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Abstract: Clinical application of icariin (ICA) is limited, despite its activity against cancer growth,
because of the low solubility of ICA in an aqueous environment. Therefore, the present study at-
tempted to develop and optimize ICA-loaded cubosome delivery and to explore its efficacy and
possible mechanism of action against ovarian cancer. The optimization of the cubosome formulation
was performed using the Box-Behnken statistical design; during the characterization, the parti-
cle sizes were in the range of 73 to 183 nm and the entrapment efficiency was 78.3% to 97.3%.
Optimized ICA-loaded cubosomes (ICA-Cubs) exhibited enhanced cytotoxicity and apoptotic poten-
tial, compared with ICA-raw, against ovarian cancer cell lines (SKOV-3 and Caov 3). The optimized
ICA-Cubs showed a relatively non-cytotoxic effect on normal EA.hy926 endothelial cells. Further anal-
ysis of cell cycle arrest suggested a potential role in the pre-G1 and G2/M phases for ICA-Cubs in
comparison with ICA-raw. ICA-Cubs increased the generation of reactive oxygen species (ROS)
and the overexpression of p53 and caspase-3 in the SKOV-3 cell line. In conclusion, the cubosomal
delivery of ICA might provide a prospective approach towards the superior control of ovarian cancer
cell growth. Its improved efficacy compared with that of the free drug might be due to the improved
solubility and cellular permeability of ICA.

Keywords: icariin; cubosome; Box-Behnken design; apoptosis; G2/M cell cycle arrest; TNF-α down
regulation; p53 overexpression

1. Introduction

Of gynecological cancers in women, ovarian cancer is the most common and lethal
one, accounting for over 240,000 new cases and 384,000 deaths worldwide in 2018 [1,2].
The 5-year survival rate for ovarian cancers varies from 93% when diagnosed at an early
stage to 13.4% when diagnosed at an advanced stage [2]. Even after cytoreductive surgery,
chemotherapy cannot improve the survival rate of patients. Recent studies have been
focusing on the effective utilization of natural substances in the treatment of malignan-
cies, and of these, the herbal ones are most investigated [3–6]. Icariin (ICA, Figure 1) is
a flavonol glycoside found in plants, most abundantly in Herba epimedii (Berberidaceae).
Previous reports have investigated the regulatory mechanism of ICA in ovarian cancer [7,8].
The antineoplastic efficacy of this agent has been reported in different malignancies; its effi-
cacy has been shown through the regulation of the proliferation of cancer cells by inhibiting
the PI3K/AKT and Raf1/ERK1/2 signaling pathways and promoting apoptosis and cell
cycle arrest [9]. It has been shown to regulate the mitochondrial transmembrane potential
and caspase-3, with increased release of reactive oxygen species (ROS) within ovarian
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cancer cells [10]. It has been established that ICA induces apoptosis and suppresses au-
tophagy via the overexpression of autophagy-related p53 in breast cancer cells [11] and that
it inhibits the invasion and migration of gastric cancer cells by the vasodilator-stimulated
phosphoprotein via the Rac1 pathway [12]. Metastasis and growth of colon cancer was
reported to be inhibited by enhancing p53 activity through the regulation of caspase and
the imbalance of BCL-2/Bax [13]. In spite of the well-established anticancer potential of
ICA, its therapeutic application is limited because of its poor solubility in the aqueous
environment, which results in poor bioavailability (~0.1%) [14,15]. Furthermore, it has been
established that this agent is metabolized rapidly in vivo via deglycosylation with addi-
tional pathways [15]. Nanotechnology-based formulations aid in delivering poorly soluble
drugs effectively and safely to the target site [16,17], and researchers have explored different
delivery approaches for nutraceutical compounds to improve their pharmacological roles.
Such approaches include alginate-chitosan microspheres [14], poly (ε-caprolactone)/gelatin
nanofibers [4], polymeric micelles [18], and phytosomes [10]. Advances in nanotechnol-
ogy have recently offered a novel approach of delivery for poorly soluble drugs such
as cubosomes (Cubs) [19]. Cubs are engineered nanocarriers consisting of bicontinuous
cubic phases that possess several advantages for drug delivery. Cubs provide a platform
for adjusting the lipids and stabilizers to obtain a carrier with the desired characteristics.
Thus, varying the length of the hydrocarbon chain and altering the head-groups of the
incorporated lipids can help to obtain the size, charge, and composition of the desired
chemical compound, and the stabilizers can also be adapted so they are compatible with
and targetable to the site [20]. Accordingly, an attempt was made in this current research
to effectively deliver ICA to cancer cells by incorporating the drug within the tunable
structure of Cubs, which was stabilized using poloxamer 407 (P407). Glyceryl monooleate
(GMO, see Figure 1) is an emulsifier and dispersing agent that forms a film around dis-
persed globules or lowers the interfacial tension in an emulsion. Structurally, GMO has
two parts in its chemical structure, a hydrophilic part and a lipophilic part. They form a
protective barrier around a dispersed droplet by adsorbing the oil–water interface, and they
stabilize the emulsion by decreasing the interfacial tension of the system. For this reason,
GMO was used as an emulsifier in the Cubs preparation [21]. P407 (see Figure 1) block
copolymers were introduced in the late 1950s and have been used for many different
pharmaceutical applications, including parenteral, inhalation, ophthalmic, and topical
formulations. The addition of P407 to the Cubs resulted in an increased complex viscosity
of the Cubs forming the solution, indicating the presence of a tighter network that was
more resistant to the erosion of the prepared Cubs [22].
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Optimization of the formula was performed using Statgraphics software
(Statgraphics Technologies, Inc., Warrenton, VA, USA). Seventeen formulas were devel-
oped by a three-level Box-Behnken statistical design. The size of the Cubs was measured,
and then the optimized formula was characterized by a transmission electron micro-
scope (TEM) for surface morphology, stability and release were determined. In addition,
the cytotoxicity was evaluated on ovarian cancer cells (SKOV-3, Caov-3) and epithelial
cells (EA.hy926) as a model for normal cells to evaluate the selectivity of the optimized
ICA-Cubs. Cell cycle analysis and apoptosis studies were carried out to establish the
mechanism of ICA-Cubs cytotoxicity. Caspase-3, ROS, nitric oxide (NO), tumor necrosis
factor alpha (TNF-α), and P53 were measured to confirm and understand the cytotoxicity
of the cellular mechanism.

