0.754) 0.684 (0.687)

 ~ 30 19,371 1422 2294 0.678 (0.692) 0.681 (0.710) 0.636 (0.778) 0.682 (0.680)

 ~ 40 25,834 1925 2847 0.677 (0.692) 0.679 (0.707) 0.621 (0.800) 0.682 (0.675)

 ~ 50 32,313 2289 3450 0.677 (0.692) 0.676 (0.706) 0.607 (0.837) 0.681 (0.671)

 ~ 70 45,271 2973 4387 0.681 (0.708) 0.671 (0.693) 0.592 (0.865) 0.678 (0.674)

 ~ 90 58,274 3726 5394 0.684 (0.714) 0.654 (0.723) 0.590 (0.916) 0.676 (0.689)

Fig. 2  The test AUROC performances for four censoring solutions on three difference test sets across 21 prediction questions
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the time-at-risk increases to 3 years, the LASSO logistic 
regression trained using data that removed the lost to 
follow-up non-outcome patients seems to consistently 
perform worse when evaluated on the data keeping all 
patients lost to follow-up or excluding all patients lost to 
follow-up.

Empirical results for 1 to 8‑year time‑at‑risk
We highlight liver injury, because it is the rarest outcome, 
as well as suicide and suicidal ideation because it is likely 
associated to loss to follow-up (e.g., if the patient dies by 
suicide). For these two outcomes we compare the dis-
crimination of the regularized logistic regression trained 
on data including lost to follow-up patients and the regu-
larized Cox model for various time-at-risks. We trained 
the models on 75% of the data, including those who were 
lost to follow-up. To evaluate we used the test set con-
taining 25% of the data, both when including all patients 

who were lost to follow-up (keep all) and when excluding 
all the patients who were lost to follow-up (remove all).

Figure  3 shows that the discrimination performance 
was similar between a Cox regression model and a logis-
tic regression model that used LASSO regularization 
and were trained using data that included patients lost to 
follow-up for the two prediction questions. As the time 
at risk increases the number of patients lost to follow-up 
increases, making the performance less certain in the test 
set that excluded patients lost to follow-up (larger confi-
dence intervals on the right).

Discussion
In this study we compared the performance of four dif-
ferent simple solutions to address loss to follow-up by 
using a partially synthetic dataset and 21 real world pre-
diction questions. The simulation results suggest that 
when loss to follow-up is random the solution makes lit-
tle impact on discrimination. However, the calibration 

Fig. 3  Comparing LASSO logistic regression and LASSO Cox regression both trained on data including patients lost to follow-up for time-at-risk 
periods between 1 and 8 years. The left-hand plots are the discrimination performance (AUROC) when evaluated on a test set that included patients 
lost to follow-up and the right-hand plots are the discrimination performance (AUROC) when evaluated on a test set that excluded patients lost 
to follow-up. The rows are the different outcomes (top row corresponds to the liver injury outcome models and bottom row corresponds to the 
suicide attempt and ideation outcome models)



Page 9 of 24Reps et al. BMC Med Inform Decis Mak           (2021) 21:43 	

was impacted when there was sufficient loss to follow-up, 
except in the cases of the models developed using data 
that excludes all patients lost to follow-up. When the 
loss to follow-up was simulated based on comorbidity, 
the models developed using data that excluded patients 
lost to follow-up unless they had the outcome during the 
time-at-risk prior to censoring had much worse discrimi-
native performance than the other strategies and were 
poorly calibrated. The real-world problems predicting 
1-year risk of various outcomes using different strategies 
to address loss to follow-up showed the strategy had little 
impact on discriminative performance. The 3-year real-
world data models showed variability in the discrimina-
tion ability based on the strategies. This may have been 
because the 3-year time-at-risk has more patients that are 
lost to follow-up. In general, we found:

1.	 The binary classification models trained when exclud-
ing all patients lost to follow-up resulted in well cali-
brated models with good discriminative performance 
in both the random and comorbidity based simulated 
scenarios. This was observed even in the worst-case 
scenario where a large number of the most ill patients 
were lost to follow-up. This makes sense if the loss 
to follow-up is independent of the outcome, as the 
non-outcome and outcome patients should have an 
equal chance of being lost to follow-up. However, 
this is not a feasible solution if excluding patients 
lost to follow-up reduces the data size too much. In 
addition, the real-world data suggests this approach 
is problematic when the outcome is linked to loss 
to follow-up (see Fig.  3 ‘ventricular arrhythmia and 
sudden cardiac death’ and ‘acute myocardial infarc-
tion’ outcomes where the models trained using all 
the data outperformed the model trained using data 
that excluded patients lost to follow-up). Hypotheti-
cally, if the outcome was linked to death (e.g., acute 
myocardial infarction’), then excluding patients lost 
to follow-up (those who died due to acute myocar-
dial infarction’), would result in a model that predicts 
surviving acute myocardial infarction attempt rather 
than all acute myocardial infarctions.

