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Simple Summary: Patients with head and neck cancers (HNCs) report a cluster of psychoneurological
symptoms (i.e., the PNS cluster), including pain, fatigue, sleep disturbance, depressive symptoms,
and cognitive dysfunction across different treatments. The aim of this longitudinal study was to
examine associations between the gut microbiome and the PNS cluster in 13 patients with HNCs pre-
and post-radiotherapy. Patients with the high PNS cluster showed a greater decrease in microbial
evenness than those with the low PNS cluster from pre- to post-radiotherapy. The high and low PNS
clusters showed significant gut microbiome dissimilarities. Patients with the high PNS cluster had
higher abundances of Bacteroidetes, Ruminiclostridium9, Tyzzerella, Eubacterium_fissicatena, and DTU089.
Patients with the low PNS cluster had higher abundances in Lactococcus, Phascolarctobacterium,
and Desulfovibrio. Glycan metabolism and vitamin metabolism were different between the high and
low PNS clusters pre- and post-radiotherapy.

Abstract: Cancer patients experience a cluster of co-occurring psychoneurological symptoms (PNS)
related to cancer treatments. The gut microbiome may affect severity of the PNS via neural, immune,
and endocrine signaling pathways. However, the link between the gut microbiome and PNS has not
been well investigated in cancer patients, including those with head and neck cancers (HNCs). This pilot
study enrolled 13 patients with HNCs, who reported PNS using the Patient-Reported Outcomes version
of the Common Terminology Criteria for Adverse Events (CTCAEs). Stool specimens were collected
to analyze patients’ gut microbiome. All data were collected pre- and post-radiation therapy (RT).
Associations between the bacterial abundances and the PNS clusters were analyzed using the linear
discriminant analysis effect size; functional pathway analyses of 16S rRNA V3-V4 bacterial communities
were conducted using Tax4fun. The high PNS cluster had a greater decrease in microbial evenness than
the low PNS cluster from pre- to post-RT. The high and low PNS clusters showed significant differences
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using weighted UniFrac distance. Those individuals with the high PNS cluster were more likely to
have higher abundances in phylum Bacteroidetes, order Bacteroidales, class Bacteroidia, and four genera
(Ruminiclostridium9, Tyzzerella, Eubacterium_fissicatena, and DTU089), while the low PNS cluster had
higher abundances in family Acidaminococcaceae and three genera (Lactococcus, Phascolarctobacterium,
and Desulfovibrio). Both glycan metabolism (Lipopolysaccharide biosynthesis) and vitamin metabolism
(folate biosynthesis and lipoic acid metabolism) were significantly different between the high and low
PNS clusters pre- and post-RT. Our preliminary data suggest that the diversity and abundance of the
gut microbiome play a potential role in developing PNS among cancer patients.

Keywords: gut microbiome; head and neck cancer; psychoneurological symptoms; symptom cluster;
radiation therapy

1. Introduction

Head and neck cancers (HNCs) account for approximately 4% of all cancer diagnosed in the United
States [1]. The primary treatments for HNCs include surgery, radiation therapy (RT), and chemotherapy,
which is often combined with RT [2]. The purpose of RT is to decrease tumor size to allow surgical
resection of tumors, or to kill tumor cells that cannot be removed via surgeries [3]. Patients with HNCs
have a high survival rate after RT, especially RT following surgeries [2]. Nevertheless, patients report an
array of co-occurring symptoms across different treatments, including pain, fatigue, sleep disturbance,
depressive symptoms, and cognitive dysfunction [4,5]. These co-occurring symptoms are defined as the
psychoneurological symptoms (PNS) cluster, which potentially have common underlying biological
mechanisms [6]. Poor treatment management of the PNS cluster could lead to adverse effects on
a patient’s functional performance and may decrease their overall quality of life (QOL) [6].

Understanding the biological mechanism(s) of the PNS cluster can help advance both the diagnosis
and treatment of these co-occurring symptoms. Literature has suggested several potential biological
mechanisms, including pro-inflammatory response as indicated by higher pro-inflammatory cytokines
(e.g., IL-1, IL-6, IL-8, and TNF-α) and the dysregulation of monoamine neurotransmission system
(e.g., vagal nerve system) [7]. Additionally, lower estrogen or hemoglobin levels may enhance the
development of the PNS cluster [7]. Both pro-inflammatory cytokines and the neurotransmission system
may affect, and be modulated by, the critical gut microbiome ecosystem required for psychoneurological
health [8,9]. The human gut hosts tens of trillions of microbes, representing 500 species on average [10,11].
The gut microbiome is the collection of all genomes of the microbes in the human gastrointestinal
tract [8]. According to the microbiome–gut–brain axis model [12], the gut microbiome may regulate the
development of the PNS cluster through neural, immune, metabolic, and hormonal pathways [13,14].
For patients with HNCs, cancer treatments such as RT and chemotherapy can affect patients’ immune
responses, reshape the composition of the gut microbiome, and lead to lower abundance of commensal
microbes and increased presence of pathogens [15,16], in turn impacting the PNS cluster. The current
state of the science regarding the gut microbiome is still at its infancy, and it has not been well
investigated in patients treated for cancer, including HNCs.