2. Materials and Methods
2.1. Materials

ICA with a purity of approximately 99% was received as gift sample from Egypt
Mepaco Arab-co, Cairo, Egypt. Glyceryl monooleate (GMO) was donated by the Kerry
Group (Limerick, Ireland). P407 and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) were procured from Sigma-Aldrich Chemie GmbH (Buchs, Switzerland).
Roswell Park Memorial Institute (RPMI)-1640, heat-inactivated fetal calf serum (FCS),
sodium pyruvate, nonessential amino acids, antibiotics, and bovine insulin, used for cell
culture, were also procured from Sigma-Aldrich Chemie GmbH. The rest of the chemicals
used in the experiments were of analytical grade.

2.2. Preparation of Blanks and ICA-Cubs

Blanks and ICA-Cubs were prepared following the techniques of Nasr et al. [23].
The blank-Cubs, GMO, and P407 were melted by placing them in a water bath maintained
at 70 ◦C. After that, the molten solution was added to a tube containing 10 mL of deionized
water maintained at a similar temperature (70 ◦C). This combination was mixed continu-
ously using a vortex mixer (Boekel, 270100 Tap Dancer-Vortex Mixer, Feasterville, PA, USA)
in order to obtain a homogeneous solution. The mixture was then cooled at room tempera-
ture and equilibrated for 48 h. The ICA-Cubs was prepared following the above method
by dropping the molten mass containing the ICA into the deionized water. The rest of the
steps followed were the same as mentioned above.

2.3. Optimization of the ICA-Loaded Cubosomal Formulations

A Box-Behnken statistical design with three factors and three levels (Statgraphics
software, version 15.2.05, Statgraphics Technologies, Inc., Warrenton, VA, USA) was used
to optimize the ICA-Cubs formulations. Based on the available data in the literature,
the maximum and minimum levels of the three independent variables (e.g., the active drug
ICA, polymer GMO, and P407) were used for the identification of suitable combinations
of the drug and polymers using the Quality by Design technique [23,24]. The software
generated 17 different batches of different combinations of the drug, GMO, and P407 at their
low (−1), medium (0), and high (+1) levels (Table 1). The 17 batches were developed and
characterized for two dependent variables, the particle size and the entrapment efficiency
(EE) of the ICA in the formulations, and the data are shown in Table 1. After an analysis
of the data of dependent variables using the software, the optimization of the ICA-Cubs
was achieved. The effect of the composition of the independent variables on the dependent
variables was analyzed using the software, and the optimized formulation was suggested.
The analysis of variance (ANOVA) was used to statistically investigate the data to evaluate
the significance of the studied variables. Interactions between the independent variables
were assessed from the generated contour plots and interaction plots [25]. The best fitting
model was selected based on an adequate precision ratio and the predicted and adjusted
determination coefficients for the measured response. The equation representing the best
fitting model was generated by the software.
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Table 1. Experimental runs according to the Box–Behnken statistical design: The independent variables and dependent
variables with the levels of the independent variables, ICA concentration, GMO concentration. and P 407 concentration.

Run

Values of Independent Variables Dependent Variable (Y)

ICA Concen-
tration (mg/g)

GMO Concen-
tration (g/g)

P407 Concen-
tration (mg/g)

Particle Size (nm) Entrapment Efficiency (%)

Actual Predicted Actual Predicted

1 100 0.80 78.00 103.2 ± 1.21 104.67 91.8 ± 1.50 91.93
2 100 0.60 78.00 99.5 ± 3.15 94.25 78.3 ± 2.11 78.00
3 150 0.80 78.00 112.2 ± 4.86 112.00 97.9 ± 5.32 98.71
4 50 0.60 78.00 141.6 ± 3.71 139.75 88.9 ± 2.25 90.34
5 150 0.80 78.00 117.7 ± 4.38 112.00 97.3 ± 3.22 98.71
6 100 0.80 31.00 105.1 ± 4.12 104.67 91.9 ± 3.31 91.93
7 50 0.80 78.00 108.3 ± 4.41 113.00 80.8 ± 1.11 79.39
8 100 1.00 78.00 183.6 ± 6.37 179.25 83.1 ± 4.42 83.08
9 150 0.80 31.00 179.2 ± 2.12 179.25 96.9 ± 2.25 95.19
10 50 0.80 125.00 97.3 ± 4.25 93.50 96.1 ± 2.81 94.36
11 100 0.80 78.00 106.5 ± 3.21 104.67 92.1 ± 3.34 91.93
12 150 1.00 31.00 88.2 ± 2.22 89.25 90.3 ± 0.62 88.86
13 100 1.00 78.00 73.1 ± 2.15 76.75 94.3 ± 0.87 94.33
14 100 0.80 125.00 139.5 ± 3.24 143.75 98.5 ± 1.10 98.80
15 50 0.60 31.00 78.0 77.75 85.4 87.11
16 100 1.00 125.00 103.0 104.67 91.8 91.93
17 100 0.60 125.00 99.0 94.25 78.3 78.00

Independent variable
Levels

Low (−1) Medium (0) High (1)

ICA concentration (mg/g) 50 100 150
GMO concentration (g/g) 0.6 0.8 1.0
P407 concentration (mg/g) 31 78 125

ICA, icariin; GMO, glyceryl monooleate; P407, poloxamer 407. Dependent variables: Y1 = particle size; Y2 = entrapment efficiency.