2.	 The binary classification models trained when includ-
ing all patients lost to follow-up appear to have good 
discrimination but slightly under-estimate risk due to 
some of the patients with the outcome being misclas-
sified as non-outcomes. LASSO logistic regression 
will be able to account for some noise but using a 
more noise-robust classifier may be preferable when 
loss to follow-up is common [18, 19]. The tolerance 
to small amounts of noise may explain why the dis-
crimination performance appears to be generally 
unaffected when including noisy labels up to a cer-

tain quantity. However, not observing all patients for 
the complete time-at-risk results in less outcomes (as 
patients who may have had the outcome after being 
lost to follow-up are incorrectly labelled as non-out-
comes) and this resulted in an under-estimation of 
risk. This is a limitation that must be highlighted if 
using this approach. It may be possible to recalibrate 
if the true outcome rate is known.

3.	 The survival models (LASSO Cox) trained when 
including all patients lost to follow-up appear to 
have good discrimination but are slower to train and 
require estimating the baseline hazard to calculate 
calibration. In this paper we found that the discrimi-
nation performance for the LASSO logistic regres-
sion and LASSO Cox models trained using data 
including lost to follow-up patients across various 
time at-risk periods, from 1 year up to 8 years, appear 
to be equivalent.

4.	 The binary classification models trained when 
excluding patients lost to follow-up who do not have 
the outcome prior may have high discrimination 
when tested on data with the same exclusion rules. 
However, these models appear to answer ‘what is my 
risk of having the outcome or being lost to follow-
up’ (as only outcome patients lost to follow-up can 
be in the development data) and can perform poorly 
in terms of discrimination and calibration when 
answering the intended question ‘what is my risk of 
the outcome during time-at-risk’. For example, the 
models often over-estimated risk. This makes sense 
as censoring the non-outcomes lost to follow-up 
results in a higher outcome % (as the outcome count 
is the same but the study population reduces) in the 
development data, causing calibration issues. For this 
strategy, the train set discriminative performance was 
generally higher than the other solutions, but the test 
set discriminative performance was lower. This indi-
cates the model is often not transportable to patients 
who were lost to follow-up without experiencing the 
outcome during the time-at-risk. This makes sense, 
as sicker patients (who are likely to be lost to follow-
up due to death) are only included in the develop-
ment data if they have the outcome before censoring, 
so the outcome patients in these data will be artifi-
cially sicker. This can cause generalizability issues.

In summary, if a researcher needs to pick a simple 
strategy to address loss to follow-up when using a cohort 
design, then he should avoid excluding patients who 
are lost to follow-up without experiencing the outcome 
during the time-at-risk but including patients who are 
lost to follow-up after experiencing the outcome during 
the time-at-risk. This strategy consistently led to poorly 
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calibrated models that may not answer the intended 
question. If experiencing the outcome is likely to increase 
the chance of being lost to follow-up or the data are 
small, then excluding patients lost to follow-up is likely 
to be detrimental in terms of discrimination. In this case, 
training a model using slightly noisy data that includes 
patients lost to follow-up is preferable. However, this is 
likely to lead to slightly miscalibrated models. Recali-
bration should be attempted if the true outcome rate is 
known or the calibration issue should be highlighted as a 
potential limitation. Based on our simulation and empiri-
cal evaluation, it is our opinion that:

1.	 The LASSO Cox model does not appear to be bet-
ter than training a LASSO logistic regression model, 
in terms of discrimination, with training data that 
includes all patients lost to follow-up up to the 8-year 
time-at-risk investigated. Future work should investi-
gate whether using a LASSO Cox model can lead to 
better calibration.

2.	 Training a model using data that removed patients 
lost to follow-up who do not have the outcome but 
kept those with the outcome can bias a model and 
lead to models that overestimate risk.

3.	 Evaluating a model on data that removed patients 
lost to follow-up who do not have the outcome but 
kept those with the outcome can lead to optimistic 
performance estimates.

4.	 If the loss to follow-up is associated with the out-
come (i.e., the outcome can cause death) or the out-
come count is low then training a model on data 
where patients lost to follow-up are removed could 
limit performance.

5.	 Training models using data that include patients lost 
to follow-up can lead to miscalibrated models as the 
outcome percentage in the data is diluted.

As best practices we propose that researchers (1) 
develop models using data that includes patients that 
are lost to follow-up as this is less likely to lead to biased 
models (but use noise tolerant binary classifiers or sur-
vival models), (2) perform recalibration if possible to 
address the miscalibration issue and (3) evaluate the 
model performance on test data that includes patients 
that are lost to follow-up but also evaluate the model 
performance on test data that excludes patients that are 
lost to follow-up to gain more insight into the true model 
performance.