To date, studies investigating the association between the gut microbiome and PNS have primarily
been conducted on animal models and among non-cancer populations. For instance, germ-free (GF)
mice exposed to mild restraint stress had an exaggerated release of adrenocorticotropic hormone and
corticosterone compared to mice with a healthy microbiome community and no specific pathogens [17];
these results suggest that the gut microbiome has a connection with the brain, and it can cause reduced
responses in anxiety and cognitive functions for these mice [17–19]. Another study examined whether
the absence of a healthy microbiome can influence inflammatory pain and found that GF mice had
lower inflammatory hypernociception [20]. Graeau et al. further studied the effects of acute enteric
infection or absence of the gut microbiome on anxiety and memory formation in mice, and their
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work suggested that the gut microbiome influences the ability to form memory, especially for the GF
mice [19]. Emerging evidence from these animal studies seems to corroborate the beneficial effects
of probiotic or prebiotic treatments as they relate to the PNS cluster [21,22]. Although the preclinical
and non-cancer studies provide evidence of an association between the gut microbiome and the PNS
cluster, this relationship must be tested in patients with cancer before further interventions can be
designed to prevent or alleviate PNS in these patients.

Therefore, the purpose of this study was to examine the associations between the diversity,
composition, and function of the gut microbiome and the PNS cluster in patients with HNCs pre- and
post-RT. Findings of this study could contribute to understanding the gut microbiome compositional
and functional mechanisms underlying the PNS cluster and could provide preliminary insights into
designing larger studies to manage treatment symptoms.

2. Results

2.1. Study Participants Baseline Characteristics

We enrolled 13 patients with an average age of 60 years. Most of them were men (84.6%),
White (84.6%), and married (61.5%) (Table 1). This sample represented the HNCs population according
to previous literature [23,24]. About half of the participants were diagnosed with oropharyngeal cancer,
and 64% of them were HPV-related HNCs. More than half of enrolled patients received chemoradiation
and 62% had surgery.

Table 1. Demographic and clinical characteristics (n = 13).

Variables N (%)

Age, years
Mean (SD); median (range) 60.0 (9.4); 57.0 (47.0–76.0)

Men 11 (84.6)
White 11 (84.6)

Alcohol status, drinks per week
<1 4 (30.8)
≥1 9 (69.2)

Smoking status
Ever 10 (76.9)

Never 3 (23.1)
Married 8 (61.5)

BMI
Mean (SD); median (range) 26.0 (4.7); 26.0 (18.3–35.2)

Cancer site
Oropharynx 6 (46.2)

Non-oropharynx 7 (53.8)
Positive HPV status 7 (63.6)

Cancer stage
II 2 (15.4)
III 3 (23.1)
IV 8 (61.5)

Treatment modality
Radiation + surgery 6 (46.2)
Radiation + chemo 5 (38.5)

Radiation + chemo + surgery 2 (15.4)
Received surgery 8 (61.5)

RT dose
Mean (SD); median (range) 64.9 (5.3); 66.0 (54.0–70.0)

Antibiotics use a

Yes 1 (7.7)
No 11 (84.6)

Anti-inflammatory drugs use a
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Table 1. Cont.

Yes 5 (38.5)
No 7 (53.0)

Continuous PNS score pre-RT
Mean (SD); median (range) 6.8 (3.4); 6.5 (1.5–13.0)

Continuous PNS score post-RT
Mean (SD); median (range) 6.7 (4.4); 6.5 (1.0–19.0)

Categorical PNS cluster pre-RT
High vs. low 8 (61.5%) vs. 5 (38.5)

Categorical PNS cluster post-RT
High vs. low 7 (53.8) vs. 6 (46.2)

a Missing value: antibiotics usage with one missing value; anti-inflammatory with one missing value. BMI,
body mass index; chemo, chemotherapy; HPV, human papillomavirus; PNS, psychoneurological symptoms; RT,
radiation therapy; SD, standard deviation.

