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ABSTRACT

As computational biologists continue to be inun-
dated by ever increasing amounts of metagenomic
data, the need for data analysis approaches that keep
up with the pace of sequence archives has remained
a challenge. In recent years, the accelerated pace
of genomic data availability has been accompanied
by the application of a wide array of highly efficient
approaches from other fields to the field of metage-
nomics. For instance, sketching algorithms such as
MinHash have seen a rapid and widespread adoption.
These techniques handle increasingly large datasets
with minimal sacrifices in quality for tasks such as
sequence similarity calculations. Here, we briefly re-
view the fundamentals of the most impactful prob-
abilistic and signal processing algorithms. We also
highlight more recent advances to augment previ-
ous reviews in these areas that have taken a broader
approach. We then explore the application of these
techniques to metagenomics, discuss their pros and
cons, and speculate on their future directions.

INTRODUCTION

Thanks to advances in sequencing technology, the amount
of next-generation sequencing data for genomics has in-
creased at an exponential pace over the last decade. While
this explosion of data has yielded unprecedented oppor-

tunities to answer previously unanswered questions in bi-
ology, it also creates new challenges. For instance, a key
challenge is in designing new algorithms and data struc-
tures that are capable of handling analyses on such large
and numerous datasets (Table 1). One approach for solv-
ing this big data problem is the development and adoption
of probabilistic algorithms and data structures. When ap-
plying probabilistic methods to genomic analyses, input se-
quences are frequently decomposed into sets of overlapping
subsequences with length k, referred to as k-mers. This large
set of k-mers is then compressed into matrices using tech-
niques from compressed sensing and sketching. Genomic
analyses such as clustering and taxonomic classification can
be performed directly on the compact matrices (Figure 1).
In this paper, we review the great strides that have already
been made in these areas and look forward to future possi-
bilities.

Many novel probabilistic and signal processing ap-
proaches for handling these massive amounts of genetic
data have been previously reviewed (1–5). For instance, in
(1) a comprehensive review was performed covering prob-
abilistic algorithms and data structures such as MinHash
(6) and Locality Sensitive Hashing (LSH) (7), Count-Min
Sketch (CMS) (8), HyperLogLog (9) and Bloom filters (10).
This review includes extensive details of how these data
structures work, supporting theory behind each of them,
as well as a brief discussion of their applications. How-
ever, the genomics applications for each approach were not
thoroughly covered. Other more biologically motivated re-
views include a review of compressive algorithms in (2) and
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Table 1. Terabyte and Petabyte scale datasets

Database Size (PB)

Global Ocean Sampling (124) <0.001
Ocean Sampling Day (125) <0.001
MetaHit (126) 0.001
Tara Oceans (127) 0.007
Terragenome (128) 0.010
JGI IMG (129) 0.017
Human Microbiome Project (130) 0.043
The European Nucleotide Archive (ENA) (131) 0.379
NCBI Sequence Read Archive (132) 33.848

sketching approaches in (3). In (2), techniques are covered
such as the Burrows-Wheeler transform (BWT) (11), the
FM-index (12), and other techniques based around exploit-
ing redundancy in large datasets. A more in depth discus-
sion of many of these topics can also be found in (3,4) in-
cludes a thorough review of compressed string indexes, LSH
via sketches, CMS, Bloom filters, and minimizers (13), with
accompanying applications in genomics for each.

While many techniques focus on efficient ways to repre-
sent a dataset, the compressed sensing (CS) technique from
signal processing exploits the sparsity of signals for their
efficient acquisition and interpretation. CS’s measurement
efficiency often translates to significant reductions in cost
and time. CS has previously found biomedical applications
in microscopy (14) and rapid MRI acquisition (15). In this
review, we summarize the essentials of CS, relate the tech-
nique to the other probabilistic data structures and algo-
rithms, discuss relevant recent advances, and highlight cor-
responding applications in metagenomics. We direct inter-
ested readers to (16) for further discussion of the core con-
cepts of CS and to the seminal works of (17) and (18) for
more thorough analyses.