A strength of this study is that we were able to empiri-
cally evaluate the impact of various solutions to deal with 
loss to follow-up at scale. In this study we developed 4 
models in 2 time-at-risk periods for 21 outcomes, so 
168 models in total. In future work it may be useful to 

expand this further and evaluate whether the results hold 
across more datasets and prediction questions. In addi-
tion, it would be useful to investigate the performance on 
external datasets to see which solutions are more gen-
eralizable. Our results for the partially synthetic study 
are dependent on the technique we used to impute the 
outcome labels and the methods used to simulate loss to 
follow-up. A limitation of our partially synthetic study 
is that we made certain assumption such as that the loss 
to follow-up date was uniform between the time-at-risk 
period, whereas in reality you may find censoring more 
common at the start or end of the follow-up. In addi-
tion, for the Charlson comorbidity-based simulation we 
decided to investigate the worst-case scenario, where the 
sickest patients were lost to follow-up. Therefore, our 
results using the partially synthetic data may be due to 
the imputation and simulation designs. In future it may 
be useful to study more simulation scenarios to gain a 
greater theoretical understanding, especially for scenar-
ios where the outcome is associated to loss to follow-up. 
There have been numerous methods to address missing 
outcome data [20, 21] and in future work it would be 
interesting to see whether our partially synthetic results 
hold when using different techniques to create the par-
tially synthetic data. However, our empirical results used 
real world data that would capture any data complexities 
such as loss to follow-up distribution, so these are more 
informative. Although, we only tested the solutions on 21 
real world prediction questions, and it is not possible to 
know whether our results would generalize to all predic-
tion questions.

The problem of loss to follow-up in cohort studies 
is effectively a missing outcome data problem. In this 
study we did not consider using imputation methods to 
address the outcome missingness, instead we focused 
on simple methods using noisy labels, complete case 
analysis or survival models that can handle the missing-
ness. There are a range of imputation techniques that are 
often used in clinical trial studies with missing outcome 
data [20], however these generally make assumptions 
about the missingness mechanism that can be impos-
sible to confirm. In addition, studies have shown that 
misspecified outcome imputation models can cause bias 
in relative risk estimates [22], so bias issues may also 
occur when using imputation to address loss to follow-
up in prognostic model development. In future work it 
would be interesting to further investigate and compare 
whether methods to impute the missing outcomes could 
be used as an alternative strategy for addressing loss to 
follow-up. In addition, there are other solutions avail-
able for addressing loss to follow-up that were not inves-
tigated. For example, patients lost to follow-up could 
have a lower weight assigned when calculating the model 
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performance, so they have less impact. However, we 
selected the four solutions investigated in this paper due 
to their simplicity so they could be widely implemented 
without advanced knowledge of machine learning or pro-
gramming, as this is likely to limit a solution’s utility.

This is the first study to empirically evaluate simple 
design choice for dealing with loss to follow-up data in 
prediction model development at scale and our results 
can now be used to guide other researchers. It is impor-
tant to note that this study does show superiority of any 
method, but it does highlight the pitfalls of some simple 
approaches to censored data and illustrates the trade-off 
between noise and bias.

Conclusion
We compared four different techniques that can be used 
to address the issue of loss to follow-up in prediction 
model development. Our results suggest that using train-
ing data that removes patients who are lost to follow-up 
who do not have the outcome but keeps patients lost 
to follow-up who have the outcome can lead to biased 
models. Based on this research it appears that it is best 
to develop models using data that includes patients that 
are lost to follow-up. However, recalibration is likely to 
be required as this strategy appears to result in models 
that under-estimate risk.
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Appendix 1

Calibration plots
Calibration of lasso logistic regression models trained 
on data that excluded all patients lost to follow-up that 
were applied to test data with no loss to follow-up on 
simulated data. 10% loss corresponds to simulating that 
10% of the target population leave during the follow-up, 
whereas 50% corresponds to 50% of the target population 
leaving during follow-up;

Calibration of lasso logistic regression models trained 
on data that included all patients lost to follow-up that 
were applied to test data with no loss to follow-up on 
simulated data:

Calibration of lasso logistic regression models trained 
on data that excluded all non-outcome patients lost to 
follow-up that were applied to test data with no loss to 
follow-up on simulated data (MCAR left, Charlson right).

