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Abstract
Intrinsically disordered proteins are frequently involved in important regulatory processes in the cell thanks to their ability 
to bind several different targets performing sometimes even opposite functions. The PentUnFOLD algorithm is a physico-
chemical method that is based on new propensity scales for disordered, nonstable and stable elements of secondary structure 
and on the counting of stabilizing and destabilizing intraprotein contacts. Unlike other methods, it works with a PDB file, 
and it can determine not only those fragments of alpha helices, beta strands, and random coils that can turn into disordered 
state (the “dark” side of the disorder), but also nonstable regions of alpha helices and beta strands which are able to turn into 
random coils (the “light” side), and vice versa (H ↔ C, E ↔ C). The scales have been obtained from structural data on disor-
dered regions from the middle parts of amino acid sequences only, and not on their expectedly disordered N- and C-termini. 
Among other tendencies we have found that regions of both alpha helices and beta strands that can turn into the disordered 
state are relatively enriched in residues of Ala, Met, Asp, and Lys, while regions of both alpha helices and beta strands that 
can turn into random coil are relatively enriched in hydrophilic residues, and Cys, Pro, and Gly. Moreover, PentUnFOLD 
has the option to determine the effect of secondary structure transitions on the stability of a given region of a protein. The 
PentUnFOLD algorithm is freely available at http://3. 17. 12. 213/ pent- un- fold and http:// chemr es. bsmu. by/ PentU nFOLD. htm.

Keywords Intrinsically disordered proteins; Structural shifts · Computer algorithm · Amino acid substitution · Human 
prion protein

Introduction

A large fraction of the human proteome comprises pro-
teins that, under physiological conditions, lack ordered 3D 
structures as a whole or have segments that are not likely 
to form a defined 3D structure (Dunker et al. 2000; Uver-
sky 2010, 2011). These proteins and regions are referred 
to as intrinsically disordered proteins (IDPs) and intrinsi-
cally disordered protein regions (IDPRs), respectively. 

IDPs/IDPRs are present in the proteome of all organisms, 
but were found to be most common in eukaryotic sequences 
(Romero et al. 1998; Ward et al. 2004a; Peng et al. 2015; 
Xue et al. 2012; Oates et al. 2013). Today it is already known 
that approximately 30–40% of human proteins contain one 
or more structurally disordered region with a length of at 
least 30 amino acid residues, and about 25% are completely 
disordered (Dunker et al. 2008). These proteins carry out 
essential functions breaking the classical structure–func-
tion paradigm (Hazy and Tompa 2009; Wright and Dyson 
1999). In fact, the percentage of proteins with IDPRs may be 
even higher, since many structures from PDB (Protein Data 
Bank) are protein complexes with different ligands, which 
may contribute to the shift from a disordered to an ordered 
state and vice versa (Dyson and Wright 2005). However, 
folding upon binding is limited, and many IDPs preserve a 
partial disordered state in the bound state (Hazy and Tompa 
2009; Tompa and Fuxreiter 2008). About 50% of proteins 
from PDB have intrinsically disordered regions (Gall et al. 
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2007) that are situated mostly at N- and C-termini of poly-
peptide chains. In addition, the crystallization process itself 
can also help intrinsically disordered regions to acquire a 
definite 3D structure.

Disordered regions should not be confused with random 
coil regions. In this study under the term “random coil” we 
mean regions that do not form neither alpha helix, nor beta 
strand, but have a definite structure. Disordered regions are 
those that lack definite 3D structure. We classify regions of 
alpha helices and beta strands able to turn into random coil 
as nonstable (N), as well as random coils that can turn into 
beta strands and alpha helices. In contrast, regions of random 
coil, alpha helices, and beta strands able to turn into disor-
dered state are classified as disordered (D). So, the aim of 
the PentUnFOLD algorithm is to distinguish between these 
two types of structural instability: between “N” and “D”.

IDPs/IDPRs are widely associated with numerous human 
diseases (Uversky et al. 2008). Every year, the number of 
diseases that involve IDPs/IDPRs or proteins that can make 
structural transitions increases. Without structural transi-
tions, it would not be possible to assemble and spread for 
the Influenza virus (Luo et al. 2012) and for the corona-
viruses (Barik 2020). Changes in the structure of proteins 
can be followed by their subsequent aggregation, which is 
the cause of the development of conformational diseases 
(Carrell and Lomas 1997; Kopito and Ron 2000). The most 
famous conformational diseases are human and animal prion 
diseases representing a fatal neurodegenerative disease in 
which conformational changes in the normal prion protein 
are considered a central pathophysiological event (Ironside 
et al. 2017). Alzheimer's disease is a conformational disease 
that is caused by aggregation of a peptide that is cleaved 
from the transmembrane protein that includes a hydropho-
bic part that is normally situated in a lipid bilayer, while 
Huntington's, and Parkinson's diseases are accompanied by 
extra- or intracellular accumulation of protein aggregates 
formed by normally water soluble cellular proteins (Steck-
mann et al. 2017). As in the case of prion diseases, the key 
event in the pathogenesis and progression of Alzheimer's 
and Parkinson's diseases is protein misfolding (Aguilar-
Calvo et al. 2015). Disordered proteins are also involved in 
the mechanisms of development of various types of cancer 
and other malignancies (Santofimia-Castaño et al. 2020). 
For example, it was shown experimentally that 88 human 
proteins are involved in pathogenesis of prostate cancer, 
many of which are intrinsically disordered (Uversky et al. 
2017). Diabetes and cardiovascular diseases also belong to 
conformational diseases (Uversky et al. 2008). This broad 
involvement of misbehaving IDPs/IDPRs in human diseases 
is known as «disorder in disorders» (or  D2) concept (Uver-
sky et al. 2008, 2014).

With the introduction of the concept of IDPs/IDPRs, 
methods for their prediction began to be developed. The 

earliest methods, such as SEG (Wootton 1994) and CAST 
(Promponas et al. 2000), just search for the sites with low 
complexity. There are methods based on the search for the 
least hydrophobic sections of proteins, and they include one 
of the first algorithms for the prediction of instability of 
proteins (Xie et al. 1998). There have also been attempts to 
use the B-factor of  Cα atoms to predict unstructured protein 
regions (Vihinen et al. 1994; Dunker et al. 1998; Zoete et al. 
2002; Radivojac et al. 2004).

To date, more than 70 predictors of unstructured protein 
regions have been developed, which are divided into three 
categories. The first category includes ab-initio predictors, 
which are based on some identified features of unstruc-
tured proteins, i.e., on the differences between disordered 
and ordered proteins. This category includes algorithms 
like FoldIndex© (Prilusky et al. 2005), Globplot (Linding 
et al. 2003a), IUPred (Dosztanyi et al. 2005). The classical 
approach is the charge–hydropathy plot, in which the net 
charge of the protein is plotted as a function of its net hydro-
phobicity. IDPRs have a low overall hydrophobicity and 
large net charge (Uversky et al. 2000; Uversky and Dunker 
2010). The second group includes self-learning algorithms 
that use information from special databases. This group 
includes DisEMBL (Linding et al. 2003b), DISOPRED2 
(Ward et al. 2004b), PrDOS (Ishida and Kinoshita 2007) 
and others algorithms. The third group, meta-predictors, 
combines the results obtained by several algorithms. Rep-
resentatives of this group of algorithms are PONDR-FIT 
(Xue et al. 2010), DISOPRED3 (Jones and Cozzetto 2015), 
MobiDB-lite (Necci et al. 2017). Despite the existence of 
such a variety of methods for predicting unstructured frag-
ments in proteins, from 10 to 30% of unstructured proteins 
are not recognized by those algorithms (Katuwawala et al. 
2020).