Most recently, a comprehensive review of sketching al-
gorithms in genomics was performed in (5). This review
covers approaches like MinHash, Bloom filters, CMS, Hy-
perLogLog, the biological applications and implementa-
tions of each, and even includes a set of live, interactive
notebooks with code examples of each approach. Given
the wealth of previously performed reviews on these top-
ics, we refer readers to the works above for more in depth
explanations of these approaches along with their appli-
cations, implementations, and theory. Instead, we include
only a brief review of these fundamental methodologies,
followed by more recent advances in these areas, and fi-
nally their applications to metagenomics. Previous studies
have often neglected more novel applications in metage-
nomic data given the new challenges it poses. Metagenome
sequencing and analysis not only complicates established
fundamental problems in comparative genomics but also
adds entirely new problems. Therefore, we focus on how the
aforementioned techniques can overcome unique hurdles in
metagenomics.

PROBABILISTIC ALGORITHMS AND DATA STRUC-
TURES

Recently, more attention has been given to the study of
probabilistic algorithms (19) as a means to circumvent
the widening gap between the explosion of data and our

computing capabilities. Algorithms based on hashing and
sketching (20–25) have been extensively used in the theoret-
ical computer science and database literature for reducing
the computations associated with processing massive web-
scale datasets (26–30).

Hashing algorithms are typically associated with a ran-
dom hash function that takes the input (usually the data
vector) and outputs a discrete value. Usually, this output
serves as a (small memory) fingerprint which, being discrete,
can be used for ‘smart’ indexing. These indices are most
notably used for sub-linear time near-neighbor searches
(31,32).

Sketching algorithms work by creating a dynamic proba-
bilistic data structure popularly known as a sketch (33). The
sketch is a small memory summary of a given set of items,
which typically requires logarithmic memory for summariz-
ing them (34). These sketches can support dynamic updates
(35) and the dynamic query operation which returns an ap-
proximate estimate for a quantity of interest.

To begin, we perform a concise overview of core proba-
bilistic data structures and algorithms (Figure 2). We then
include a review of a wide array of more recent variations,
extensions, and recent advancements of these fundamen-
tal methodologies. Finally, we include a more in depth dis-
cussion on promising applications to genomic and metage-
nomic data.

Fundamental algorithms and data structures

(1) Locality sensitive hashing (LSH) was first introduced
to solve the nearest neighbor search (NNS) problem in
high dimensions (7). LSH functions are a subset of hash
functions that seek to hash similar input values to the
same hash values. Essentially, for an LSH function f, if
two input items x1 and x2 are very similar to each other,
then applying the LSH function to both should cause
them to collide (f(x1) = f(x2)) with high probability. The
main idea behind efficient retrieval is to use f to struc-
ture the data as an efficient dictionary or hash table by
indexing data point xi with key f(xi). Given any query q,
f(q) naturally becomes a favorable key for lookup. This
is because any xj with the same key will have f(q) = f(xj),
and hence, is likely to have high similarity with query q.

(2) MinHash is arguably one of the most popular LSH
functions for genomic and metagenomic data. Min-
Hash takes a set as input and outputs a set of integer
hash values. Specifically, MinHash applies p different
hash functions to each element in a set and returns the
minimal hash values from each of the p hash functions
as the sketch of the set. The probability that two sets
have the same minimal hash values is equal to the per-
centage of common elements in the union of both sets.
As a consequence, we can quickly approximate the sim-
ilarity between two sets by simply computing the ratio
of the number of MinHash collisions between the sets
and the total number of MinHashes. With MinHash we
can compute a small approximate summary of each set,
referred to as a sketch, and then calculate the similarity
of any two sets as the distance between their sketches.
Sequencing data are often conveniently represented as
sets of tokens (or k-mers). As a result, MinHash is fre-



Nucleic Acids Research, 2020, Vol. 48, No. 10 5219

Figure 1. Overview of applying probabilistic data structures and compressed sensing in metagenomic sequence analysis. Given a set of sequences, each
sequence is usually first decomposed into a series of consecutive k-mers. Then the probabilistic algorithm compresses the k-mers into sketches. The sketches
can be analyzed to evaluate characteristics of the input sequences, such as sequence similarity. In compressed sensing (CS), the aggregate k-mer frequencies
for the whole sample are treated as measurements. Elements of a database (e.g. microbial genomes) have individual k-mer frequency distributions that are
stored in columns of a matrix. CS finds the elements of the database that comprise the sample measurements.

quently used to quickly compare the similarity between
two large sequencing datasets by applying the p hash
functions to their k-mers.