2.4. Characterization of ICA-Cubs
2.4.1. Determination of Particle Size and the Polydispersity Index and
ThermodynamicStability

The dynamic light-scattering technique was incorporated to measure the particle
size of the formulated Cubs using a Zetasizer (Malvern Instruments, Ltd., Malvern, UK).
After dispersing the ICA-Cubs with deionized water, each sample was measured in three
replicates. All the measurements were carried out at a temperature of 25 ◦C and at a laser
wavelength of 633 nm; the scattering angle was 173 degrees, with a medium viscosity
of 0.8872 cP and a refractive index of 1.33. The dispersion of the formulated Cubs was
prepared by dispersing 0.5 mL of the sample into 30 mL of deionized water to obtain a
suitable scattering intensity. The same instrument at the same temperature determined the
polydispersity index (PDI) of the prepared formulas. The optimized ICA-Cubs formula
was subjected to three freeze-thaw cycles at −20 ◦C (12 h) and +25 ◦C (12 h). Each formula
then was inspected for particle size.

2.4.2. Transmission Electron Microscope Examination

Morphological evaluation of the formulated and optimized ICA-Cubs was done with
the TEM (Jeol Company, Tokyo, Japan) equipped with a Super Twin lens. This exper-
iment was carried out by placing a drop of the cubosomal dispersion on a 200-mesh,
carbon-coated copper grid. The drained sample was stained using 1% sodium phospho-
tungstate solution and allowed to dry for 15 min at 25 ± 1 ◦C.
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2.4.3. Estimation of Entrapment Efficiency

The Entrapment Efficiency (EE) of the ICA within the ICA-Cubs was determined
by the centrifugation method of Nasr et al. [24]. Briefly, 1 mL of the prepared ICA-Cubs
was added to 4 mL of deionized water and centrifuged at 15,000 rpm for 15 min until
complete precipitation of the cubosomal nanoparticles was achieved. One milliliter of
the clear supernatant was added to 4 mL of methanol, and the mixture was vortexed for
5 min. A glass tube was filled with 100 µL of the vortexed solution, 20 µL of HCl 36%
solution, and 2 mL of acetonitrile. The mixture was mixed well for 1 min and centrifuged
at 5000 rpm for 20 min. Thereafter, the supernatant was evaporated in a clean glass tube.
Finally, reconstitution of the residue was done using the mobile phase (200 µL) and then
injected in high-performance liquid chromatography (HPLC) for analysis of the ICA [26].
The EE (%) of the ICA-Cubs was calculated using the following formula (Equation (1)):

EE =
Amount o f drug entrapped

Total amount o f drug
× 100 (1)

2.4.4. Determination of Release Profile of ICA-Cubs

In vitro release of the ICA-Cubs and the ICA-raw was performed using the cellulose
tube diffusion technique. The cellulose tube was soaked in the release media overnight
before starting the experiment. The cellulose tube was filled with an accurately weighed
amount of the Cubs, equivalent to 100 mg of ICA. After being tightly closed, it was
immersed in a receptor compartment containing 900 mL of phosphate buffer (pH 7.4).
The release of the ICA was performed at 37 ± 0.5 ◦C using the U.S. Pharmacopoeia
dissolution apparatus (paddle method) at 100 rpm with 900 mL of phosphate buffer as the
dissolution medium [27,28]. Two milliliters of the released media was collected from the
dissolution vessels at predetermined time points of 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 12.0, and 24.0 h,
followed by replacement with an equal volume of fresh media at the same temperature
to maintain the sink conditions. All the collected released samples were filtered using a
0.45-µm syringe filter prior to analysis by HPLC [26]. These analyses were performed in
triplicate, and the mean value was considered for further evaluation.

2.5. Evaluation of Cytotoxic Effects of Optimized ICA-Cubs on Ovarian Cancer Cells
2.5.1. Cell Culture and Maintenance

The human ovarian cancer cells SKOV-3 and Caov-3 in our current experiment were
obtained from the American Type Culture Collection (Manassas, VA, USA). While and
EA.hy926 cells were obtained from National center for cell science (NCCS), Pune, India.
The cell lines are presently available in the cell bank of the Tissue Culture Unit and
maintained in an RPMI-1640 medium, supplemented with FCS (10%, v/v), bovine insulin
(1 µL/mL), streptomycin (100 µg/mL, w/v), penicillin (100 U/mL, v/v), and sodium
pyruvate (1 mM) in a humidified environment at 37 ◦C and 5% carbon dioxide (CO2).