In 2021, the last experiment on Critical Assessment of 
protein Intrinsic Disorder prediction (CAID) was finished. 
In this experiment, 43 methods for the prediction of IDPR 
were evaluated. The test set included 646 proteins from the 
DisProt database (Necci et al. 2021). The best methods use 
deep learning techniques and notably outperform physico-
chemical methods (Necci et al. 2021). The top disorder pre-
dictor fIDPnn has  Fmax = 0.483 on the full dataset of proteins 
(Necci et al. 2021). Across the different performance meas-
ures, the methods SPOT-Disorder2, fIDPnn, RawMSA and 
AUCpreD are consistently found among the top five (Necci 
et al. 2021). The flDPnn predictor was designed and trained 
before the CAID experiment on the 176 proteins extracted 
from the DisProt database (Hu et al. 2021). Therefore, it is 
not surprising that the second-best predictor is a derivative 
of the flDPnn model, flDPlr (Hu et al. 2021). Authors of 
the SPOT-Disorder2 method also used 72 fully-disordered 
proteins from DisProt database in training, validation and 
test sets (Hanson et al. 2019).
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IDPs/IDPRs are involved in various diseases and may 
also have untapped therapeutic potential (Babu 2016; Corbi-
Verge and Kim 2016; Hu et al. 2016). Although the human 
genome contains a large number of potential drug targets, 
however, only about 2% of human proteins are known to 
interact with approved drugs (Overington et al. 2006).

In this study, we describe a probabilistic algorithm that 
works on a principle that is different from those of other 
methods. Also, we tested that method together with above-
mentioned ones on a new set of proteins that contain IDPRs 
according to the comparison of their different 3D structures. 
The novelty of our method lies in the following features: (i) 
propensity scales used by the algorithm are based on pro-
teins of different structural classes, because it is known that 
proteins of different structural classes differ in the level of 
structural stability (Poboinev et al. 2018); (ii) our algorithm 
can work not only with amino acid sequence of investigated 
protein, but with 3D structure of the protein, because the for-
mation of the secondary and tertiary structure is influenced 
not only by the amino acid composition, but also by other 
factors, such as distant interactions between different regions 
of the protein (this factor is not directly taken into account 
when prediction of the structural instability of proteins is 
based only on their amino acid sequences); (iii) the Pen-
tUnFOLD algorithm can find alpha helices and beta strands 
that are able to turn into random coils as well as regions of 
random coil that are able to form alpha helix or beta strand; 
(iv) our algorithm checks the ability of alpha helices, beta 
strands, and random coils to turn into the disordered state in 
the central part of a sequence, and not just in N- and C-ter-
mini; (v) PentUnFOLD algorithm can determine the effect 
of amino acid substitution on protein secondary structure 
stability not only in the elements of secondary structure that 
exist before a structural shift, but in elements of secondary 
structure that are formed after that shift.

Materials and methods

The material for this study includes five initial sets of 
3D structures of proteins that belong to: (1) alpha helical 
eukaryotic proteins; (2) beta structural eukaryotic proteins; 
(3) alpha + beta eukaryotic proteins; (4) alpha/beta eukary-
otic proteins; (5) bacterial proteins; as well as a control 
set of proteins of different origins and structural classes 
(6). Each set contains no homologs, since the similarity 
between sequences was lower than 25% according to the 
Decrease Redundancy algorithm (https:// web. expasy. org/ 
decre ase_ redun dancy/). Each protein has two to five dif-
ferent 3D structures in PDB. Those structures belong to 
proteins with 100% identity of amino acid sequences, but 
their secondary structures may be different. Thus, sam-
ples consisting of 100 alpha helical eukaryotic proteins 

and 378 structures, 100/355 beta structural eukaryotic 
proteins/structures, 100/387 alpha + beta eukaryotic pro-
teins/structures, 100/386 alpha/beta eukaryotic proteins/
structures, and 189/610 bacterial proteins/structures were 
formed. Average resolution of all X-ray structures of 
alpha helical proteins is 2.21 Å, of beta structural pro-
teins—2.11 Å, of alpha + beta proteins—2.08 Å, of alpha/
beta proteins—2.00 Å, of bacterial proteins—2.12 Å. The 
control set consists of 74/249 eukaryotic, bacterial and 
viral proteins/structures. Average resolution of all X-ray 
structures from control set of proteins is 2.29 Å. The IDs 
of all 3D structures in PDB, as well as a resolution are 
provided in Table 1S and Table 2S from the Supplemen-
tary Material. As we used a new control set of proteins we 
also provide information about amino acid sequences of 
all used 3D structures of proteins, information about their 
secondary structure and the results of all the algorithms 
described in the manuscript in Table 3S from Supplemen-
tary Material.

Secondary structure has been estimated with a help of the 
DSSP algorithm (Kabsch and Sander 1983). Finally, for each 
protein we found: those random coils (C), alpha helices (H), 
and beta strands (E) that stay the same in all identical struc-
tures; those residues of alpha helices that exist in random 
coil in some of the structures (HC); those residues of beta 
strands that exist in random coil in some structures (EC); 
absolutely disordered fragments that cannot be seen in any 
of the examined structures (0); random coils that can turn 
into the disordered state (0C); alpha helices that can turn into 
the disordered state (0H); beta strands that can turn into the 
disordered state (0E). Also, we found a significant number of 
cases in which an alpha helix turns into random coil in some 
structures, but in other structures turns into the disordered 
state (0HC), and those cases, in which a beta strand turns 
into random coil in some structures and in other structures 
it turns to the disordered state (0EC). Interestingly, the num-
ber of residues that can exist in both alpha helical and beta 
structural state is quite low. Thus, a total of 46,249 cases of 
H, 27,798—E, 59,023—C, 1260—0, 3960—HC, 2835—
EC, 1596—0C, 274—0H, 69—0E, 106—0HC, 33—0EC, 
4—HE, 2—HEC were analyzed. Disordered N-terminal and 
C-terminal parts of proteins have been ignored in all calcula-
tions, except the testing of the PentUnFOLD 1D algorithm 
on the control set.

The amino acid content of each of the abovementioned 
structural states has been calculated. Then, usages of 
amino acid residues in different structural states have been 
compared with each other by two-tailed t test for relative 
values, standard errors were provided in figures. In the 
same manner, we compared pentapeptide contents of those 
structural states. Pentapeptides were used with the aim to 
consider the influence of short-range interactions between 
amino acid residues and alternations of hydrophilic (P) 

https://web.expasy.org/decrease_redundancy/
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and hydrophobic (H) residues on the probability of struc-
tural shifts. In those pentapeptides, amino acid residues 
are roughly divided into hydrophilic (Ser, Thr, Asp, Glu, 
Asn, Gln, His, Arg, Lys) and hydrophobic ones (Gly, Ala, 
Met, Leu, Ile, Val, Phe, Tyr, Trp, Cys, Pro) (Tina et al. 
2007). The methodology of such comparisons has been 
described in details previously (Khrustalev et al. 2019).

Additionally, we calculated the amino acid content and 
pentapeptide content of first and last amino acid residues 
of alpha helices and beta strands with stable and nonstable 
N- and C-termini, as well as for flanking random coil resi-
dues. For alpha helices, we also considered second posi-
tions of both N- and C-termini.

Propensity scales (both amino acid and pentapeptide 
ones) have been created for each set of structural states. 
All those scales can be seen in Table 4S from Supplemen-
tary material. The workflow of the PentUnFOLD algo-
rithm is described in the subsection of the Results and Dis-
cussion section, the manual is available as Supplementary 
material “PentUnFOLD-manual.pdf” file.

Secondary structure of each protein from all the six 
sets has been determined with the DSSP program (Kabsch 
and Sander 1983), tertiary structure of each protein from 
the control set has been studied with the help of the PIC 
server (Tina et al. 2007). Among intraprotein interactions 
we consider hydrogen bonds, hydrophobic contacts, ionic 
contacts, cation-pi interactions, aromatic-aromatic, and 
aromatic-sulfur interactions, as well as disulfide bonds. 
We use the same criteria for their consideration as the PIC 
server (Tina et al. 2007). The number of amino acid resi-
dues that make contacts with a given residue is calculated. 
Then the algorithm counts for every amino acid residue 
the number of contacts with stable residues, with nonsta-
ble residues, with disordered ones, and with completely 
disordered ones.