Outcome percent in development data
See Figs. 4, 5, 6, 7, 8, 9 and 10 .
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Fig. 4  Calibration of model trained on data excluding patients with loss to follow-up after simulating N% of patients were lost to follow-up 
randomly (MCAR)
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Fig. 5  Calibration of model trained on data excluding patients with loss to follow-up after simulating N% of patient were lost to follow-up based on 
Charlson’s comorbidity index
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Fig. 6  Calibration of model trained on data including patients with loss to follow-up after simulating N% of patient were lost to follow-up randomly 
(MCAR)
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Fig. 7  Calibration of model trained on data including patients with loss to follow-up after simulating N% of patients were lost to follow-up based 
on Charlson’s comorbidity index
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Fig. 8  Calibration of model trained on data excluding patients with loss to follow-up if they had no outcome during the observed time-at-risk after 
simulating N% of patients were lost to follow-up randomly (MCAR)
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Fig. 9  Calibration of model trained on data excluding patients with loss to follow-up if they had no outcome during observed time-at-risk after 
simulating N% of patients were lost to follow-up based on Charlson’s comorbidity index
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Appendix 2
See Tables 4 and 5.

Fig. 10  The percentage of the partially synthetic development data 
with the outcome based on the simple solution for addressing loss 
to follow-up as a function of the loss to follow-up amount. The black 
dashed line is the true percentage of patients with the outcome. 
The red line is the outcome % in the data when all patients lost 
to follow-up are excluded, green is the % in the data when all the 
patients lost to follow-up are included and blue is the data when all 
patients without the outcome lost to follow-up are excluded

Table 4  Full results tables

Outcome (outcome count 
with partial time-at-risk/ 
outcome count with full 
time-at-risk)

Solution Test Data 1: All lost 
to follow-up patients 
removed (~ 97,500)

Test Data 2: All lost 
to follow-up patients 
included (~ 125,000)

Test Data 3: All non-
outcome lost to follow-up 
patients are removed 
(~ 97,500)

Acute liver injury incident 
event (59/33)

Logistic remove lost to follow-up 0.811 (0.732–0.891) 0.839 (0.782–0.896) 0.848 (0.791–0.904)

Logistic keep lost to follow-up 0.8 (0.709–0.89) 0.841 (0.779–0.902) 0.848 (0.787–0.909)

Logistic remove non-outcomes 
lost to follow-up

0.795 (0.702–0.887) 0.838 (0.776–0.9) 0.848 (0.787–0.91)

Cox keep lost to follow-up 0.799 (0.71–0.889) 0.84 (0.779–0.902) 0.849 (0.788–0.91)

Ventricular arrhythmia and 
sudden cardiac death 
incident event (68/38)

Logistic remove lost to follow-up 0.881 (0.825–0.938) 0.893 (0.857–0.93) 0.901 (0.866–0.937)

Logistic keep lost to follow-up 0.859 (0.79–0.928) 0.88 (0.837–0.923) 0.889 (0.847–0.932)

Logistic remove non-outcomes 
lost to follow-up

0.848 (0.77–0.925) 0.874 (0.827–0.921) 0.886 (0.84–0.932)

Cox keep lost to follow-up 0.86 (0.791–0.929) 0.881 (0.837–0.924) 0.891 (0.848–0.933)

Ischemic stroke—all 
inpatient, incident event 
(95/73)

Logistic remove lost to follow-up 0.815 (0.771–0.859) 0.825 (0.789–0.861) 0.83 (0.794–0.866)

Logistic keep lost to follow-up 0.828 (0.787–0.869) 0.838 (0.804–0.871) 0.842 (0.809–0.876)

Logistic remove non-outcomes 
lost to follow-up

0.829 (0.788–0.869) 0.839 (0.806–0.872) 0.847 (0.814–0.879)

Cox keep lost to follow-up 0.828 (0.787–0.869) 0.838 (0.805–0.871) 0.844 (0.811–0.877)

Acute myocardial infarction 
incident event (137/110)

Logistic remove lost to follow-up 0.836 (0.799–0.873) 0.829 (0.797–0.861) 0.836 (0.805–0.868)

Logistic keep lost to follow-up 0.845 (0.81–0.88) 0.837 (0.807–0.867) 0.843 (0.813–0.873)

Logistic remove non-outcomes 
lost to follow-up

0.849 (0.814–0.884) 0.839 (0.809–0.869) 0.849 (0.82–0.879)

Cox keep lost to follow-up 0.847 (0.813–0.882) 0.838 (0.808–0.868) 0.846 (0.816–0.875)
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Table 4  (continued)

Outcome (outcome count 
with partial time-at-risk/ 
outcome count with full 
time-at-risk)

Solution Test Data 1: All lost 
to follow-up patients 
removed (~ 97,500)

Test Data 2: All lost 
to follow-up patients 
included (~ 125,000)

Test Data 3: All non-
outcome lost to follow-up 
patients are removed 
(~ 97,500)

Delirium incident event 
(215/157)

Logistic remove lost to follow-up 0.861 (0.835–0.887) 0.865 (0.844–0.886) 0.876 (0.855–0.896)

Logistic keep lost to follow-up 0.868 (0.843–0.892) 0.871 (0.851–0.892) 0.881 (0.861–0.901)