2.5.2. Cytotoxicity Study

Cytotoxic evaluation of the ICA-Cubs was done in the ovarian cancer cell lines fol-
lowing the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
In order to accomplish the experimental objective, 3 × 103 cells of SKOV-3 and Caov-
3 were seeded onto each well of 96-well plates, followed by incubation at 37 ◦C in a
5% CO2 incubator for 24 h. Different concentrations (0.1 µM to 1000 µM) of ICA-raw,
ICA-Cubs, and staurosporine as a control were incubated with the cancer cells for 24 h.
Finally, the MTT assay was performed following reported methods [29,30], in which the in-
cubated cells were treated with MTT solution (0.5%, w/v) for 4 h after the removal of traces
of samples. Later, dimethyl sulfoxide was used to dissolve the formed formazan crystals,
and the optical density of the formazan solution was measured using the enzyme-linked
immunosorbent assay (ELISA) microplate reader at 490 nm. The noncancerous EA.hy926



Pharmaceutics 2021, 13, 20 6 of 21

endothelial cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) and were
then treated in the same way as mentioned for the ovarian cancer cells.

2.5.3. Cell Cycle Analysis

Flow cytometry analysis of the SKOV-3 cells was performed to determine the cell cycle
arrest by the formulations [31]. Here, 1 × 105 cells were seeded into the well plate with the
ICA-Cubs, blank-Cubs, ICA-raw, and staurosporine as a positive control at a concentration
of 5 µM for all treatments. Following 24 h of incubation, the cells were harvested with 70%
ethanol overnight at 20 ◦C. In the next step, propidium iodide/RNAse staining solution
(at 5 µg/mL each) was used to stain the cells following incubation for 3 h in the dark.
Finally, the stages of cells in different cell cycles were determined using a flow cytometer
(BD Biosciences, San Jose, CA, USA), and the acquired data were analyzed by Cellquest
software (Becton Dickinson Immunocytometry Systems, San Jose, CA, USA). The same
concentration of the ICA-raw, ICA-Cubs, and blank-Cubs were used in all the following
tests.

2.5.4. Determination of Apoptotic Potential

The apoptotic potential of the formulated ICA-Cubs was compared with that of the ICA-
raw and blank-Cubs by the dual staining technique following the published method [10,32].
During this analysis, 1 × 105 numbers of SKOV-3 cells were incubated in each well of a six-well
plate with the concentration of the test material equivalent to 10 µM of ICA, wherever appli-
cable. The staining of the cancer cells was performed by the commercially available Annexin
V-APC/propidium iodide (PI) detection kit (BD Biosciences, San Jose, CA, USA). Thus, the de-
tection of early-stage apoptosis was carried out with the (Annexin V plus-PI-) and the detection
of late-stage apoptosis was determined with the (Annexin V plus-PI+), using the flow cytome-
ter FACSCalibur (BD Biosciences). Obtained data were analyzed using Multicycle software
(Phoenix Flow Systems, San Diego, CA, USA).

2.5.5. Measurement of Reactive Oxygen Species Production

Determination of the overall ROS in ovarian cancer by the treatment of ICA-Cubs,
ICA-raw, and blank-Cubs was carried out in SKOV-3 cells using the Reactive Oxygen
Species Assay Kit (BD Biosciences). The cells were grown in a 96-well plate as described
in our previous experiment and incubated with the samples for 24 h. According to the
manufacturer’s protocol for the kit, the treated cells were further incubated for an additional
30 min in the dark following the addition of 10 µM of 2,7-dichloro-dihydro-fluorescein
diacetate. Later, the cells were rinsed with DMEM and analyzed in a flow cytometer
to measure the fluorescence intensity. The excitation and emission wavelengths for the
measurements of fluorescence intensity were set at 485 nm and 530 nm, respectively, in the
instrument [10,33].

2.5.6. Measurement of Nitric Oxide Production

This assay of NO production was carried out using the Nitrate/Nitrite Colorimetric
Assay Kit (Cayman Chemical, Ann Arbor, MI, USA) following the manufacturer’s instruc-
tions. Following incubation of the ICA-Cubs, ICA-raw, and blank-Cubs samples with the
SKOV-3 cells in a well plate, the medium was treated with the kit reagent. Absorbance of
the mixture was determined in the ELISA microplate reader at 550 nm following 10 min of
incubation.

2.5.7. Determination of TNF-α

In this experiment, the SKOV-3 cells were incubated at 37 ◦C with the ICA-Cubs,
ICA-raw, and blank-Cubs with TNF-α for 24 h. After incubation, the cells were detached
using 0.25% trypsin and then incubated with 10% flow cytometry buffer (FCB) containing
phosphate-buffered saline (PBS) for 30 min at 4 ◦C following centrifugation. This pre-
vented the nonspecific binding of antibodies. Finally, the extracellular staining of TNF-
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αR1 was performed, as described in the literature [34]. Briefly, the cells were treated as
per the manufacturer’s instructions using phycoerythrin (PE)-labeled-TNF-αR1 antibod-
ies at 4 ◦C. Following 30 min of incubation, the cells were analyzed by flow cytometry
(Becton Dickinson, San Jose, CA, USA).

2.5.8. Analysis of Caspase-3

Analysis of caspase-3 was performed following overnight incubation of the SKOV-3
cells (5 × 104 cells per well) at 37 ◦C with ICA-Cubs, ICA-raw, and blank-Cubs samples
using the commercially available kit (BD Biosciences). After incubation of the 5 × 104 cells
per well, the cells were lysed using the lysis buffer provided in the kit. Then the contents
of the wells in the plate were assayed in an ELISA microplate reader at 405 nm [10,33].