The information on 103 structures of human serum albu-
min can be found in Table 5S from the Supplementary Mate-
rial file.

Three PentUnFOLD algorithms are available on the 
web server (http://3. 17. 12. 213/ pent- un- fold) and on the 
page of our university (http:// chemr es. bsmu. by/ PentU 
nFOLD. htm). PentUnFOLD 1D, PentUnFOLD 2D, and 
PentUnFOLD 3D require PDB file as an input, while Pen-
tUnFOLD 1D can also work with an amino acid sequence. 
The output of those algorithms is provided as a down-
loadable MS Excel file. Predictions can be easily copied 
from those files. Moreover, new calculations or formatting 
can be easily performed directly in those MS Excel work-
sheets. The server uses an output of DSSP algorithm with 
the aim to determine secondary structure for PentUnFOLD 
2D and PentUnFOLD 3D. In case of DSSP server failure, 
secondary structure is determined by our own JAVA script 
based on DSSP criterions (Kabsch and Sander 1983). For 

the 3D version of the algorithm our server finds all the 
possible intraprotein interactions according to the criteri-
ons of the PIC server using a new JAVA script.

Results

Comparison between completely disordered state, 
disordered random coil, and stable random coil

One of the fundamental questions of this study is to find 
out are there any differences between the regions of pro-
teins that can never be seen in PDB files and those that can 
be seen in some PDB files, but “disappear” in others. In 
Fig. 1, we show amino acid content of completely disordered 
regions (excluding those that exist in N-termini and C-ter-
mini of proteins), amino acid content of regions that exist 
as disordered ones in some 3D-strutures and form random 
coil in other structures with 100% similarity of amino acid 
sequence, as well as amino acid content of those regions of 
random coil that stay in random coil state in all examined 
3D structures of identical proteins. The differences between 
stable random coils and unstable ones are as follows: the 
usage of several hydrophobic residues is significantly higher 
in stable random coils (Leu, Ile, Val, Phe, Tyr, Trp, Cys, 
Pro), as well as the usage of some hydrophilic ones (Asp, 
Asn, His). The differences between stable random coils and 
completely disordered regions are quite similar to the pre-
viously described ones: the usage of several hydrophobic 
residues is significantly higher in stable random coils (Met, 
Leu, Ile, Val, Phe, Tyr, Trp, Cys, Pro), as well as the usage 
of some hydrophilic ones (Thr, Asn, Gln, His). Completely 
disordered regions are enriched in several amino acid resi-
dues relative to the unstable random coils: by Gly, Ala, Leu, 
Val, Trp, Pro, Asp, and Lys. However, the magnitude of 
differences in amino acid usage is higher than 25% for three 
amino acid residues only: Met, Trp, and His. At the same 
time, the differences between completely disordered state 
and stable random coils are higher than 25% for Ser, Glu, 
Leu, Ile, Tyr, Trp, Cys, Phe, and His. Among the differences 
between unstable and stable random coils with a magnitude 
higher than 25%, we find the same Ser, Glu, Leu, Ile, Tyr, 
Trp, Cys, but without Phe and His.

In Fig. 2, we show the same comparison, but for 32 penta-
peptides. The tendency of the enrichment of both completely 
disordered regions and unstable random coils by hydrophilic 
amino acid residues and pentapeptides composed of them is 
clear. However, there are some pentapeptides that are land-
marks of the unstable random coil and not completely dis-
ordered regions: HPPPP; PPPPH; PHPPP; PPPHP; HHPPP; 
PPPHH; PPHHH; HHHPP; HPHPP (P is a hydrophilic 
amino acid residue, H is a hydrophobic amino acid residue). 
In the same way, there are a few quite frequent pentapeptides 
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exactly in completely disordered regions: PHHPP; PPHHP; 
PPHPP; PHHPH; HPHHP. Interestingly, five last penta-
peptides are known as alpha helical ones (Khrustalev and 
Barkovsky 2012).

On one hand, amino acid and pentapeptide content of 
completely disordered regions and unstable random coils 
are closer to each other, than to those of stable random 
coils. But on the other hand, there are some sharp differ-
ences between them, especially, if we consider combinations 

of hydrophobic and hydrophilic residues in pentapeptides. 
Because of these reasons, we included two methods to find 
disordered regions in random coils of proteins. In the first, 
we use a combined scale based on average characteristics 
of both completely disordered regions and unstable random 
coils. In the other method, we distinguish completely disor-
dered regions from unstable random coils.

Table 3  Consequences of amino acid substitutions associated with the development of human prion diseases according to the original PentUn-
FOLD and other algorithms (2D predictions)

H alpha helix, E beta strand, D disordered state, O ordered state, U unfoldability

Amino acid 
substitution

PentUnFOLD GlobPlot 2.3 FoldIndex© PONDR® VL-XT PONDR® VSL2 PrDOS DEPICTER

H187R H: O → D (Lys185-
Gln186); E: no 
changes

No changes O → D
(Ile184-Thr188);

O → D (Lys194-
Asn197)

O → D
(Val189; Val210)

No changes No changes

F198S O → D (Glu196-
Glu200)

No changes No changes
U: -0.085 → -0.096

O → D (Glu196-
Asn197)

O → D
(Thr188-Val189; 

Val210)

No changes O → D
(191–203)

D202N H: No changes; 
E: nonstable 
Lys204 → stable 
Lys204

No
changes

O → D
Asn202

D → O (Phe198) O → D
(Val189; Val210)

No changes No changes

Q212P H: nonstable 
state → stable 
state (Gln212-
Met213); E: stable 
state → nonstable 
state (Gln212-
Met213)

No changes No changes
U: -0.085 → -0.080

O → D (Gln217-
Tyr218)

D → O
(Arg208-Val209; 

Glu211-Gln212; 
Cys214)

No changes No changes

E196K H: No changes; 
E  (2nd and  3rd): 
D → O (Lys194)

No changes No changes
U: -0.085 → -0.067

D → O (Phe198-
Glu200)

D → O
(Val209);
O → D
(Val189)

No changes No changes

E200K H: No changes; 
E: nonstable 
Glu200 → stable 
Glu200

No changes No changes
U: -0.085 → -0.067

D → O (Phe198-
Glu200)

D → O
(Val209)

No changes No changes

V203I H: No changes; 
E: nonstable 
Lys204 → stable 
Lys204

No changes No changes
U: -0.085 → -0.084

No changes D → O
(Met205-Val209)

No changes No changes

R208H H, E: No changes No changes No changes
U: -0.085 → -0.091

D → O
(Phe198-Thr199; 

Gln212-Thr216; 
Glu219)

D → O
(Glu207-Val209; 

Glu211-Cys214)

No changes No changes

V210I H: No changes; 
E: nonstable 
Arg208 → stable 
Arg208; stable 
Glu211 → nonsta-
ble Glu211

No changes No changes
U: -0.085 → -0.084

D → O
(Glu219)

D → O
(Met205-Val209; 

Glu211-Gln212)

No changes No changes

E211Q H, E: No changes No changes No changes
U: -0.085 → -0.076

D → O
(Thr216; Glu219)

D → O
(Val209)

No changes No changes
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Comparison between alpha helices that can turn 
into the disordered state, those that can turn 
into random coil, and stable alpha helices

In this study we have found out that alpha helices that can 
turn into the disordered state are different from those that 
can turn into random coil. As one can see in Fig. 3, alpha 
helices able to form random coil are enriched in all nine 
hydrophilic amino acid residues, as well as in Cys, Pro, and 
Gly relative to stable alpha helices. In contrast to the last 
ones, alpha helices able to turn into the disordered state, 
and not to the random coil, are enriched in Ala and Met, 
and depleted in Gly, Pro, Thr, Asn, His, and Arg residues, 
relative to stable alpha helices. Even more surprisingly, 
alpha helices that are able to form disordered state are sig-
nificantly enriched in Ala, Met, Ile, Val, Tyr, Asp, Glu, 
Gln, and Lys relative to those that can turn into the random 
coil. Especially prominent differences are evident (Fig. 3) 
for Ala, Asp, Glu, Gln, and Lys residues. These residues 
(except Asp) are well-known helix formers (Chou and Fas-
man 1978), but their usages are higher in those alpha helices 
that can turn into disordered state than in stable alpha helices 
and in those that can form random coil.