Logistic remove non-outcomes 
lost to follow-up

0.87 (0.847–0.893) 0.875 (0.856–0.894) 0.89 (0.872–0.908)

Cox keep lost to follow-up 0.869 (0.844–0.893) 0.872 (0.852–0.892) 0.884 (0.865–0.903)

Gastrointestinal hemorrhage 
incident event (225/186)

Logistic remove lost to follow-up 0.756 (0.721–0.792) 0.757 (0.726–0.789) 0.77 (0.739–0.801)

Logistic keep lost to follow-up 0.764 (0.731–0.798) 0.764 (0.734–0.794) 0.776 (0.746–0.806)

Logistic remove non-outcomes 
lost to follow-up

0.76 (0.726–0.793) 0.755 (0.724–0.785) 0.774 (0.744–0.804)

Cox keep lost to follow-up 0.764 (0.731–0.798) 0.763 (0.733–0.793) 0.777 (0.748–0.807)

Decreased libido incident 
event (291/257)

Logistic remove lost to follow-up 0.724 (0.695–0.753) 0.734 (0.707–0.761) 0.729 (0.701–0.756)

Logistic keep lost to follow-up 0.731 (0.702–0.759) 0.743 (0.716–0.769) 0.733 (0.705–0.76)

Logistic remove non-outcomes 
lost to follow-up

0.729 (0.701–0.758) 0.737 (0.711–0.764) 0.735 (0.709–0.762)

Cox keep lost to follow-up 0.729 (0.7–0.758) 0.74 (0.713–0.767) 0.734 (0.707–0.761)

Seizure incident event 
(408/312)

Logistic remove lost to follow-up 0.812 (0.79–0.834) 0.813 (0.794–0.832) 0.828 (0.81–0.847)

Logistic keep lost to follow-up 0.815 (0.793–0.837) 0.818 (0.799–0.837) 0.831 (0.812–0.849)

Logistic remove non-outcomes 
lost to follow-up

0.816 (0.794–0.838) 0.817 (0.798–0.836) 0.837 (0.818–0.855)

Cox keep lost to follow-up 0.816 (0.794–0.838) 0.819 (0.8–0.837) 0.834 (0.816–0.852)

Alopecia incident event 
(590/527)

Logistic remove lost to follow-up 0.675 (0.654–0.696) 0.677 (0.657–0.697) 0.667 (0.646–0.687)

Logistic keep lost to follow-up 0.679 (0.658–0.7) 0.68 (0.661–0.7) 0.667 (0.647–0.687)

Logistic remove non-outcomes 
lost to follow-up

0.679 (0.658–0.7) 0.676 (0.656–0.695) 0.674 (0.654–0.694)

Cox keep lost to follow-up 0.68 (0.659–0.701) 0.679 (0.659–0.699) 0.67 (0.65–0.69)

Tinnitus incident event 
(663/582)

Logistic remove lost to follow-up 0.695 (0.674–0.716) 0.697 (0.677–0.716) 0.691 (0.671–0.711)

Logistic keep lost to follow-up 0.696 (0.675–0.717) 0.7 (0.681–0.72) 0.69 (0.67–0.71)

Logistic remove non-outcomes 
lost to follow-up

0.696 (0.676–0.717) 0.695 (0.675–0.714) 0.699 (0.68–0.719)

Cox keep lost to follow-up 0.697 (0.676–0.718) 0.699 (0.68–0.719) 0.694 (0.674–0.714)

Vertigo incident event 
(785/708)

Logistic remove lost to follow-up 0.716 (0.698–0.735) 0.717 (0.7–0.735) 0.713 (0.696–0.731)

Logistic keep lost to follow-up 0.701 (0.682–0.72) 0.706 (0.688–0.724) 0.696 (0.678–0.714)

Logistic remove non-outcomes 
lost to follow-up

0.711 (0.692–0.73) 0.705 (0.687–0.723) 0.709 (0.69–0.727)

Cox keep lost to follow-up 0.712 (0.694–0.731) 0.714 (0.696–0.732) 0.71 (0.692–0.728)

Fracture incident event 
(1050/843)

Logistic remove lost to follow-up 0.772 (0.756–0.788) 0.771 0.778

Logistic keep lost to follow-up 0.768 (0.752–0.785) 0.769 0.772

Logistic remove non-outcomes 
lost to follow-up

0.775 (0.759–0.792) 0.772 0.786

Cox keep lost to follow-up 0.775 (0.759–0.792) 0.774 0.782

Hyponatremia incident 
event (1683/1258)

Logistic remove lost to follow-up 0.831 0.833 0.841

Logistic keep lost to follow-up 0.83 0.833 0.84

Logistic remove non-outcomes 
lost to follow-up

0.833 0.834 0.85

Cox keep lost to follow-up 0.833 0.835 0.845
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Outcome (outcome count 
with partial time-at-risk/ 
outcome count with full 
time-at-risk)