(3) Minimizers are another widely used technique within
the family of LSH-algorithms to reduce the total num-
ber of k-mers for sequence comparison applications. A
minimizer is a representative sequence of a group of ad-
jacent k-mers in a string and can help memory efficiency
by storing a single minimizer in lieu of a large number
of highly similar k-mers. Minimizers will sample the se-
quence by choosing the smallest (lexicographically, for
instance) k-mer within a sliding window. In Figure 2,
the Minimizer portion demonstrates the sliding window
that moves across the sequence, creating the set of min-
imizer k-mers for the sequence by taking the smallest
k-mers within the window as it slides. The choice of the
window length w and k-mer size k of the minimizers are
parameters that can be adjusted for the application.

Several techniques employ hashing to compress the rep-
resentation of a dataset. From these new representations,
information can be rapidly queried.

(1) Bloom filter (BF) is a data structure that compresses a
set while still being able to query if an element exists in
the set. The sketch for a BF is a bit array of w bits. The
bits are given an initial value of 0. To record an element
into the sketch, p different hash functions are used to
map the input element to p different positions in the ar-
ray. After evaluating the hash functions, the BF sets the
bits to 1 at all mapped positions. To search for an ele-
ment, the query element is hashed by the same p hash
functions. Then, every bit that the hash values map to
in the BF are checked. If any bit value of the mapped

locations are not equal to 1, the input element is defi-
nitely not in the set. If all the mapped bits are 1, the ele-
ment is likely in the set. This result can also be caused by
random hash collisions while inserting other elements.
Thus, the BF can have false positives. Ultimately, BFs
can quickly evaluate the presence of a given element us-
ing very little memory.

(2) HyperLogLog is designed to estimate the number of
distinct elements in a set using minimal memory. The
essence of HyperLogLog is to keep track of the count
of the maximum number of leading zeros in the binary
representation of each element in the set. If the max-
imum number of leading zeros observed is n, a crude
estimate for the number of distinct elements in the set
is 2n. This style of cardinality estimation only works for
data distributed uniformly at random, so each element
passes through a hash function before being evaluated
and incorporated into an extremely compact sketch for
the set. The process of cardinality estimation based on
leading zeroes can have a high variance, so the Hy-
perLogLog sketch distributes the hashed elements into
multiple counters, whose harmonic mean yields a final
cardinality estimation (after correcting for using mul-
tiple counters and hash collisions). But this memory
is still logarithmic in the total number of distinct ele-
ments. On the other hand, calculating the exact cardi-
nality requires an amount of memory proportional to
the cardinality, which is impractical for very large data
sets.

Alternatively, condensed representations may summarize
the structure of the dataset by analyzing the frequency of
components of the set. New datapoints that are assumed to
exhibit the same structure can be efficiently acquired.
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Figure 2. Important probabilistic algorithms and data structures. The sequences from two samples are decomposed into constituent k-mers. MinHash:
each k-mer is hashed by a hash function and their hash values are stored in their corresponding hash sets R and B. MinHash sketch S(R) and S(B) with
size s = 2 are shown. The Jaccard index between two hash sets is estimate by the fraction of hash values in the union of S(R) and S(B) (S(R∪B)) that are
shared by both S(R) and S(B). Count-Min Sketch: three pairwise independent hash functions are applied to each k-mer. Each hash function is responsible
for a row in the sketch and maps the hash values to the bins in its row. To encode an element into the sketch, the Count-Min sketch increases the numeric
value in the mapped bins. To return the number of occurrences of a given k-mer, it hashes the k-mer using the same hash functions and returns the smallest
value. Bloom filter: it initiates all the values in the array as 0. To record the presence of a k-mer in the dataset, it maps k-mer to the bits in the Bloom
filter using three pairwise independent hash functions, and then it changes the mapped bits from 0 to 1. Minimizer: given a sequence, it can be compressed
into a list of minimizers. To do that, a window slides across the sequence. In each window, the sequence inside the window is decomposed into k-mers. A
minimizer is selected among the list of k-mers for the window at each position. HyperLogLog: each k-mer is represented by a hash value with length 9.
The first three bits of a hash value is used to locate a register and the last 6 bits are saved in the corresponding register. The maximum number of leading
zeros among all the values, that are stored in the register, is used to estimate the cardinality of each register.