In Fig. 4, one can see that alpha helices prone to form 
disordered fragments of proteins are enriched in hydrophilic 
pentapeptides, as well as by a few less hydrophilic ones: 
PPHPH; HPPHP; PHPHH; HHHHP. Stable alpha helices are 
enriched in the most of hydrophobic pentapeptides. Those 
alpha helices that are prone to form random coil demon-
strate higher usage of hydrophilic pentapeptides than stable 
alpha helices, but not as high as those alpha helices that can 
turn into disordered state. An opposite situation is there with 

some hydrophobic pentapeptides. Several pentapeptides 
with an average usage of hydrophilic residues are more fre-
quently used in alpha helices prone to form random coil than 
in two other types, for example: HHPPP; HPHPP; HPPPH.

In the PentUnFOLD algorithm, we check whether a frag-
ment of an alpha helix is prone to form random coil, and 
then we check can it turn into the disordered region using 
separate propensity scales (Table 4S).

Comparison between beta strands that can turn 
into the disordered state, those that can turn 
into random coil, and stable beta strands

Absolutely in the same way, as with alpha helices, beta 
strands able to form random coil are enriched in all nine 
hydrophilic amino acid residues, as well as in Cys, Pro, and 
Gly relative to stable beta strands (Fig. 5). At the same time, 
amino acid contents of alpha helices and beta strands (both 
able and unable to turn into random coil) are quite different. 
Beta strands prone to form disordered regions are enriched 
in several amino acids relatively to two other types of beta 
strands: Ala, Met, Tyr, Asp, His, Lys. Interestingly, alpha 
helices prone to form disordered regions are also enriched 
in Ala, Met, Asp, and Lys relative to two other types of 
alpha helices. It seems like being enriched in the same types 
of amino acid residues, both beta strands and alpha heli-
ces are becoming prone to form a disordered region, while 
being enriched in other types of amino acid residues they are 
both becoming able to turn into random coil. However, both 
transitions (to the disordered state and to the random coil) 
are becoming possible for beta strands and for alpha helices 
when they still have quite different amino acid contents.

Fig. 1  Amino acid content of 
completely disordered regions 
(“0”), amino acid content of 
regions that exist as disordered 
ones in some 3D-strcutures 
and form random coil in other 
structures with 100% similarity 
of amino acid sequence (“0C”), 
and amino acid content of those 
regions of random coil that stay 
in random coil state (“C”) in 
all examined 3D structures of 
identical proteins. Amino acids 
from N-termini and C-termini 
of proteins were excluded. 
Standard errors are provided 
in the barcharts. Names of 
hydrophobic residues are in the 
yellow bar, names of negatively 
charged residues are in the red 
bar, while names of positively 
charged residues are in the blue 
bar



1161The PentUnFOLD algorithm as a tool to distinguish the dark and the light sides of the structural…

1 3

It is not surprising that beta strands able to turn into ran-
dom coil are enriched in more hydrophilic pentapeptides, 
while stable beta strands are more hydrophobic (Fig. 6). 
Surprisingly, beta strands that are prone to turn into dis-
ordered state are especially enriched with several concrete 
pentapeptides: PPPPH; PPPHH; PHPHP; PPHHH; PHHHP; 
HHHPH. This information is used by the PentUnFOLD 
algorithm to check if a beta strand fragment can turn into 
random coil, and if it is prone to turn into the disordered 
state.

The information on instability of N‑ and C‑termini 
of alpha helices and beta strands

Most of helix to coil and beta sheet to coil transitions have 
been found by us in N- and C-termini of alpha helices and 
beta strands, respectively. These transitions have been stud-
ied separately from cases of complete helix to coil and sheet 
to coil transformations. Actually, in previous sections we 
described amino acid content of alpha helices and beta 
strands that are able to turn into random coil completely. 
Here, we compare amino acid content of N-termini of stable 

Fig. 2  Pentapeptide content of 
completely disordered regions 
(“0”), pentapeptide content of 
regions that exist as disordered 
ones in some 3D-strcutures 
and form random coil in other 
structures with 100% similarity 
of amino acid sequence (“0C”), 
and pentapeptide content of 
those regions of random coil 
that stay in random coil state 
(“C”) in all examined 3D 
structures of identical proteins. 
Pentapeptides from N-termini 
and C-termini of proteins were 
excluded. “P” is a hydrophilic 
amino acid residue, “H” is 
a hydrophobic amino acid 
residue. Standard errors are 
provided in the barcharts. The 
pentapeptides are arranged in 
order of increasing hydropho-
bicity from left to right

Fig. 3  Amino acid content of 
alpha helices that can turn into 
the disordered state (“0H”), 
amino acid content of alpha 
helices that can turn into 
random coil (“HC”), and amino 
acid content of those regions of 
alpha helices that stay in alpha 
helical state (“H”) in all exam-
ined 3D structures of identical 
proteins. Amino acids from 
N-termini and C-termini of pro-
teins were excluded. Standard 
errors are provided in the bar-
charts. Names of hydrophobic 
residues are in the yellow bar, 
names of negatively charged 
residues are in the red bar, while 
names of positively charged 
residues are in the blue bar
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alpha helices and amino acid content of instable N-termini 
of alpha helices. Since in N-caps of alpha helices a residue 
situated before an alpha helix usually makes hydrogen bonds 
with residues from an alpha helix, those residues for stable 
and instable N-termini of helices have been compared as 
well. We also considered helix to coil transitions made by 
a single N-terminal residue separately from such transition 
made by two N-terminal residues. The same comparisons 
have been made for C-termini of alpha helices.

In Fig. 7, one can observe that proline in the first posi-
tion can significantly stabilize N-terminus of an alpha helix, 
while aspartic acid is usually making the first position of 
an alpha helix prone to turn into random coil. C-termini of 
alpha helices are stable if Val, Tyr or Asp is situated there. 
Nonstable C-terminal residues are Ser and Arg. The penta-
peptide that stabilizes N-termini of alpha helices better than 
others is HPHPP (alpha helix starts from the third position).

N-terminal residues of beta strands that prevent those 
N-termini from turning into random coil are Met, Ile, and 
Val (Fig. 8). If a beta strand starts from Asp or Glu, it is 
prone to become shorter from its N-terminus. C-termini of 
beta strands are significantly stabilized by Leu, Ile, and Trp. 
If Gly is situated in the C-terminal position of a beta strand, 
that strand has a high chance to become shorter from its 
C-terminus (Fig. 8). The pentapeptide that stabilizes N-ter-
mini of beta strands better than others has the following 
sequence: HPHHH. The best stabilizer of the C-terminus of 
a beta strand is the HHHPP pentapeptide.

The information on amino acid residues that make 
N- and C-termini of alpha helices and beta strands more 
or less stable is used by the PentUnFOLD to consider 
the stability of those caps. Users are able to change the 

positions of N-termini and C-termini of alpha helices and 
beta strands to search for their most stable (and so most 
expected) positions in the PentUnFOLD 2D version.

The principles of the PentUnFOLD algorithms

There are three versions of the PentUnFOLD algorithm: 
1D version predicts based on just an amino acid sequence, 
2D version uses both amino acid sequence and the data 
on secondary structure; while 3D version uses amino acid 
sequence, secondary structure, and the map of intraprotein 
contacts between amino acid residues.