2.5.9. Enzyme-Linked Immunosorbent Assay for p53

Analysis of the p53 protein was performed using the ELISA method, where the
SKOV-3 cells (3 × 103 cells/mL) were placed in the supplied 96-well plate (Sigma Aldrich,
St. Louis, MO, USA). The cells were treated with the ICA-Cubs, ICA-raw, and blank-Cubs
samples for 24 h. Thereafter, the wells were incubated with detection antibody and treated
with horseradish peroxidase-labeled anti-rabbit Immunoglobulin G (IgG) antibody after
washing at each stage. Finally, stabilized chromogen was added to the wells for stabilizing
the chromogen that had developed, and a stop solution was added to stop the reaction
before taking the reading at 450 nm using the ELISA plate reader.

2.6. Statistical Interpretations

Findings of the three samples of each data point were averaged to show the data as
the mean ± SD, and the statistical analysis of the displayed results was performed using
SPSS software version 25 (SPSS Inc., Chicago, IL, USA). Comparison of the mean data for
multiple groups was carried out by the ANOVA followed by Tukey’s post hoc test, where a
p-value of less than 0.05 indicated statistical significance.

3. Results
3.1. Optimization of the ICA-Cubs Using the Box-Behnken Design
3.1.1. Particle Size of the ICA-Cubs

The particle size of nanocarriers plays an important role in cancer therapy because
enhanced permeability and intracellular delivery [30]. Thus, an analysis of the particle size
based on the independent variables was performed in this study. The statistical outcome
of the interactions of the concentrations of the three independent variables, ICA, GMO,
and P407, on the particle size is shown in Table 2. The statistical significance of the influence
of the ICA (A), GMO (B), and P407 (C) concentrations on the particle size is indicated by
the p-values (p < 0.05) in Table 3. From the obtained analysis, it is clear that the model terms
A, B, C, and BB are significant because the p-values of those models are less than 0.05.

Table 2. Analysis of variance data for particle size.

Source Sum of Squares F-Ratio p-Value

A:ICA 1300.5 41.77 0.0013
B:GMO 11,552.0 371.05 0.0000
C:P407 1404.5 45.11 0.0011

AA 80.4103 2.58 0.1689
AB 196.0 6.30 0.0539
AC 49.0 1.57 0.2651
BB 546.564 17.56 0.0086
BC 81.0 2.60 0.1677
CC 164.103 5.27 0.0701

Total error 155.667
Total (corr.) 15,448.4
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Table 3. Analysis of variance data for entrapment efficiency.

Source Sum of Squares F-Ratio p-Value

A:ICA 21.78 5.38 0.0682
B:GMO 45.6013 11.26 0.0202
C:P407 513.601 126.79 0.0001

AA 2.3141 0.57 0.4838
AB 2.4025 0.59 0.4760
AC 1.1025 0.27 0.6242
BB 2.17026 0.54 0.4970
BC 0.09 0.02 0.8873
CC 25.281 6.24 0.0546

Total error 20.2542
Total (corr.) 632.429

Furthermore, the R-squared value was 98.9923%, whereas the adjusted R-squared
value was 97.1786%.

A polynomial equation was generated based on the interactions of the independent
variables and the effect on the particle size of the ICA-Cubs formulations (Equation (2)).
For the particle size response, the regression coefficients for ICA and GMO are recorded as
+0.562163 and +329.326, respectively, and the coefficient of P407 is –0.220801.

Y1 (Particle size) = 195.361 + 0.562163A + 329.326B − 0.220801C + 0.00186667AA
+ 0.7AB − 0.00148936AC + 304.167BB − 0.478723BC + 0.00301796CC

(2)

The Pareto chart on the effect of the independent variables on particle size is shown in
Figure 2. Therefore, the coefficient in Equation (2) and the Pareto chart are in agreement,
where the positive effect of ICA and GMO is evident in both Equation (2) and on the Pareto
chart (see Figure 2). The increased size with increasing ICA and GMO concentrations
might be explained by the increased content of GMO in the developed Cubs. Our findings
are in agreement with those in the reported literature [23,24]. As per the Pareto chart
(see Figure 2), the GMO concentration has the greatest effect on the particle size, and this is
also supported by the highest coefficient of independent variable B in Equation (2).
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3.1.2. Entrapment Efficiency of ICA-Cubs 

Figure 2. Pareto chart showing the effect of the ICA, GMO, and P407 concentrations on the particle size of the ICA-loaded
cubosomes (ICA-Cubs) formulation.

A contour plot (Figure 3B) further confirmed the observations in the Pareto chart
and the main plot effect on the particle size of the ICA-loaded cubosomal formulations.
The colors in the contour plot clearly show the maximum changes in the particle size from
70 to 85 nm to approximately 160 to 175 nm with the changes in the GMO concentration.
The changes in particle size with the changes in the ICA concentration are limited to a
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lower range. The particle size is in the higher ranges on the P407 axis. The surface charges
of the developed 17 ICA-Cubs were found to be within the range of +21.25 ± 0.345 mV to
+28.25 ± 0.362 mV. Our findings on the surface charges of the formulated cubosomes are in
agreement with those in the literature [24]. The PDI is used to see whether the colloidal
system has a homogeneous size; the PDI was found to be 0.35 to 0.13. The findings indicate
good thermodynamic stability of the optimized formulas, with no significant differences in
particle size after and before the three freeze-thaw cycles.
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3.1.2. Entrapment Efficiency of ICA-Cubs

The EE is considered one of the important physicochemical characteristics of phar-
maceutical nanoformulations. It indicates the quantity of drug incorporated within the
developed formulation [35]. In this study, we used the centrifugation method to determine
the EE of the ICA within the formulated ICA-Cubs. The statistical outcome of the inter-
actions of the three independent variables on the EE is shown in Table 3. The statistical
significance of the influence of the ICA (A), GMO (B), and P407 (C) concentrations on the
EE of the ICA-Cubs is indicated by the p-values (p < 0.05) in Table 2. In Table 3, it is clear
that the model terms B and C are significant because their p-values are 0.05.