2.2. Taxonomic Profile of the Gut Microbiome and PNS

In total, 26 gut microbial samples from these 13 patients (pre- and post-RT) were analyzed.
A median of 137,054 (ranging from 95,849 to 548,061) high-quality sequences per sample were retained
after quality control using Divisive Amplicon Denoising Algorithm (DADA2). Rarefaction was
performed at 7500 reads based on the frequency per sample. Taxonomic analysis was assigned using a
pre-trained Silva 132 99% database. Figure 1 displays the microbial taxa at the phylum level (Figure 1a)
and the genus level (Figure 1b) stratified by timepoint (pre- vs. post-radiation therapy) vs. the level
of the PNS cluster (low vs. high). The gut microbiome profile in our participants was dominated by
Firmicutes (43.11%), Bacteroidetes (43.83%), and Actinobacteria (3.11%) at the phylum level, as well as
Bacteroides (26.65%), Parabacteroides (7.85%), Blautia (6.18%), Alistipes (6.0%), and Akkermansia (5.80%) at
the genus level.
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Figure 1. Gut microbial taxa at the phylum (a) and genus (b) level by time (pre-RT vs. post-RT) and PNS
levels (low vs. high). All the microbial phyla and top 20 genera are displayed. PNS, psychoneurological
symptoms; RT, radiation therapy.

2.3. Diversity Analysis of the Gut Microbiome and PNS

The α-diversity estimates (i.e., Chao1, Faith’s phylogenetic diversity (Faith PD), Shannon,
and evenness index) had no associations with demographic variables (i.e., age in year, gender (male vs.
female), race (White vs. non-White), marital status (married vs. unmarried), and history of smoking) or
clinical variables (BMI, antibiotics usage (yes vs. no), primary cancer site, cancer stage, cancer treatment,
or HPV status (positive vs. negative)). Patients who consumed one or more alcoholic drinks per week
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(H = 4.938, p = 0.026) and indicated no use of anti-inflammatory medications (H = 4.174, p = 0.041) had
a higher Shannon’s index; Further, patients with a history of one or more alcoholic drinks per week had
a higher evenness in their gut microbiomes (H = 5.707, p = 0.017). The β-diversity estimates showed
significant differences in cancer stage for Bray–Curtis distance (F = 1.856, p = 0.004, R2 = 0.072) and
weighted UniFrac distance (F = 2.100, p = 0.039, R2 = 0.080). No differences in β-diversity estimates
were found for antibiotic use.

All the α-diversity estimates had no associations with the categorical PNS cluster (low vs. high)
cross-sectionally (pre- or post-RT). Table 2 shows the longitudinal associations between α-diversity
estimates (Faith_PD and evenness index) and the categorical PNS cluster. Evenness of the gut
microbiome showed a significant association with the PNS cluster over time, with the high level of
PNS cluster showing a significantly-larger decrease in microbial evenness than the low level of PNS
cluster (p = 0.026). The PNS cluster showed a significant interaction with timepoint (pre- and post-RT)
for Faith_PD (p < 0.0001), showing that relative to pre-RT, the high PNS cluster was associated with
lower Faith_PD diversity post-RT.

Table 2. Longitudinal association between the gut microbial α-diversity and PNS by time (n = 13).

Variable Faith_PD Evenness

Coefficient z p Coefficient z p

Time 1.601 3.603 <0.0001 −0.033 −1.495 0.135
PNS cluster 0.365 0.409 0.683 −0.039 −2.233 0.026

Time*PNS cluster −1.101 −4.413 <0.0001 0.009 0.765 0.445

Time*PNS cluster means interactions between Time and PNS cluster; Faith_PD, Faith’s phylogenetic diversity; PNS,
psychoneurological symptoms.

ADONIS was implemented to explore associations between the β-diversity estimates (Bray–Curtis
distance and weighted UniFrac distance) and the PNS cluster cross-sectionally. The PNS cluster (low
vs. high) showed no significant difference based on the Bray–Curtis distance (Figure 2(a1), F = 1.174,
p = 0.223, R2 = 0.047), but significant differences in the PNS cluster (low vs. high) were found based on
the weighted UniFrac distance (Figure 2(b1), F = 2.117, p = 0.034, R2 = 0.081). No significant associations
were found between the β-diversity estimates (using the Bray–Curtis distance (Figure 2(a2), H = 1.8,
p = 0.233) and weighted UniFrac distance (Figure 2(b2), H = 1.8, p = 0.233)) and the PNS cluster (low
vs. high) in the longitudinal analysis.
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Figure 2. The β-diversity of gut microbiome by PNS level (low vs. high) pre-RT, post-RT, or the
combination of both. (a1) and (b1) display the dissimilarities of gut microbiome via PNS levels (low vs.
high) using the Bray-Curtis and weighted UniFrac distance. (a2) and (b2) display the dissimilarities of
gut microbiome via PNS levels (low and high) vs. timepoint (pre-RT and post-RT) using Bray-Curtis
and weighted UniFrac distance. PNS, psychoneurological symptoms; RT, radiation therapy.