Solution Test Data 1: All lost 
to follow-up patients 
removed (~ 97,500)

Test Data 2: All lost 
to follow-up patients 
included (~ 125,000)

Test Data 3: All non-
outcome lost to follow-up 
patients are removed 
(~ 97,500)

Suicide and suicidal 
ideation incident event 
(2230/1726)

Logistic remove lost to follow-up 0.862 0.864 0.869

Logistic keep lost to follow-up 0.861 0.864 0.868

Logistic remove non-outcomes 
lost to follow-up

0.859 0.86 0.87

Cox keep lost to follow-up 0.861 0.863 0.869

Hypothyroidism incident 
event (2259/1930)

Logistic remove lost to follow-up 0.799 0.805 0.805

Logistic keep lost to follow-up 0.8 0.808 0.803

Logistic remove non-outcomes 
lost to follow-up

0.799 0.802 0.81

Cox keep lost to follow-up 0.794 0.8 0.801

Hypotension incident event 
(2462/1856)

Logistic remove lost to follow-up 0.818 0.827 0.836

Logistic keep lost to follow-up 0.818 0.828 0.834

Logistic remove non-outcomes 
lost to follow-up

0.818 0.824 0.841

Cox keep lost to follow-up 0.817 0.825 0.835

Constipation incident event 
(4089/3381)

Logistic remove lost to follow-up 0.712 0.71 0.721

Logistic keep lost to follow-up 0.712 0.712 0.717

Logistic remove non-outcomes 
lost to follow-up

0.71 0.704 0.727

Cox keep lost to follow-up 0.713 0.711 0.723

Diarrhea incident event 
(4687/3957)

Logistic remove lost to follow-up 0.699 0.693 0.702

Logistic keep lost to follow-up 0.695 0.692 0.694

Logistic remove non-outcomes 
lost to follow-up

0.696 0.685 0.708

Cox keep lost to follow-up 0.699 0.694 0.704

Insomnia incident event 
(5843/4960)

Logistic remove lost to follow-up 0.673 0.669 0.676

Logistic keep lost to follow-up 0.673 0.673 0.673

Logistic remove non-outcomes 
lost to follow-up

0.668 0.656 0.684

Cox keep lost to follow-up 0.674 0.671 0.68

Nausea incident event 
(6003/4997)

Logistic remove lost to follow-up 0.716 0.71 0.722

Logistic keep lost to follow-up 0.717 0.713 0.718

Logistic remove non-outcomes 
lost to follow-up

0.711 0.699 0.726

Cox keep lost to follow-up 0.718 0.711 0.725

Table 4  (continued)
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Table 5  AUROC results when predicting the outcomes within 3 years of the treatment for depression

Outcome (outcome count 
with partial time-at-risk/ 
outcome count with full 
time-at-risk)

Solution Test Data 1: All patients 
with partial time-at-risk 
are removed (~ 47,000)

Test Data 2: All patients 
with partial time-at-risk 
are included (~ 125,000)

Test Data 3: All non-
outcome patients 
with partial time-at-risk are 
removed

Acute liver injury incident 
event (107/43)

Logistic remove lost to 
follow-up

0.755 (0.67–0.84) 0.786 (0.74–0.831) 0.82 (0.776–0.864)

Logistic keep lost to follow-
up

0.767 (0.683–0.851) 0.811 (0.765–0.858) 0.836 (0.79–0.882)

Logistic remove non-out-
comes lost to follow-up

0.701 (0.603–0.8) 0.713 (0.661–0.765) 0.852 (0.804–0.901)

Cox keep lost to follow-up 0.765 (0.681–0.849) 0.806 (0.759–0.853) 0.846 (0.802–0.89)

Ventricular arrhythmia and 
sudden cardiac death 
incident event (126/32)

Logistic remove lost to 
follow-up

0.797 (0.721–0.874) 0.799 (0.762–0.837) 0.829 (0.792–0.865)

Logistic keep lost to follow-
up

0.809 (0.721–0.897) 0.825 (0.787–0.862) 0.853 (0.816–0.891)

Logistic remove non-out-
comes lost to follow-up

0.788 (0.706–0.871) 0.76 (0.72–0.801) 0.892 (0.859–0.925)

Cox keep lost to follow-up 0.816 (0.731–0.902) 0.826 (0.788–0.864) 0.866 (0.83–0.902)

Ischemic stroke—all 
inpatient, incident event 
(185/94)

Logistic remove lost to 
follow-up

0.832 (0.793–0.871) 0.83 (0.805–0.854) 0.846 (0.822–0.87)

Logistic keep lost to follow-
up

0.829 (0.791–0.866) 0.851 (0.829–0.874) 0.843 (0.819–0.866)

Logistic remove non-out-
comes lost to follow-up

0.834 (0.798–0.87) 0.754 (0.727–0.781) 0.879 (0.857–0.902)