The R-squared value is 96.80%, whereas the adjusted R-squared value is 91.03%.
The actual (experimental) and predicted (fitted) values for the EE of the ICA-Cubs are in
close agreement, as shown in Table 3, and the percentage errors for the EE values are very
low. A polynomial equation was generated based on the interactions of the independent
variables and the effect on the EE of the ICA-Cubs (Equation (3)).

Y2 (EE) = 50.0927 + 0.0169078*A + 36.0988*B + 0.345694*C − 0.000316667*Aˆ2 +
0.0775*A*B + 0.000223404*A*C − 19.1667*Bˆ2 - 0.0159574*B*C − 0.00118455*Cˆ2

(3)

The most significant effect of P407 is evident in Figures 3–5. A sharp increase in the
EE was observed when the P407 concentration was increased, as is evident in the main plot
effect in Figure 5). There is a slow increase in the EE shown in Figure 5A with the increase
in the ICA and GMO concentrations; however, the effect of the GMO concentration is more
prominent than the effect of the ICA concentration. This is reflected in both the Pareto chart
(see Figure 5A) and the color changes in the contour plot (see Figure 5B).
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3.2. Characterization of the ICA-Loaded Cubosomal Formulations
3.2.1. Interpretation of the Transmission Electron Microscope Analysis

The size of the cubosomal dispersions determined using the Zetasizer instrument was
further confirmed by TEM analysis. Figure 6 shows that the optimized ICA-Cubs with
irregular hexagonal and polyangular shapes were well dispersed as individual particles.
The particle size observed is similar to the findings by Nasr and team [23].
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Figure 6. TEM photomicrograph of the optimized ICA-Cubs.

3.2.2. In Vitro Release Profile of ICA

Figure 7 shows the in vitro release profiles of the ICA in the PBS from the Cubs and
the ICA-raw. From the data, it is evident that the release profile and extent of ICA release
were enhanced by the delivery system of the ICA. The release profile of the ICA from the
Cubs showed an initial burst release followed by a gradual release until 96.23 ± 3.231% was
reached within the time frame of 24 h, whereas there was a slow and incomplete release of
ICA (67.34 ± 2.424%) from the ICA-raw.
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3.3. Cell-Based Analysis Results of ICA-Cubs
3.3.1. Evaluation of In Vitro Cytotoxicity

The cytotoxic profile of the free drug revealed a dose-dependent cytotoxic potential
against the SKOV-3 cells. However, the IC50 value of the ICA-Cubs (11.2 ± 0.2 µM),
when compared with that of the ICA-raw (40.1 ± 4.0 µM), indicates the potent cytotoxic
role of the ICA-Cubs against the growth of the cancer cells. Our findings are depicted in
Figure 8. Further, the optimized formula was examined in an addental ovarian cancer
cells Caov 3. Blank-Cubs, ICA- raw, and ICA-Cubs showed IC50 of values 111.0 ± 9.4,
51.3 ± 3.2, 6.3 ± 0.6. All preparations exhibited IC50 vales greater than 30 µM against
EA.hy926 non-cancerous endothelia cells.
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The ICA-Cubs was found to inhibit the G0-G1-phase and S-phase, where arrest
occurred significantly compared with the control and the blank-Cubs. Similarly, relative cell
cycle enhancement in the G2-M-phase and pre-G1-phase was also observed significantly
compared with the control, blank-Cubs, and ICA-Cubs, as shown in Figure 9. 
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Figure 9. Flow cytometric analysis of the cell cycle arrest,(A) Skov-3 cells without treatment, then after treatment with (B) 
the blank-Cubs,(B) ICA-raw, (C) ICA-Cubs, (D)Staurosporine against the SKOV-3 cell line. (E) Bar diagram of the different 
cycle phases. Data are expressed in (F) as the mean ± SD (n = 4 runs). * represents a significant difference when compared 
with untreated cells (control) (p < 0.05), whereas # represents a significant difference when compared with the blank-Cubs 
(p < 0.05) and $ represents a significant difference when compared with the ICA-raw (p < 0.05) and & represents a signifi-
cant difference when compared with the ICA-Cubs (p < 0.05). 
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Figure 9. Flow cytometric analysis of the cell cycle arrest, (A) Skov-3 cells without treatment, then after treatment with
(B) the blank-Cubs, (B) ICA-raw, (C) ICA-Cubs, (D)Staurosporine against the SKOV-3 cell line. (E) Bar diagram of the
different cycle phases. Data are expressed in (F) as the mean ± SD (n = 4 runs). * represents a significant difference when
compared with untreated cells (control) (p < 0.05), whereas # represents a significant difference when compared with the
blank-Cubs (p < 0.05) and $ represents a significant difference when compared with the ICA-raw (p < 0.05) and & represents
a significant difference when compared with the ICA-Cubs (p < 0.05).