2.4. Relative Abundance Analysis of the Gut Microbiome and PNS

The longitudinal relative abundance analyses showed that a higher Bacteroidetes/Firmicutes ratio
was significantly associated with higher PNS (continuous) score over time (p = 0.027). At the phylum
level, a higher abundance in Bacteroidetes was associated with higher PNS over time (p = 0.015) and
a lower Firmicutes was linked to higher PNS over time (p = 0.037). At the genus level, Anaerofustis,
Tyzzerella, Intestinimonas, and Family XIII AD3011 group were positively associated with the PNS,
while Ruminiclostridium, Phascolarctobacterium, and Subdoligranulum were inversely associated with the
PNS (all p < 0.05).

The linear discriminant analysis (LDA) effect size (LEfSe) approach was used to compare taxa
differences between low and high levels of PNS cluster (Figure 3) controlling timepoint. With an LDA
score that exceeded a threshold of 2.0, we obtained relatively-consistent results as our above-described
longitudinal abundance analysis. After adjusting for the time (pre-RT vs. post-RT), both the cladogram
(Figure 3b) and LDA bar graph (Figure 3a,c) showed that the high PNS cluster was more abundant
with one phylum (Bacteroidetes), one order (Bacteroidales), one class (Bacteroidia), and four genera
(Ruminiclostridium9, Tyzzerella, Eubacterium_fissicatena group, and DTU089) compared to the low PNS
cluster, while the low PNS cluster was more abundant with one family (Acidaminococcaceae) and three
genera (Lactococcus, Phascolarctobacterium, and Desulfovibrio) compared to the high PNS cluster.
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Figure 3. Linear discriminant analysis (LDA) effect size (LEfSe) for the gut microbial abundance based
on PNS levels (low vs. high). (a) shows the overabundant taxa for low vs. high PNS, (b) shows the
cladogram of taxa associated with PNS, and (c) shows the three most significant biomarkers of high
(left panel) vs. low (right panel) PNS by time (pre-RT vs. post-RT); the solid straight lines mean plot
subclass means; the dotted straight lines mean plot subclass medians. Low indicates low PNS level;
High indicates high PNS level. PNS, psychoneurological symptoms; RT, radiation therapy.
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2.5. Functional Pathway Analysis of the Gut Microbiome

Using the Tax4Fun package, 280 pathways in KEGG level 3 were significantly associated with
PNS and these pathways were clustered to 41 level 2 clusters of pathways according to KEGG
annotations (Table S1). After adjusting by the Benjamini–Hochberg method, Figure 4 presents the
significantly-different functional pathways associated with the PNS cluster using Wilcoxon rank test,
including the nervous system (p = 0.0719), lipid metabolism (p = 0.0469), glycan biosynthesis and
metabolism (p = 0.0124), and the digestive system (p = 0.0216). Figure 4a presents all the 41 pathways
based on KEGG annotations; Figure 4b presents 31 pathways based on KEGG annotations which only
use mean abundance larger than 5% (10 levels deleted).

Based on the species level analysis with Tax4fun, using the Mann–Whitney U test, we found that
glycan biosynthesis and metabolism (glycosaminoglycan degradation, p = 0.022; glycosphingolipid
biosynthesis—globo series, p = 0.032; glycosaminoglycan biosynthesis-chondroitin sulfate, p = 0.032),
vitamins (folate biosynthesis, p = 0.007; lipoic acid metabolism, p = 0.032) were significantly
associated with the PNS cluster pre-RT. Additionally, endocrine system (adipocytokine signaling
pathway, p = 0.015), lipid metabolism (fatty acid elongation, p = 0.046; steroid hormone biosynthesis,
p = 0.046), immune system (RIG-I-like receptor signaling pathway, p = 0.046; hematopoietic cell lineage,
p = 0.022), and nervous system (GABAergic synapse, p = 0.004; glutamatergic synapse, p = 0.010) were
significantly associated with the PNS cluster pre-RT. Additionally, glycan biosynthesis and metabolism
(lipopolysaccharide biosynthesis, p = 0.008) and vitamins (folate biosynthesis, p = 0.008; lipoic acid
metabolism, p = 0.028) were significantly associated with the PNS cluster post-RT.
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Figure 4. Functional pathway analysis of the gut microbiome based on PNS level (low vs. high). Based on
the KEGG pathway, significant metabolism pathways are presented adjusting by the Benjamini–Hochberg
method. (a) indicates all the 41 pathways based on KEGG annotations and (b) presents 31 pathways
based on KEGG annotations using mean abundance larger than 5%. PNS, psychoneurological symptoms;
KEGG, Kyoto Encyclopedia of Genes and Genomes. * p < 0.10; ** p < 0.05.