Cox keep lost to follow-up 0.837 (0.799–0.874) 0.843 (0.82–0.866) 0.862 (0.839–0.885)

Acute myocardial infarction 
incident event (273/111)

Logistic remove lost to 
follow-up

0.8 (0.759–0.841) 0.804 (0.78–0.829) 0.838 (0.815–0.861)

Logistic keep lost to follow-
up

0.809 (0.768–0.85) 0.83 (0.806–0.853) 0.845 (0.822–0.869)

Logistic remove non-out-
comes lost to follow-up

0.794 (0.754–0.834) 0.75 (0.725–0.775) 0.889 (0.867–0.911)

Cox keep lost to follow-up 0.809 (0.768–0.849) 0.825 (0.801–0.849) 0.861 (0.838–0.883)

Delirium incident event 
(359/148)

Logistic remove lost to 
follow-up

0.818 (0.786–0.85) 0.813 (0.793–0.833) 0.851 (0.833–0.87)

Logistic keep lost to follow-
up

0.832 (0.801–0.863) 0.846 (0.828–0.864) 0.854 (0.836–0.873)

Logistic remove non-out-
comes lost to follow-up

0.816 (0.784–0.847) 0.766 (0.745–0.787) 0.895 (0.879–0.912)

Cox keep lost to follow-up 0.831 (0.801–0.862) 0.842 (0.824–0.86) 0.873 (0.856–0.89)

Gastrointestinal hemhorrage 
incident event (430/210)

Logistic remove lost to 
follow-up

0.754 (0.721–0.787) 0.737 (0.714–0.76) 0.79 (0.768–0.811)

Logistic keep lost to follow-
up

0.765 (0.732–0.798) 0.767 (0.745–0.789) 0.784 (0.763–0.806)

Logistic remove non-out-
comes lost to follow-up

0.749 (0.716–0.782) 0.651 (0.627–0.674) 0.84 (0.819–0.861)

Cox keep lost to follow-up 0.776 (0.745–0.808) 0.761 (0.739–0.783) 0.81 (0.789–0.831)

Decreased libido incident 
event (643/391)

Logistic remove lost to 
follow-up

0.698 (0.674–0.722) 0.713 (0.695–0.732) 0.703 (0.684–0.722)

Logistic keep lost to follow-
up

0.705 (0.682–0.729) 0.738 (0.72–0.755) 0.667 (0.646–0.687)

Logistic remove non-out-
comes lost to follow-up

0.683 (0.659–0.708) 0.582 (0.563–0.601) 0.769 (0.751–0.788)

Cox keep lost to follow-up 0.708 (0.685–0.731) 0.73 (0.712–0.747) 0.705 (0.687–0.724)
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Table 5  (continued)

Outcome (outcome count 
with partial time-at-risk/ 
outcome count with full 
time-at-risk)

Solution Test Data 1: All patients 
with partial time-at-risk 
are removed (~ 47,000)

Test Data 2: All patients 
with partial time-at-risk 
are included (~ 125,000)

Test Data 3: All non-
outcome patients 
with partial time-at-risk are 
removed

Seizure incident event 
(712/313)

Logistic remove lost to 
follow-up

0.783 (0.757–0.809) 0.767 (0.75–0.784) 0.805 (0.789–0.822)

Logistic keep lost to follow-
up

0.779 (0.753–0.806) 0.787 (0.77–0.804) 0.788 (0.77–0.806)

Logistic remove non-out-
comes lost to follow-up

0.753 (0.725–0.78) 0.674 (0.656–0.692) 0.849 (0.833–0.865)

Cox keep lost to follow-up 0.782 (0.756–0.808) 0.777 (0.76–0.794) 0.815 (0.798–0.832)

Alopecia incident event 
(1268/690)

Logistic remove lost to 
follow-up

0.684 (0.666–0.702) 0.692 0.695

Logistic keep lost to follow-
up

0.687 (0.669–0.706) 0.713 0.638

Logistic remove non-out-
comes lost to follow-up

0.653 (0.633–0.672) 0.547 0.765

Cox keep lost to follow-up 0.691 (0.673–0.71) 0.704 0.698

Tinnitus incident event 
(1419/760)

Logistic remove lost to 
follow-up

0.69 (0.671–0.709) 0.681 0.682

Logistic keep lost to follow-
up

0.691 (0.672–0.71) 0.701 0.648

Logistic remove non-out-
comes lost to follow-up

0.644 (0.624–0.663) 0.538 0.764

Cox keep lost to follow-up 0.695 (0.676–0.713) 0.689 0.702

Vertigo incident event 
(1663/911)