3.3.2. Determination of Apoptotic Potential

Similar to the existing literature, our analysis using the Annexin V-FITC Apoptosis
Kit revealed early and late apoptosis on the SKOV-3 cells when treated with the ICA-raw
(Figure 10). Compared with the results of the ICA-raw, the ICA-Cubs induced much greater
and more distinctive early and late apoptosis. As we looked at the total apoptosis and
necrosis, it was observed that the effect of the ICA-Cubs was significantly greater than that
of the ICA-raw group.
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Figure 10. Apoptotic potential using flow cytometric analysis following Annexin V staining of
the SKOV-3 cell line without treatments (A) and after treatment with (B) blank-Cubs, (C) ICA-raw,
(D) ICA-Cubs and with (E) staurosporine. Data are expressed in (F) as the mean ± SD (n = 4 runs).
Representation of SKOV-3 cell death following apoptotic and necrotic assay by cytometric analysis
after annexin V staining. * represents a significant difference when compared with untreated cells
(control) (p < 0.05), whereas # represents a significant difference when compared with the blank-
Cubs (p < 0.05), $ represents a significant difference when compared with the ICA-raw (p < 0.05),
and & represents a significant difference when compared with the ICA-Cubs (p < 0.05).

3.3.3. Measurement of Reactive Oxygen Species Production

The ROS generation by the cells treated with different samples is shown in
Figure 11. The blank-Cubs was found to decrease the fluorescent level when compared with
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the control, but the reduction was clinically insignificant. Alternatively, treatment with the
ICA-raw showed a significant increase when compared with the control and blank-Cubs
treatment groups; however, treatment with the ICA-Cubs had the highest fluorescence with
a significant difference when compared with the cells treated with the control, blank-Cubs,
and ICA-raw.
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cell lines. As shown in Figure 12, treatment with ICA-raw and ICA-Cubs can significantly 
increase the production of TNF-α within ovarian cancer cells, where the efficacy of the 
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Figure 11. Generation of reactive oxygen species (ROS) in SKOV-3 cells following treatment with
blank-Cubs, ICA-raw, and ICA-Cubs. Data are expressed as the mean ± SD (n = 4 runs). * represents a
significant difference when compared with untreated cells (control) (p < 0.05), whereas # represents a
significant difference when compared with the blank-Cubs (p < 0.05) and $ represents a significant
difference when compared with the ICA-raw (p < 0.05).

3.3.4. Measurement of TNF-α and Nitric Oxide Production

Investigation of TNF-α in the present experiment was performed to determine the
role of the formulation and the ICA-raw in the production of TNF-α within the SKOV-3
cell lines. As shown in Figure 12, treatment with ICA-raw and ICA-Cubs can significantly
increase the production of TNF-α within ovarian cancer cells, where the efficacy of the
ICA-Cubs is significantly higher when compared with the ICA-raw treatment.
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apoptotic potential because caspase-3 controls the DNA fragmentation and damage of the 
cellular protein [35–37]. Findings of the caspase-3 assay are summarized in Figure 14A, 

Figure 12. Decrease in the folds of TNF-α production in SKOV-3 cells following treatment with
blank-Cubs, ICA-raw, and ICA-Cubs. Data are expressed as the mean ± SD (n = 4 runs). * represents a
significant difference when compared with untreated cells (control) (p < 0.05), whereas # represents a
significant difference when compared with the blank-Cubs (p < 0.05) and $ represents a significant
difference when compared with the ICA-raw (p < 0.05).

We used the kit-based assay to analyze the role of the NO inhibitory effect. Figure 13
depicts the effect of different formulations and ICA-raw in the generation of NO. From the
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findings it could be inferred that the generation of NO by the SKOV-3 cell line is decreased
when the cells are incubated with ICA-Cubs; however, such a decrease in NO production
is insignificant.
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3.3.5. Caspase-3 and p53 Assay

Determination of caspase-3 by the treatment of samples could be correlated with the
apoptotic potential because caspase-3 controls the DNA fragmentation and damage of the
cellular protein [35–37]. Findings of the caspase-3 assay are summarized in Figure 14A,
where it can be clearly seen that the ICA-raw and ICA-Cubs had a significant effect on the
overexpression of caspase-3.
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4. Discussion