3. Discussion

To the best of our knowledge, this is the first study to explore associations between the diversity,
composition, and potential function of the gut microbiome (based on KEGG pathways) with the PNS
cluster (an average score of pain, fatigue, depressive symptoms, sleep disturbance, and cognitive
dysfunction) among cancer patients. This study had several noteworthy findings. The α- (e.g.,
evenness in particular) and β-diversity (e.g., weighted UniFrac distance) and taxa abundance of
the gut microbiome were associated with the PNS clusters. Although bacterial composition of the
gut microbiome has significant effects on the PNS cluster on its own, it is primarily the related
microbial metabolites that cause significant biological changes. We found that the glycosaminoglycan
biosynthesis, endocrine and lipid metabolism, immune system, and nervous system showed significant
associations with the PNS cluster in this study. All these findings could help us understand the
biological mechanisms of PNS and provide some potentially-precise targets for interventions that may
relieve patients’ PNS.

The microbiome–gut–brain axis model suggested a bidirectional cross-talk between the gut and
brain, linking emotional and cognitive centers of the brain with peripheral intestinal function [25].
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Cancer treatments such as chemotherapy and RT could disturb the gut microbial ecosystem and the
microbiome–gut–brain axis, resulting in manifestations of PNS. Until recently, a healthy gut microbiome
(e.g., more microbial diversity) has emerged as a novel target to reduce the toxicity and adverse effects of
cancer therapies [26,27]. Studies in animal models suggested that dysbiotic gut microbes, especially in
GF mice, can heighten cancer pain [28], fatigue [29], anxiety, depression, and cognitive dysfunction.
In this study, at the phylum level, we found positive trend of association between Bacteroidetes and the
PNS cluster, and there was a negative trend or association between Proteobacteria, Firmicutes, and the
PNS cluster prior to RT. A positive association between Bacteroidetes/Firmicutes ratio and PNS was
also observed pre-RT. At one-month post-RT, we detected a similarly increased trend in Bacillales.
Bacteroidetes/Firmicutes ratio is an indicator of inflammation [30], further increasing the PNS in cancer
treatment. Interestingly, Bifidobacteriales showed a decrease in patients with high levels of PNS both
pre- and post-RT. Bifidobacterium is a genus that has been used as a conventional probiotic for treating
ulcerative colitis [31], indicating a less protective environment for inflammatory response in HNCs
with RT.

Similarly, the longitudinal analysis indicated a higher Bacteroidetes/Firmicutes ratio (linked to
inflammation [30]) was significantly associated with higher PNS score over time. In addition, seven taxa
(four taxa from the phylum Firmicutes and three taxa from the phylum Bacteroidetes) were associated
with the high level of PNS cluster and four taxa (three taxa from the phylum Firmicutes and one taxa
from the phylum Proteobacteria) were associated with the low level of PNS cluster. Among these
significant taxa associated with a high PNS, Bacteroidetes, Bacteroidales [32], and Bacteroides [33,34]
showed close associations with inflammation response. Consistent with our data, a higher abundance
of Tyzzerella and Ruminiclostridium were reported in inflammation-associated cancer [35]. Therefore,
the gut microbiome may shape the severity of the PNS cluster through key mechanisms associated
with immunomodulation, reduction of diversity, and ecological variability [26]. Among these taxa
associated with the low PNS, Phascolarctobacterium and Subdoligranulum can produce short chain fatty
acids (SCFAs) that may help suppress inflammation [36,37]; therefore, the association between lower
Phascolarctobacterium and Subdoligranulum with higher PNS may indicate an increased inflammatory
response for PNS in our population. An increasing inflammatory response could be activated by cancer
and cancer treatments such as chemotherapy and RT. Our findings support the microbiome-gut-brain
axis model as a potential framework to understand the biological role of the gut microbiome in PNS.