The PentUnFOLD algorithm predicts fragments of 
alpha helices and beta strands that can turn into random 
coil (referred to as “N” residues) separately from those 
fragments of alpha helices, beta strands, and random coils 
that can turn into completely disordered state (referred 
to as “D” residues). A fragment of a protein may be both 
“N” and “D”.

The PentUnFOLD algorithm requires description of a 
polypeptide chain from a PDB file, the results of the evalua-
tion of its secondary structure from the DSSP algorithm, and 
the information on intraprotein contacts between amino acid 
residues as an input. So, amino acid sequence is extracted 
from the lines “ATOM” of the PDB file. However, users of 
the PentUnFOLD 2D version can introduce unlimited num-
ber of amino acid substitutions in a sequence. The informa-
tion on the secondary structure is extracted from the output 
of the DSSP algorithm, but users can change secondary 
structure manually in the 2D version of the algorithm.

The algorithm solves the following problems: (i) it checks 
stability of alpha helices and beta strands in terms of their 

Fig. 4  Pentapeptide content of 
alpha helices that can turn into 
the disordered state (“0H”), 
pentapeptide content of alpha 
helices that can turn into ran-
dom coil (“HC”), and pentapep-
tide content of those regions of 
alpha helices that stay in alpha 
helical state (“H”) in all exam-
ined 3D-structures of identical 
proteins. Pentapeptides from 
N-termini and C-termini of 
proteins were excluded. “P” is a 
hydrophilic amino acid residue, 
“H” is a hydrophobic amino 
acid residue. Standard errors are 
provided in the barcharts. The 
pentapeptides are arranged in 
order of increasing hydropho-
bicity from left to right
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ability to turn into random coil; (ii) it checks ability of alpha 
helices, beta strands, and random coils to turn into the disor-
dered state; (iii) it finds regions of random coil that are able 
to form alpha helix or beta strand. PentUnFOLD 1D version 
also predicts secondary structure for a protein considering 
that it can completely turn into a disordered state and fold 
back.

The first problem requires two separate calculations: the 
estimation of the stability of N- and C-termini of alpha heli-
ces and beta strands, and the estimation of the stability of 

central regia. For termini of beta strands, the algorithm uses 
four scales: amino acid and pentapeptide propensity scales 
for the first (last) residue in a beta strand and for the flank-
ing residue from the random coil. If the average value from 
these four scales is higher than 0.5, the terminal residue is 
considered to be stable. Terminal residue is also considered 
to be stable if a beta strand is predicted there by both amino 
acid and pentapeptide scales. Amino acid residues from the 
body of a beta strand are judged by the amino acid and pen-
tapeptide scales first, and by the average results for the scales 

Fig. 5  Amino acid content of 
beta strands that can turn into 
the disordered state (“0E”), 
amino acid content of beta 
strands that can turn into 
random coil (“EC”), and amino 
acid content of stable beta 
strands (“E”). Amino acids from 
N-termini and C-termini of pro-
teins were excluded. Standard 
errors are provided in the bar-
charts. Names of hydrophobic 
residues are in the yellow bar, 
names of negatively charged 
residues are in the red bar, while 
names of positively charged 
residues are in the blue bar

Fig. 6  Pentapeptide content of 
beta strands that can turn into 
the disordered state (“0E”), pen-
tapeptide content of beta strands 
that can turn into random coil 
(“EC”), and pentapeptide 
content of stable beta strands 
(“E”). Pentapeptides from 
N-termini and C-termini of 
proteins were excluded. “P” is a 
hydrophilic amino acid residue, 
“H” is a hydrophobic amino 
acid residue. Standard errors are 
provided in the barcharts. The 
pentapeptides are arranged in 
order of increasing hydropho-
bicity from left to right
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(amino acid and pentapeptide ones) for stable and nonstable 
bodies of beta strands next. Finally, the algorithm shows 
residues of beta strands that have a low probability to turn 
into random coil (ES), and those residues that have a high 
probability to turn into random coil (EN).

The algorithm works with alpha helices in the same 
way as with beta strands, while the algorithm for their 
N- and C-termini is more complicated, since it includes 
also a calculation featuring the second residue from the 
N-terminus and the second residue from the C-terminus. 
The first (last) residue in an alpha helix is considered to be 

stable if it is predicted to be stable by both methods (the 
one featuring just the first residue, and the second consid-
ering two N-terminal or C-terminal residues). The second 
residue in an alpha helix is considered to be stable with 
a help of the method that includes the average result for 
six scales: amino acid scales and pentapeptide scales for 
the first and the second residues in an alpha helix, and for 
the residue in random coil before (after) the alpha helix.

The ability of a random coil to turn into the disordered 
state is considered by the comparison between four scales: 
combined scale for completely disordered state and for 

Fig. 7  Amino acid content 
of stable and instable N- and 
C-termini of alpha helices. 
Standard errors are provided in 
the barcharts

Fig. 8  Amino acid content 
of stable and instable N- and 
C-termini of beta strands. 
Standard errors are provided in 
the barcharts
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random coil that can turn into the disordered state, stable 
random coil, combined scale for alpha helices that can turn 
into the disordered state and those that can turn into both 
disordered state and random coil, combined scale for beta 
strands that can turn into the disordered state and those 
that can turn into both disordered state and random coil. 
In case if random coil is considered to be disordered by 
this method, it is also judged by the method that features 
just two scales: for the completely disordered state and for 
random coils that can turn into the disordered state. With 
the first method the algorithm can also consider fragments 
of random coil that can turn into alpha helix or beta strand.

Alpha helices are considered to be prone to turn into 
disordered state using a method that features amino acid 
and pentapeptide scales that include two options each: the 
scale for stable alpha helices, and the combined scale for 
alpha helices that can turn into the disordered state and 
those that can turn into both disordered state and random 
coil. If a residue is considered to be disordered by this 
method, it is also judged by the next one that compares 
completely disordered state with the combined scale for 
alpha helices that can turn into the disordered state and 
those that can turn into both disordered state and random 
coil. In the same manner the algorithm finds disordered 
residues in beta strands, and chooses absolutely disordered 
residues (V) among them.

Finally, the algorithm predicts unstable alpha helices and 
beta strands that can appear in the place of random coil or 
disordered state. This prediction may be useful for consid-
eration of the structure of those proteins that can completely 
turn into the disordered state and fold back.

At the end of the 2D prediction step amino acid residues 
are classified into five categories: “V” means completely 
disordered residues; “D” means disordered residues; “N” 
means nonstable residues of alpha helices and beta strands 
that can turn into random coil or vice versa; “Z” means 

neither stable, nor nonstable residues of random coil; “S” 
means stable residues.

The purpose of the 3D prediction step is to consider the 
influence of stabilizing and destabilizing contacts between 
amino acid residues. Only if a residue is predicted to be 
completely disordered (V), we ignore any contacts it can 
make to other parts of the protein. If a residue is predicted 
to be just disordered (D) by the 2D algorithm, it stays dis-
ordered only if the number of its contacts with stable (S) 
residues is less than 3. If a residue is predicted to be non-
stable (N), it is classified as disordered one only if it makes 
less than 4 contacts with stable (S) residues. If a residue of 
a random coil is neither stable, nor nonstable (Z), it is clas-
sified as disordered one if it makes no contacts with other 
residues at all, or if the sum of its contacts with V, D, and N 
residues (actually, 0.5 · N) is higher than the number of its 
contacts with stable residues. Even stable (S) residue can 
become disordered if the sum of the numbers of its contacts 
with “V”, 0.5 · “D”, and 0.25 · “N” residues is higher than 
the number of its contacts with other “S” residues. Taking 
together, 3D prediction finds those residues that are situated 
in the disordered 2D environment, but surrounded by stable 
residues in the 3D space, as well as residues in the stable 2D 
environment, that are destabilized by contacts with other 
residues. Also, residues that are not making any contacts are 
considered to be disordered, and that is the case mostly for 
unfolded N- and C-termini of proteins.