The development of a highly twisted cubosomal structure containing a lipid bilayer
was obtained by the disruption of the formed cubic gel phase of GMO. A placebo (ICA-free)
and ICA-Cubs were formulated where the mechanical stirring of the system with P407
stabilized the system. The formed colloidal dispersion was devoid of any aggregates with
a white–opaque appearance. The compositions of the different formulas of ICA-Cubs are
shown in Table 1. The actual (experimental) and predicted (fitted) values for the particle
sizes of ICA-Cubs are in close agreement, as shown in Table 1. The percentage error,
which is the percentage difference for all the values of the actual and predicted particle
sizes, is also found to be very low. The obtained positive coefficients of ICA and GMO
reveal that the particle size will increase with increasing ICA and GMO concentrations in
the formulations. In contrast, the negative coefficient of P407 indicates that the particle
size will increase with decreasing P407 concentrations in the formulations. The obtained
significant p-values indicate that the effects of the ICA, GMO, and P407 concentrations
on the particle size of the Cubs formulation of ICA are evident. Similarly, the negative
effect of P407 on the particle size in the Pareto chart (see Figure 2) is in accordance with
the negative coefficient in Equation (1) for the model term B. The results reflected in the
main effects plot (see Figure 3A) for the particle size are also in agreement with those in the
Pareto chart (see Figure 2) and Equation (1). GMO had the most significant effect; a sharp
increase in the particle size was observed when the concentration of GMO was increased in
the formulation. Similarly, a sharp increase in the particle size is demonstrated in Figure 4
with the ICA concentration. An increase in the P407 concentration resulted in a decreasing
particle size. However, the effect of the ICA or P407 concentration was not as influential as
the effect of the GMO concentration on the particle size of the ICA-Cubs. An increase in the
EE of the ICA-Cubs formulation with increasing ICA, GMO, and P407 concentrations was
evident in the Pareto chart showing the effect of the independent variables on entrapment
in Figure 4 by the plus sign. The increased EE with increasing ICA, GMO, and P407
concentrations might be explained by the increasing content of all three independent
variables. Our findings are in agreement with those in the reported literature [23,24]. As
per the Pareto chart, the P407 concentration had the greatest effect on the EE, and this
is further supported by the main plot (see Figure 5A) and contour plot (see Figure 5B).
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The increased size of the ICA-Cubs during the dynamic light-scattering technique might
be explained by the hydrodynamic diameter of the dispersed system in the aqueous
environment [38]. Higher values of the surface charge indicating superior stability of the
dispersed system might contribute to the repulsion of the charged vesicles and thereby
prevent the van der Waals force from causing the directed aggregation of the dispersed
system [39]. Further analysis of the morphology revealed that the Cubs were uniform and
polyangular in shape with a smooth surface and a scattered distribution. This scattering of
the vesicles could be attributed to the high surface charge. Cubs could help in releasing the
drug from the formulation in a controlled manner, as depicted in the in vitro release profile.
Superior release of the entrapped drug was found to increase the cytotoxic potential of
the ICA-loaded formulation in a dose-dependent manner [28]. It can be clearly stated
that the lowest IC50 value of the ICA-Cubs (11.2 µM), compared with that of the ICA-raw
(40.1 ± 4.0 µM), could be attributed to the increased cellular permeability of ICA when
delivered via the cubosomal delivery approach compared with that of the ICA-raw [40].
Analysis of the cell cycle arrest by the formulations was measured by quantification of the
DNA content using flow cytometry analysis. Thus, the IC50 concentrations of the ICA-Cubs
and the analysis of the ICA-mediated arrest of the cell cycle are presented in Figure 9.
The analysis showed that there was a significant difference in all the different phases of the
cell cycles.

Our results for the ICA-Cubs against the SKOV-3 cell line are comparable to those in
the published literature, and the arrests of the different phases are also comparable [10].
Apoptosis is an important step in different biological processes; it can be stimulated by
many things and lead to various morphological changes [32,41]. The literature suggests that
the ICA can promote early and late apoptosis when compared with the control. This apop-
totic potential of ICA is much greater when it is treating cancer cells [11]. This improved
efficacy could be explained by the potential of increased solubility with the controlled
and complete release of ICA over time in the developed cubosomal approach. Nowadays,
dichloro-dihydro-fluorescein diacetate is widely used in cell-based assays to detect the
antioxidant potential of the components; the characteristics of this chemical that produce
a highly fluorescent end product upon oxidation are utilized [42]. This diacetate com-
pound can cross the cell membrane and be cleaved to dichloro-dihydro-fluorescein by
the cellular esterase without affecting the cellular viability [42,43]. Findings of our treat-
ments on the generation of ROS are in agreement with those of the previously published
literature [10]. This increased generation of ROS might be correlated with the elevated
levels of the apoptotic potential of the ICA [43], particularly when it is delivered using
the cubosomal delivery approach. Thus, it is expected that treatment with ICA-Cubs has
a greater potential to reduce the production of TNF-α within the cytosol of the SKOV-3
cells, and this could interfere with angiogenesis in the tumor microenvironment and the
growth, proliferation, invasion, and metastasis of cancer cells [44]. Similar results on the
enhancement of caspase-3 efficacy using ICA had been reported in the literature [45,46].
Furthermore, the effect of the formulation approach is much higher because the production
of caspase-3 by ICA-Cubs is significantly higher than by ICA-raw. This might be due to
the increased internalization of ICA in the novel formulation; the placebo formulation did
not induce any efficacy in the caspase-3 content in the ovarian cancer cells. This role of
caspase-3 in the treatment group might be correlated with the p53 expression, which might
affect cell growth and the metastasis of cancer cells. The corresponding expression of p53 in
the SKOV-3 cell line is presented in Figure 14B, showing a significant increase in the level of
p53 when treated with ICA and ICA-Cubs, similar to that of caspase-3. P53 is an important
tumor suppressor, and its overexpression leads to arrest of the cell cycle and promotion
of the apoptosis of cancer cells. Thus, we could speculate that the overexpression of p53
might be involved in the anti-cancer potential of ICA [13], where cubosomal delivery has a
potential role in improving efficacy by improving the cellular availability of ICA.
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5. Conclusions

In summary, ICA-Cubs using GMO and P407 was successfully developed through
optimization by the Box-Behnken statistical design. The optimized vesicles were cubic
in shape with an EE of 98.8%. The controlled release pattern of ICA-Cubs was delayed
compared with that of ICA-raw over 24 h. The vesicular delivery approach might increase
the cellular uptake of ICA; its cytotoxicity towards the ovarian cancer cells was decreased
by one-fifth over that of ICA-raw, and it had a safe profile in normal cells. There was
increased generation of ROS by 2-fold and overexpression of p53 and caspase-3 by 1.4-fold
in the SKOV-3 cell line. The decreased growth and arrest in the cell cycle might be due to
the upregulation of TNF-α by 1.8-fold. Overall, the cubosomal formulation approach for
the ICA could be used as an effective delivery tool for improved efficacy against ovarian
cancer cells; however, further studies are recommended to explore and establish the safety
and efficacy in in vivo models.
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