Although it is necessary to establish the composition of the gut microbiome, it is more important to
understand the functional profiles from the metagenomic 16S rRNA data. According to the microbiome–
gut–brain axis, SCFAs are key microbial metabolome pathways affecting PNS [38] through histone
deacetylases, hormonal, and immune pathways [39]. Microbial regulation of tryptophan is another
focus of the metabolome pathway [40]. Tryptophan can be synthesized by bacterial phyla including
Proteobacteria, Actinobacteria, and Firmicutes [41]. A dysbiotic gut microbiome (due to cancer and cancer
treatments) can dysregulate the biosynthesis and metabolism of these metabolites. Consistent with
previous literature, we found that the gut microbiome can impact the PNS cluster through affect-specific
metabolic pathways, including glycan metabolism, the nervous system [42], and immune and endocrine
pathways [43–46]. Specifically, microbial fermentation transforms a variety of indigestible glycans into
SCFAs [47]. A dysbiotic gut microbiome may affect the volume of SCFAs and therefore lead to a higher
PNS level. Additionally, cytokine molecules produced in the gut can travel to the brain and activate the
release of cortisol through the hypothalamic–pituitary–adrenal (HPA) axis, a further potent activator of
the stress system and higher PNS [25]. In this study, the microbial function analysis via KEGG does
not depict an actually-determined impact of the microbiome on the signaling/functional pathways,
but merely delivers a prediction of the probability of a certain function based on the known effects of the
taxa that are investigated. Additionally, the diet composition has potentially direct influence on the gut
microbiome and the microbiome–gut–brain axis [48,49]. Specifically, a Western diet rich in protein or fat
may lead to significant reductions in Bifidobacteria and butyrate-producing bacteria [50–52]. In contrast,
supplementation of high fat diet with high fibers has shown to reverse the depleted levels of Bifidobacteria
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and butyrate-producing bacteria [53]. Thus, the gut microbiome has been proposed as one important
component in nutritional intervention studies to improve mental health outcomes such as anxiety
and depression [54]. Patients with cancer reported malnutrition and changes in diet composition [55],
which may adjust the relationship between gut microbiome and PNS. As a limitation of this study, future
work should consider diet in data analysis. Nevertheless, our findings provide critically important
clinical data to understand the functions of the gut microbiome in cancer. Taken together, findings of
this study seem to corroborate the important role of the gut microbiome in the PNS cluster via several
pathways associated with microbiome–gut–brain axis.

This study has several limitations. We analyzed 13 patients pre- and post-RT from a single research
institution in the Southeast region of the United States. The small sample size and single institution for
enrolment may limit the generalizability of our findings, and interpretation of these findings should
be done with caution. Current evidence is scarce in cancer, however, this study provides promising
information regarding the associations between the gut microbiota and PNS. Further, to increase
the generalizability of these findings, this study should be repeated in a larger, nationwide sample.
Moreover, the gut microbiome data in this study were processed and sequenced using the 16S rRNA
V3-V4 gene region, whose domain is restricted to bacteria and archaea but we did not study the gut
microbiome in species or strain levels [56,57]. The phylum and genus levels of the gut microbiome
could not provide specific resolution to understand the function and cause–effect of microbes on PNS.
Although the functional pathway analysis based on KEGG predicted the potential function of the
gut microbiome, shotgun metagenomics methods are strongly recommended in future work. Lastly,
diet and antibiotic usage (only two samples) were not controlled in the analysis. Future work should
replicate our findings controlling for diet status and excluding samples with antibiotic usage.

4. Materials and Methods

4.1. Design

We conducted a pilot study using a longitudinal, prospective study design. All data were collected
pre- and one-month post-intensity-modulated radiation therapy (IMRT). Patients were enrolled at
the Oncology Clinics of Emory’s Winship Cancer Institute between September 2017 and April 2018.
The study was approved by Emory University’s institutional review board (IRB00070176) and all
enrolled patients provided informed consent.

4.2. Sample

Inclusion criteria for all participants included being ≥ 21 years old and with a histological proof of
squamous cell carcinoma of the head and neck region. In addition, patients had to be diagnosed with
clinical cancer stage T1-4, any N with no distant metastasis, scheduled to receive IMRT, and had adequate
organ function. Patients with simultaneous primary tumors, those with previous invasive malignancies
less than three years prior to enrollment, and pregnant women were excluded. Additional exclusion
criteria for patients included major psychiatric disorders, chronic medical conditions involving the
immune system (e.g., HIV, hepatitis B or C), regular use of immunosuppressive medications (such as
glucocorticoids and methotrexate), and those who cannot speak English. For medical pilot studies,
a sample size between 10 and 30 is recommended with adequate ability to test hypotheses [58].
Thirteen participants were enrolled in this study.

4.3. Measures

Demographic and clinical variables: Demographic variables included age, gender, race (White
vs. non-White), marital status (married vs. single), history of smoking (yes vs. no), and history of
alcohol use (yes vs. no). Clinical variables included body mass index (BMI), antibiotic usage (yes vs.
no), comorbidities, primary cancer site (oropharynx vs. non-oropharynx), cancer stage, radiation dose,
cancer treatment (radiation + surgery; radiation + chemotherapy; radiation + chemotherapy + surgery),
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and HPV status (positive vs. negative). The HPV status was collected via the pathology report
(primarily based on p16 status using immunohistochemistry) in medical record. These variables were
chosen due to their potential impacts on the PNS cluster and the gut microbiome [5,59–62].