At the final step, residues surrounded by disordered ones 
in the primary sequence are considered to be disordered 
(DXD = DDD), and then residues surrounded by ordered 
ones (O) are considered to be ordered (OXO = OOO).

Performance of PentUnFOLD algorithms

In the test set, we classified residues as disordered ones in 
case if they were missing at least in one of the structures 

Table 2  The results of the 
testing of the PentUnFOLD and 
other algorithms on the human 
serum albumin (HSA) with 103 
available 3D structures

Algorithms Sensitivity, % Specificity, % Accuracy MCC F1

Depicter 0.29 100.00 0.411 0.022 0.006
Foldindex 47.95 65.60 0.544 0.011 0.554
GlobPlot 2.05 46.67 0.408 − 0.010 0.039
PONDR VL-XT 11.40 55.71 0.423 − 0.003 0.189
PONDR VSL2 38.30 70.43 0.541 0.014 0.496
flDPnn 0.88 75.00 0.413 0.010 0.017
DISOPRED3 7.89 65.85 0.432 0.005 0.141
DISOPRED3 (disordered) 1.46 35.71 0.402 − 0.022 0.028
PentUnFOLD 1D 7.02 53.33 0.415 − 0.005 0.124
PentUnFOLD 2D 48.83 58.19 0.491 − 0.002 0.531
PentUnFOLD 2D (D) 18.42 62.38 0.453 0.003 0.284
PentUnFOLD 2D (N) 42.98 57.65 0.476 − 0.002 0.492
PentUnFOLD 3D 65.50 60.87 0.547 0.006 0.631
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with 100% identity of sequences, compared to the randomly 
selected initial one. There were 1782 disordered residues 
in the whole test set. As one can see in Table 1, the Pen-
tUnFOLD 3D showed the highest sensitivity (71.44%) com-
pared to nine other methods (from 3.59% for the Depicter 
to 43.60% for the Foldindex). This increased sensitivity has 
been reached thanks to the 3D step of prediction. Indeed, for 
the PentUnFOLD 1D sensitivity is equal to 12.21%, and for 
the PentUnFOLD 2D algorithm it is equal to 39.25%. Inter-
estingly, if we consider just those residues that are classified 
as prone to turn into the disordered state (“D” and “V”) by 
the PentUnFOLD 2D algorithm, its sensitivity is equal to 
11.34%, while if consider just structurally nonstable residues 
(N), the sensitivity is even higher (22.18%). These results 
prove that transitions of helix to coil and beta to coil (and 
vice versa) make a significant contribution into the “disap-
pearance” of protein fragments from 3D structures. Provided 
data also shows that interactions between amino acid resi-
dues is the third key to open up the door to the understanding 
of the nature of intrinsically disordered regions of proteins, 
while the second key is the actual secondary structure, and 
the first key is their amino acid content and composition.

Interestingly, nine tested algorithms, show low (Table 1) 
specificity (from 4.25 to 29.29%). It means that all of them 
largely overpredict disordered regions. PentUnFOLD is not 
an exception in terms of specificity: it is equal to 9.04% for 
its 3D version and 7.99% for its 2D version, but it is higher 
(14.14%) for its 1D version. Does that mean that we cannot 
trust in such predictions, or does it mean that the definition 
of disordered regions in the current test was too strict? To 
answer this question, we studied a set of 103 structures of 
human serum albumin (HSA). Indeed, the higher the number 
of 3D structures are available for a given protein, the higher 
the percent of residues that are missing from at least one of 

them. Actually, for human serum protein 59% of amino acid 
residues are disordered, according to our definition.

As one can see in Table 2, the levels of specificity for all 
tested algorithms are much higher for human serum protein, 
than for proteins with a few known 3D structures. Actu-
ally, for Depicter, the level of specificity is even equal to 
100%, since it has predicted just a single disordered residue, 
and that N-terminal residue may indeed disappear from 3D 
structures. For the other algorithms, specificity varies from 
35.71% (DISOPRED3, disordered) to 75.00% (fIDPnn). 
The specificity for the PentUnFOLD 3D is equal to 60.87%, 
while its sensitivity again showed the highest level among 
other tested algorithms (65.50%). As in the test set of pro-
teins, PentUnFOLD 1D showed worse sensitivity than Pen-
tUnFOLD 2D (7.02% vs. 48.83%), while their specificities 
were comparable with each other (53.33% vs. 58.19%).

The results provided above show that proteins usually 
have a lot of regions that can change their structure or turn 
into the disordered state. Even subtle changes in conditions 
or the binding of specific ligands can change the network 
of intraprotein amino acid contacts, and release disordered 
regions from stabilizing interactions.

Evaluation of the consequences of amino acid 
substitutions in the most disordered region 
of human major prion protein by the PentUnFOLD 
algorithm

According to the results of the PentUnFOLD algorithm, 
there are several disordered areas in the human major prion 
protein. We used NMR structure with PDB ID: 1HJM as 
an input. According to the 2D predictions, the first alpha 
helix (144–152) contains disordered N-terminal part (3 
residues) and disordered C-terminal residue. There are 

Table 1  The results of the 
testing of the PentUnFOLD and 
other algorithms on the test set 
of 74 proteins

Algorithms Sensitivity, % Specificity, % Accuracy MCC F1

Depicter 3.59 9.22 0.890 0.006 0.052
Foldindex 43.60 9.69 0.612 0.037 0.159
GlobPlot 7.24 4.25 0.785 -0.061 0.054
PONDR VL-XT 22.05 9.38 0.756 0.018 0.132
PONDR VSL2 23.91 10.01 0.756 0.029 0.141
flDPnn 7.30 14.79 0.887 0.048 0.098
AUCpreD 8.59 27.77 0.905 0.114 0.131
DISOPRED3 6.90 29.29 0.908 0.107 0.112
DISOPRED3 (disordered) 3.09 26.57 0.912 0.065 0.055
PentUnFOLD 1D 12.22 14.14 0.853 0.052 0.131
PentUnFOLD 2D 39.25 7.99 0.570 − 0.012 0.133
PentUnFOLD 2D (D) 11.34 8.04 0.817 − 0.005 0.094
PentUnFOLD 2D (N) 22.18 7.66 0.711 − 0.015 0.114
PentUnFOLD 3D 71.44 9.05 0.374 0.034 0.161
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just two stable residues in that alpha helix: 149–150. The 
long second alpha helix (174–194) is completely insta-
ble and just two residues are stable (Phe175 and Val180). 
C-terminal part of the second alpha helix is disordered 
(190–194), and one of those residues (Thr192) is abso-
lutely disordered. The third alpha helix (200–225) contains 
disordered N-terminal part (5 residues), disordered residue 
215 and one more disordered region (218–223). At the 
same time, just 10 out of 26 residues from the third alpha 
helix are predicted as nonstable. Residue 196 situated in 
the random coil between the second and the third alpha 
helices is predicted to be disordered.

Results of the PentUnFOLD algorithm are in agreement 
with previous works that showed that the region containing 
the C-terminal part of the second alpha helix, the N-terminal 
part of the third alpha helix, and random coil between them 
is prone to form beta structure (Khrustalev et al. 2016).

With the help of our new algorithm we estimated conse-
quences of amino acid substitutions in this region that are 
known to be associated with prion diseases.

H187R. This amino acid substitution is associated with 
Gerstmann-Straussler disease (GSD). As a result, two amino 
acid residues before R187 are becoming disordered. If we 
consider that there is a beta strand in place of the second 
alpha helix, there are no changes after the amino acid sub-
stitution (Table 3).

F198S. This substitution is associated with atypical GSD. 
As a result, the long fragment of random coil (196–199) 
becomes disordered, while the first residue in the third alpha 
helix (200) becomes absolutely disordered (Table 3).

D202N. This is a GSD substitution. Such amino acid 
replacement does not lead to any consequences if we con-
sider a native secondary structure of prion protein. However, 
if we consider that there is a beta strand in place of the third 
alpha helix, D202N results in the appearance of a stable 
residue 204. Interestingly, beta strand in place of the first 
half of the third alpha helix (200–214) is nonstable, except 
stabilized residues 211 and 214. Moreover, it has two long 
disordered regions (201–203 and 205–211). So, D202N 
replacement makes this disordered beta strand a little bit 
more stable.