Logistic remove lost to 
follow-up

0.696 (0.679–0.713) 0.699 0.698

Logistic keep lost to follow-
up

0.697 (0.68–0.714) 0.727 0.665

Logistic remove non-out-
comes lost to follow-up

0.672 (0.655–0.69) 0.568 0.781

Cox keep lost to follow-up 0.709 (0.693–0.726) 0.714 0.723

Fracture incident event 
(2222/1002)

Logistic remove lost to 
follow-up

0.76 0.753 0.783

Logistic keep lost to follow-
up

0.762 0.765 0.75

Logistic remove non-out-
comes lost to follow-up

0.72 0.636 0.831

Cox keep lost to follow-up 0.764 0.755 0.792

Hyponatremia incident 
event (3032/1281)

Logistic remove lost to 
follow-up

0.812 0.81 0.839

Logistic keep lost to follow-
up

0.813 0.819 0.818

Logistic remove non-out-
comes lost to follow-up

0.787 0.71 0.88

Cox keep lost to follow-up 0.812 0.812 0.846

Suicide and suicidal 
ideation incident event 
(3382/1549)

Logistic remove lost to 
follow-up

0.822 0.829 0.849

Logistic keep lost to follow-
up

0.821 0.839 0.827

Logistic remove non-out-
comes lost to follow-up

0.807 0.702 0.882

Cox keep lost to follow-up 0.822 0.834 0.846
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Table 5  (continued)

Outcome (outcome count 
with partial time-at-risk/ 
outcome count with full 
time-at-risk)

Solution Test Data 1: All patients 
with partial time-at-risk 
are removed (~ 47,000)

Test Data 2: All patients 
with partial time-at-risk 
are included (~ 125,000)

Test Data 3: All non-
outcome patients 
with partial time-at-risk are 
removed

Hypothyroidism incident 
event (4119/2330)

Logistic remove lost to 
follow-up

0.77 0.772 0.776

Logistic keep lost to follow-
up

0.773 0.794 0.739

Logistic remove non-out-
comes lost to follow-up

0.748 0.649 0.827

Cox keep lost to follow-up 0.773 0.777 0.781

Hypotension incident event 
(4385/1877)

Logistic remove lost to 
follow-up

0.793 0.798 0.831

Logistic keep lost to follow-
up

0.797 0.812 0.811

Logistic remove non-out-
comes lost to follow-up

0.772 0.7 0.873

Cox keep lost to follow-up 0.798 0.803 0.841

Constipation incident event 
(7865/3934)

Logistic remove lost to 
follow-up

0.69 0.684 0.727

Logistic keep lost to follow-
up

0.688 0.708 0.673

Logistic remove non-out-
comes lost to follow-up

0.663 0.569 0.791

Cox keep lost to follow-up 0.694 0.691 0.738

Diarrhea incident event 
(9047/4606)

Logistic remove lost to 
follow-up

0.674 0.659 0.705

Appendix 3
The simulation equations for the partially synthetic data:

Define X̂ as a n1 by p matrix where n1 is the number of 
patients with complete follow-up and p is the number of 
predictors. Let ŷ be a n1 by 1 vector such that ŷi ∈ {0,1}, 
indicating whether patient i had the outcome during the 
observed time-at-risk (1 if they did and 0 otherwise).

Define 
∼

X as a n2 by p matrix where n2 is the number of 
patients with incomplete follow-up and p is the number 
of predictors. Let 

∼
y be a n1 by 1 vector such that ŷi ∈ {0,1}, 

indicating whether patient i had the outcome during the 
observed time-at-risk (1 if they did and 0 otherwise).

To simulate complete follow-up, we trained a LASSO 
logistic regression model using the patients with com-
plete follow-up ( ̂X , ŷ ) that maps from the predictor space 
to and value between 0 and 1 indicating the risk of having 
the outcome f : x̂ → [0, 1] . We then applied this to the 
patients with incomplete follow-up:

Where f (
∼
xi) is the predicted risk of the ith patient with 

incomplete follow-up having the outcome during the 
time-at-risk. For each patient with incomplete follow-up 
we simulated their outcome label as:

That is, if their predicted risk was greater than a ran-
dom uniform number between 0 and 1 then they were 
simulated to have the outcome, otherwise they were sim-
ulated to not have the outcome.

In addition, for all patients with incomplete loss to fol-
low-up who were simulated to have the outcome, we sim-
ulated the time from index to the outcome by: TAR x 
rj , rj ∼ U(0, 1) , where TAR was the full then time-at-risk 
in days. Effectively, we randomly picked a time during the 
time-at-risk using a uniform distribution.

We then combined X̂ and 
∼

X to get the full predictor 
matrix for all patients and we combined ŷ and 

∼
y to get 

a full vector of labels. This gave us our partial synthetic 
data.

Received: 5 August 2020   Accepted: 25 January 2021

ỹi =

{
1 if f

(
x̃i
)
≥ ri

0 else
, where ri ∼ U(0, 1)
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