Psychoneurological symptoms (PNS) cluster: Symptoms in the PNS cluster were measured using
the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events
(PRO-CTCAEs). The PRO-CTCAEs was developed by the National Cancer Institute to improve the
accuracy and precision of clinician-reported CTCAEs [63] and has been validated for use in HNCs [64].
Symptom severity of individual PRO-CTCAE items are scored using a 5-level verbal descriptor scale
and are coded from 0 to 4, with 0 indicating no symptoms and 4 suggesting severe symptoms. In this
study, an average score of the five symptoms—pain, fatigue, depressive symptoms, sleep disturbances,
and cognitive dysfunction were computed as the total score of the PNS cluster. As an exploratory
work, the mean value of total score was used as the cutoff point for high (above mean) vs. low (below
mean) PNS clusters.

Gut microbiome: Fecal specimens were collected to assess the gut microbiome. Based on the
Human Microbiome Project (HMP) protocol [65], eligible patients were instructed to use the home-based
stool specimen collection kit (i.e., one toilet basin (Fisher Scientific Co. L.L.C., Pittsburgh, PA, USA),
one pair of gloves, and one biohazard bag with three small fecal collection tubes (Fisher Scientific
Co. L.L.C., Pittsburgh, PA, USA)) to obtain stool samples. A reminder for stool sample collection
was sent seven days before patients’ clinical visit. All stool samples were self-collected at home and
immediately frozen in a freezer by patients before the clinical visits. On the day of the clinical visits,
patients wrapped the frozen stool samples with ice packs and delivered the frozen fecal samples to
research staff according to the storage protocol. The samples were immediately stored at −80 ºC until
DNA extraction and sequencing.

4.4. DNA Extraction and Sequencing

Based on the HMP standard operating protocol, the microbial DNA was extracted from fecal
samples using the PowerSoil isolation kit (MO BIO Laboratories, Carlsbad, CA, USA). In this study,
16S rRNA V3-V4 gene regions [66,67] were extracted and sequenced. The 16S libraries were prepped
from 12.5 ng of DNA using the 16S metagenomic sequencing library preparation workflow. The 16S
rRNA amplicons were generated using KAPA HiFi HotStart ReadyMix (KAPA Biosystems, KK2600)
and primers specific to 16S V3-V4 region of Bacteria 341F (5′-CCTACGGGNGGCWGCAG-3′)-805R
(5′-GACTACHVGGGTATCTAATCC-3′). PCR clean-up was performed using AMPure XP beads
(Beckman, A63880) and indices were attached using the Nextera XT Index kit (Illumina, FC-131-1001).
Clean-up was performed on the indexed libraries using AMPure XP beads. The 16S libraries were
pooled in equal amounts based on fluorescence quantification. Each run included a control template
to test for PCR accuracy and possible contamination. Final library pools were quantitated via qPCR
(Kapa Biosystems, catalog KK4824). The pooled library was sequenced on an Illumina miSeq using
miSeq v3 600 cycle chemistry (Illumina, catalog MS-102-3003) at a loading density of 8 pM with
20% PhiX, at PE300 reads. This process was completed at the Emory Integrated Genomics Core
(https://www.cores.emory.edu/eigc/). In this study, three control samples (one non-template control
[NTC] and two Zymo samples) were used. The microbial sequencing led to paired-end sequences.

4.5. Statistical Analysis

Descriptive statistics, including mean (standard deviation (SD)), median (range), and frequency
(%) were performed for demographic and clinical variables. After sequencing the gut microbiome data,
the average sequence counts per sample were 280,088 (ranging from 204,113 to 976,098). The sequence
counts of all samples ranged from 204,113 to 293,050 except one sample with sequence counts of 976,098,
which should be associated with bacterial load. The sequence data were trimmed at 20–275 base
pairs to obtain high-quality sequences according to the Phred score of 20 (99.95% accuracy) analyzed
by using DADA2. Interactive quality plots were created to visualize Phred scores for both forward
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and reverse sequences. Quality control of paired-end microbial sequences was implemented using
DADA2 [68]. DADA2 was used to infer exact sequence variants (ASVs). An average 152,235 ±
83,343 high-quality sequences per sample were retained after quality control. Taxonomies of the
gut microbiome were assigned using the pre-trained classifier on Silva 132 databases with a 99%
threshold [69]. The rarefaction was conducted to normalize the data based on a sample sequencing
depth in our analysis. This sequencing depth was chosen for rarefaction so that if the total count
for any sample(s) were smaller than this value, those samples could be dropped from the diversity
analysis. The phylogenetic tree and analysis of the gut microbiome diversity and composition were
conducted using Quantitative Insights Into Microbial Ecology (QIIME) 2 [70]. The α-diversity (richness
and evenness within samples) was calculated using standardized estimates—Chao1, Shannon’s index,
Faith’s phylogenetic diversity (Faith_PD), and Pielou’s evenness (Pielou_e). Spearman correlational
analysis was used to compute α-diversity estimates for continuous variables such as the PNS cluster;
the Kruskal–Wallis test (non-parametric) was conducted to analyze α-diversity estimates in categorical
variates (low vs. high PNS clusters). Bray–Curtis distance, weighted UniFrac distance metrics,
and principal coordinates analysis (PCoA) were used to analyze and visualize patterns of β-diversity
(dissimilarities between samples). The 2-dimensional PCoA was performed by QIIME2R using default
parameters [70]. Each axis of PCoA has an eigenvalue whose magnitude indicates the amount of
variation in that axis. The proportion of a given eigenvalue to the sum of all eigenvalues reveals the
relative importance of each axis [71,72]. The confidence ellipse represents 95% of confidence level.
Distance matrices were used to conduct permutational univariate and multivariate non-parametric
analysis of dissimilarities (ADONIS) in QIIME 2. The dispersion of the variance was homogenous in
both PNS groups (F = 0.343, p = 0.564) based on the betadisper analysis using permutation test for
homogeneity of multivariate dispersions in R. The longitudinal impact of time on the gut microbiome
diversity and its association with the PNS cluster was analyzed using linear mixed effect models (for
the α-diversity) and pairwise distance comparisons (for the β-diversity) using QIIME q2-longitudinal
plugin [73]. The mixed effect model included time, PNS, and interaction between time and PNS.