Q212P. This is a GSD substitution. Obviously, this 
replacement destabilizes the third alpha helix: nonstable 
residues appear in positions 212 and 213. More interestingly, 
if we consider a beta strand in place of the third alpha helix, 
Q212P substitution makes it more stable (positions 212 and 
213 are stabilized).

E196K. This substitution is described in patients with 
Creutzfeldt-Jakob disease (CJD). There are no significant 
changes revealed by the algorithm. However, random coil 
between the second and the third alpha helices becomes a 
little closer to the disordered state, according to the calcula-
tions, while the potentials to form disordered state are still 

less than 0.5. If we consider that there are beta strands in 
place of second and third alpha helices, E196K replace-
ment makes C-terminus of the  1st beta strand a little bit more 
ordered.

E200K. This is a CJD substitution. The resulting con-
sequence is the formation of a stable N-terminus of a beta 
strand that appears in place of the third alpha helix.

V203I. This is a CJD substitution. Once again, the con-
sequence of this substitution is significant only for the beta 
strand, but not for the third alpha helix. As a result, a stable 
residue 204 appears in the beta strand.

R208H. This is a CJD substitution. There are no signifi-
cant changes revealed by the algorithm in both alpha heli-
cal and beta structural states of that region. However, the 
alpha helix is becoming less disordered, but the beta strand 
is becoming more disordered according to the calculations.

V210I. This is a CJD substitution. As a result, residue 211 
becomes nonstable, but residue 208 becomes more stable 
if we consider a beta strand in the place of the third alpha 
helix.

E211Q. This is a CJD substitution. There are no signifi-
cant changes revealed by the algorithm in both alpha heli-
cal and beta structural states of that region. For both states 
the degree of disorder is becoming lower in case of this 
substitution.

Taken together, substitutions associated with hereditary 
prion diseases in the second half of the second alpha helix 
and in the loop between the second and the third alpha 
helices are leading to the increase of the disorder (H187R, 
F198S). Several substitutions (E200K, V203I, D202N, 
V210I, Q212P, E196K) stabilize a beta strand that appears 
in the place of that helix in  PrPSc. Substitutions like R208H 
and E211Q are not directly associated with stabilization of 
a beta strand and destabilization of an alpha helix. Using 
the PentUnFOLD algorithm, 8 out of 10 known substitu-
tions leading to the prion disease development in the region 
known to form beta structure in a corresponding peptide can 
be linked with the shift of equilibrium from alpha helical 
and random coil states to the disordered state and from the 
random coil state to the beta structural state.

After determining the impact of amino acid substitutions 
associated with the development of human prion diseases 
using the original PentUnFOLD algorithm, we evaluated 
their impact using the algorithms GlobPlot 2.3 (Linding 
et al. 2003a), FoldIndex© (Prilusky et al. 2005), PONDR 
VL-XT (Romero et al. 2001), PONDR VSL2 (Peng et al. 
2006), PrDOS (Ishida and Kinoshita 2007) and one of the 
newest methods for the prediction of intrinsically disordered 
regions, DEPICTER (DisorderEd PredictIon CenTER). 
GlobPlot 2.3 and FoldIndex© are ab-initio algorithms 
 (1st group); PONDR VL-XT, PONDR VSL2 and PrDOS 
are self-learning algorithms  (2nd group); DEPICTER is a 
meta-predictor, based on prediction of IUPredL, IUPredS, 
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SPOT-Disorder (Barik et al. 2020). Results of all mentioned 
algorithms are provided in Table 3. The PentUnFOLD algo-
rithm has not determined the effect on secondary structure 
stability of human prion protein only for two amino acid 
substitutions. Algorithms from the  1st (GlobPlot 2.3) and 
from the  2nd (PrDOS) group have not determined the impact 
of any amino acid substitutions on the stability of protein 
structure. Meta-predictor Depicter has determined that only 
one amino acid substitution (F198S) can affect stability of 
human prion protein. The result of Depicter algorithm is 
consistent with PONDR VL-XT, PONDR VSL2 and with 
our algorithm: amino acid substitution F198S increases the 
instability of prion protein. FoldIndex© has shown that 
there are no changes in secondary structure stability after 
this amino acid substitution, but unfoldability has decreased. 
As the results of amino acid substitution H187R three out 
of six algorithms as well as PentUnFOLD determined the 
transition from ordered state to disordered. As the results 
of amino acid substitution D202N PentUnFOLD algorithm 
determined that there is no change in stability of protein with 
native conformation and slight increase of stability of the  2nd 
beta strand in place of the third alpha helix. It can explain 
the confusion between other algorithms: FoldIndex© and 
PONDR VSL2 determined the O → D shift, while PONDR 
VL-XT determined the D → O shift. The same situation is 
observed as the result of Q212P substitution. This replace-
ment destabilizes the third alpha helix and stabilizes the 2nd 
beta strand in place of the third alpha helix. PONDR VL-XT 
determined the O → D shift, but PONDR VSL2 determined 
the D → O shift. Two amino acids substitutions (E196K and 
E200K) according to PONDR VL-XT and PONDR VSL2 
lead to the increase of stability of prion protein. Apply-
ing our algorithm, we can say that the stabilization occurs 
only after the structural transition from the alpha helical to 
the beta structural state (E196K) means from the  3rd alpha 
helix to the beta strand (E200K). After amino acid substitu-
tion V203I five out of six algorithms did not recognize any 
changes. Only PONDR VSL2 and PentUnFOLD algorithms 
determined the D → O shift. Valine can also be replaced with 
isoleucine at position 210. In this case the D → O shift is 
also observed, which is determined by PONDR VL-XT and 
PONDR VSL2 algorithms. PentUnFOLD algorithm shows 
more specific results: after amino acids substitution V210I 
stabilization of one part of beta strand (Arg208) and desta-
bilization of another part of it (Glu211) is observed.

If we consider 3D step of prediction, then the most of the 
human prion protein from the 1HJM PDB structure would be 
classified as disordered. Among ordered regions there are: 
two fragments of random coil (156—157; 165—166), and a 
long fragment of the 3rd alpha helix (205—213). The latter 
fragment is considered to be stable on its own, and it makes 
more contacts with stable residues, than with disordered or 
nonstable ones. Among stable residues that should keep the 

structure of the 3rd alpha helix there are residues Tyr149 and 
Tyr150 from the  1st alpha helix that are involved in hydro-
phobic and aromatic-sulfur interactions. In the absence of 
the 1st helix an isolated sequence of amino acid residues 
from the 3rd alpha helix may form beta sheet. Indeed, the 
CC36 peptide with the original sequence (residues 179–214) 
failed to be synthesized because of the formation of beta 
sheet by its C-terminus (Khrustalev et al. 2016).

Prediction of intrinsically disordered 
protein regions from amino acid sequence 
by the PentUnFOLD 1D algorithm

A lot of proteins have intrinsically disordered regions at 
N-terminus or at C-terminus of chain and most of algorithms 
easily find these regions. More difficult task is to find a very 
short unstructured region in the center of a protein. In sul-
fotransferase 1A3 there are disordered regions at positions 
Gly64–Val77, Ser91–Leu93, Pro216–Ala261, as well as dis-
ordered N-terminus (amino acid residues 1–7) and C-termi-
nus (amino acid residues 294–295) (Bidwell et al. 1999). We 
have determined the structural instability of sulfotransferase 
1A3 using the amino acid sequence, and not 3D structure, 
of this protein by PentUnFOLD 1D and other algorithms. 
Results of structural stability/instability of sulfotransferase 
1A3 are provided in Table 6S in the Supplementary Material.