The linear discriminant analysis (LDA) effect size (LEfSe) [74] is an algorithm for biomarker
discovery and identifies genomic features (e.g., genes or taxa) characterizing the differences between
multiple biological conditions. LEfSe emphasizes both statistical significance and biological relevance.
In this algorithm, the Kruskal–Wallis sum–rank test is used to detect features with significant differential
abundance between biological conditions; biological significance is further investigated using a set
of pairwise tests among subclasses using the Wilcoxon rank-sum test. Lastly, LEfSe uses LDA to
estimate the effect size of each differentially abundant feature. In our study, differences in relative
abundances of bacterial taxa between high vs. low PNS clusters were identified using the LEfSe
approach [74]. The Kruskal–Wallis sum–rank test detected features that had significantly-different
abundances between low and high PNS clusters, while controlling time as a covariate. Then, LDA was
performed to estimate the effect size of each feature (p < 0.05 and LDA score/effect-size threshold = 2).
Time was considered as a subclass in the LEfSe analysis.

Functional profiles of 16S rRNA gene were identified using R package Tax4Fun [75]. Tax4Fun can
analyze the functional genes of bacterial communities based on the 16S rRNA sequencing data and
provide a good approximation to the gene profiles obtained from metagenomic shotgun sequencing
methods. This analysis was conducted in three steps: 1) The SILVA-based 16S rRNA OTU table was
transformed to a taxonomic profile of the prokaryotic Kyoto Encyclopedia of Genes and Genomes
(KEGG) organisms using a precomputed association matrix, 2) the estimated abundances of KEGG
organisms were normalized by the 16S rRNA copy number obtained from the NCBI genome annotations,
and 3) the normalized taxonomic abundances were used to combine the precomputed functional
profiles of the KEGG organisms for the prediction of the functional profile of the gut microbial
community [75]. Organism-specific functional profiles were computed for all bacterial genomes in
KEGG. The Benjamini–Hochberg method [76] was used for multiple testing corrections. The KEGG
pathways from Tax4Fun using the species levels were further analyzed using the Mann–Whitney U
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test to assess the differences between high vs. low PNS clusters over time. All the analyses were
conducted using QIIME 2 [70,77,78] and R 3.3.3 (https://cran.r-project.org/bin/macosx/). The statistical
significance level was set at p < 0.05.

5. Conclusions

In summary, the α- and β-diversity and taxa abundance showed potential associations with the
PNS cluster in patients with HNCs. The high level of PNS cluster was more abundant with phylum
Bacteroidetes, order Bacteroidales, class Bacteroidia, and four genera (Ruminiclostridium9, Tyzzerella,
Eubacterium_fissicatena group, and DTU089), while the low level PNS group was more abundant
with family Acidaminococcaceae and three genera (Lactococcus, Phascolarctobacterium, and Desulfovibrio).
Glycan biosynthesis and metabolism (lipopolysaccharide biosynthesis) and vitamins (folate biosynthesis
and lipoic acid metabolism) seemed to predict the levels of the PNS cluster across time. In brief, diversity
and taxa abundance of the gut microbiome play a promising role in understanding the biological
mechanisms of PNS among HNCs and our findings should be tested in a large and multi-site sample.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2531/s1,
Table S1: Functional Pathway Analysis of the Gut Microbiome based on PNS level.
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