In Protein Data Bank there are two structures of this pro-
tein: 1CJM and 2A3R. In 1CJM structure only sulfate ions 
are present. In 2A3R structure there are two ligands: A3P 
(adenosine 3'-phosphate-5'-phosphate) and LDP (dopamine) 
and the only one disordered region (at the N-terminus) is 
present. Using PLIP program (Salentin et al. 2015) we have 
determined amino acids forming interactions with these 
ligands. A3P forms hydrogen bonds with Lys48, Ser49, 
Gly50, Thr51, Thr52, Ser138, Thr227, Phe255, Arg257, 
Lys258, Gly259; water bridges with Phe229, Arg257, 
Met260; π-π interactions with Trp53, Phe229; salt bridges 
with Lys48, Arg130, Arg257. As one can see, A3P forms 
interactions with the ordered part of that protein and with 
N- and C-termini of disordered region Pro216–Ala261, but 
not with central part of it. The second ligand (LDP) does not 
form interactions with amino acids from parts of sulfotrans-
ferase 1A3 known to be disordered.

We can say that intrinsically disordered fragment 
Pro216–Ala261 has only a few key amino acids «responsible 
for» its disordered state. Most of algorithms predicted dis-
ordered region in boarders Pro216–Ala261. PONDR VSL2 
found IDPR in boarders Leu215–Asp249. PONDR VL-XT 
determined disordered state between Ile204 and Met220. 
FoldIndex© found IDPRs in boarders Arg213–Thr219, 
Lys230–Asn239, Gln245–His250, Pro254–Gly259, 
Ala261–Thr266. GlobPlot 2.3 did not predict disordered 
state in known boarders. Predictions of PentUnFOLD 
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algorithm are very specific: it showed that only a few amino 
acids at N- and C-termini of IDPR 216—261 are “produc-
ers” of the disordered state of the whole region (Gln225, 
Phe229, Lys230, Glu231, Met232, Met256, Arg257).

Intrinsically disordered region in boarders Gly64–Val77 
was found only by FoldIndex©, but its prediction is not 
specific. PentUnFOLD algorithm predicted concrete amino 
acids responsible for the disordered state in this region of 
the protein: Ile61, Tyr62, Lys69, Cys70, Phe74.

Intrinsically disordered region Ser91–Leu93 was found 
by all the algorithms, but the results were very nonspecific: 
all algorithms predicted this disordered fragment in much 
wider borders. The PentUnFOLD 1D algorithm did not 
predict the instability of this region of the protein. Meta-
predictors like Depicter and MetaDisorder did not find the 
IDR in the known borders of investigated protein, even 
though MetaDisorder assembles 13 disordered predictors: 
DisEMBL, DISOPRED2, DISpro, Globplot, iPDA, IUPred, 
Pdisorder, Poodle-s, Poodle-L, PrDOS, Spritz, DisPSSMP, 
RONN (Li et al. 2015).

Discussion

Comparison of performance of different predicting meth-
ods and computer algorithms is not something completely 
straightforward and objective. There are many different cri-
terions to evaluate their ability to predict that usually show 
different results. From this point of view, it is important to 
discuss advantages and disadvantages of those algorithms 
to understand when and why they become suitable, and to 
identify conditions in which they are becoming misleading.

Coming back to Table 1 one can see that the highest 
accuracy belongs to the DISOPRED3 (disordered) algo-
rithm (91.16%). Intriguingly, the closest value of accuracy 
among our algorithms (85.31%) belongs to the PentUnFOLD 
1D. The second best of our algorithms in terms of accuracy 
(81.70%) is the PentUnFOLD 2D in case if we consider only 
“D” and “V” residues. However, PentUnFOLD 3D has the 
value of accuracy equal to just 37.42%. The reason of this 
difference in accuracy is in the common style of disorder 
prediction for PentUnFOLD 1D, DISOPRED3 (disordered), 
DISOPRED3, AUCpreD, and flDPnn. All abovementioned 
algorithms have low sensitivity to the disordered residues, but 
high sensitivity to ordered residues. The fraction of ordered 
residues is higher than the fraction of disordered ones. That 
is why, taken together, the ratio between the sum of true posi-
tive and true negative residues and the sum of all residues is 
so high. One may choose those algorithms to find sequences 
with a high tendency to turn into the disordered state, as 
well as regions that are usually ordered. Such ability is well 
reflected by the MCC (Mathew’s correlation coefficient). The 
highest values of MCC, that are, actually, still far from 1, are 

there for AUCpred, DISOPRED3, and DISOPRED3 (disor-
dered) (Table 1). Among PentUnFOLD algorithms, only the 
PentUnFOLD 1D has MCC value that is close to the one of 
DISOPRED3 (disordered). However, both in Tables 1 and 2 
MCC values are somewhere near 0 reflecting that there is still 
a need of new ideas and approaches from the side of software 
for disordered regions prediction developers.

In Table 2, accuracy values for all algorithms never rich 
as high values, as in Table 1. Indeed, a lot of residues pre-
dicted to be ordered are really disordered at least in some 
structures of HSA. So, three other algorithms show highest 
accuracy values in the set of HSA structures: PentUnFOLD 
3D, Foldindex, and VSL2. Those algorithms largely overpre-
dict disorder in the test set (Table 1), but perform much bet-
ter in the set with increased percent of disordered residues 
(Table 2). So, abovementioned algorithms are recommended 
in case if one wants to find all the regions that have a chance 
(even a low one) to turn into the disordered state. Indeed, if 
we consider F1 index, that is largely focused on the ability of 
algorithms to find true positives, we will see that such ability 
has the highest values in PentUnFOLD 3D, Foldindex, and 
VSL2. Notice that the values of F1 for these algorithms are 
much higher in Table 2 than in Table 1.

Taken together, the test of performance of current algo-
rithms in a new set of proteins showed that they can be clas-
sified into two groups: those that are good in identification of 
regions that have high probability to turn into the disordered 
state, and those that are good in identification of regions 
that have high, average or even low probability to become 
disordered.

Conclusions

Due to the enormous functional and medical importance of 
IDPs/IDPRs, prediction of intrinsic protein disorder from 
amino acid sequence has become an area of active research. 
Such proteins are frequently involved in some of the most 
important regulatory functions in the cell, and the intrinsic 
lack of structure can confer functional advantages on a pro-
tein, including the ability to bind to several different targets 
performing sometimes even opposite functions. A lot of dis-
eases are associated with different structural transitions. That 
is why approaches to creating new predictive algorithms are 
being developed.

Our algorithm, PentUnFOLD, is based on the newly 
obtained propensity scales and it can determine not only 
fragments of alpha helices, beta strands, and random coils 
that can turn into the completely disordered state, but also 
regions of alpha helices and beta strands which are able to 
turn into random coils, and vice versa (H ↔ C, E ↔ C) not 
just at the N- and C-termini of proteins, but in the middle 
of their sequences. Moreover, PentUnFOLD has the option 
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not only to determine the effect of amino acid substitutions, 
but also secondary structure transitions on the stability of a 
given region in unmodified or modified protein.

Prediction of disordered regions from the 3D structure 
brings some benefits compared to the prediction from amino 
acid sequence. At first, amino acid content of alpha helices, 
beta strands and random coils prone to turn into the disor-
dered state have some differences. So, it is better to know the 
secondary structure of a given fragment of polypeptide chain 
to consider its ability to turn into random coil or disordered 
state. At second, interactions between amino acid residues 
may decrease or increase the possibility of a given fragment 
transition to the disordered state.

Our web server (http://3. 17. 12. 213/ pent- un- fold) pro-
cesses one PDB file or amino acid sequence at a time. The 
algorithm itself is incorporated into the MS Excel spread-
sheet. So, all the data are inserted into the spreadsheet auto-
matically by the JAVA scripts from our server. Then a user 
has to download resulting file and open it with either MS 
Excel or LibreOffice Calc. Users are also welcome to per-
form those operations manually with original spreadsheets 
(http:// chemr es. bsmu. by/ PentU nFOLD. htm).
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