(1) Compressed sensing is a signal processing technique
that enables the acquisition of high-dimensional signals
from low-dimensional measurements by leveraging the
sparsity of many natural signals (16–18). Sparse signals
have only a few nonzero elements. In metagenomics, a
signal of interest may be the relative abundance of mi-
crobes in a sample. These signals are sparse because
only a small fraction of all known species are present
(i.e. have nonzero abundance) in any given sample. Fig-
ure 3 illustrates the process of CS in this context. The
CS problem can be represented concisely with linear al-
gebra: y = �x where an M × N sensing matrix � cap-
tures an N-dimensional signal x with M linear mea-
surements that are stored in y. Sparse recovery algo-
rithms find the sparsest x

′
that obeys y = �x

′
either

through a convex relaxation (e.g. a Lasso regression
(16)) or a greedy algorithm (e.g., matching pursuit (36–
39)). Theory shows that CS can make very efficient use
of linear measurements; M scales logarithmically with N
(17,18).

(2) Count-Min sketch (CMS) is a specialized CS algorithm
where the projection matrix � is a structured (0-1) ran-
dom matrix derived from cheap universal hash func-
tions. Due to this carefully designed matrix, it is possible
to compute the projection y = �x as well as perform re-
covery of x from y without materializing the matrix in
memory and instead only use a few universal hash func-

tions, each of which needs only two integers. As a result,
we get a provably logarithmic memory algorithm for
compressing x and recovering its heavy elements. The
CMS is popular for estimating the frequencies of dif-
ferent elements in a data set or stream.
The CMS algorithm is remarkably simple and has a
striking similarity with the Bloom filter. The CMS is a
matrix with w columns and d rows. It can be thought
of as a collection of d Bloom filters, one for each row,
each using a single hash function. The only difference
is that we use counters in CMS instead of bits in Bloom
filters. Given an input data element x to the CMS, it is
hashed by d independent hash functions. Each of the d
hash functions generates a hash value hashd(x) within
range w and increments the numeric value stored at col-
umn hashd(x) row d. Querying the count of an element
consists of simply taking the minimum of the counters
that the element hashes to in the CMS.

Variations, extensions and recent advances

A tremendous amount of study and followup work has
been performed by the scientific community to improve the
fundamental probabilistic data structures and algorithms.
Here, we give a brief overview of relevant variations, exten-
sions, and recent advancements to the methodologies de-
scribed above.
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Figure 3. Example of CS for microbial quantification. (A) A nucleic acid sample is fragmented, and the k-mer frequency is calculated from sequencing data
or inferred from probe binding events. M represents the number of k-mers chosen for analysis; in this simple example, all possible 4-mers are quantified for
44 or 256 measurements. (B) Metagenomic samples contain nucleic acids from many microbes, so the measurement vector y represents a linear combination
of underlying microbial quantities. Microbial signature k-mer frequencies are stored in N columns of a sensing matrix � in advance. Given � and having
measured y, the goal of CS is to solve for x, the microbial quantities in the sample. To constrain the solution, CS assumes that the number of unique
microbes in any given sample is far fewer than the N known microbes in the database, i.e. that x is sparse with many zero entries. Here, y is explained by a
sparse combination of Microbes 1 and 4. (C) Summary of CS variables in the context of this application.

There has been a significant advancement in improving
the computing cost of MinHash, which became a central
tool in bioinformatics after the introduction of Mash (40)
and other toolkits that then followed (41,42). Minhash re-
quires p hash functions, and p passes over the data to com-
pute p signatures. Recently, using a novel idea of Densifica-
tion (43–45), Densified-Minhash was developed. Densified-
Minhash only requires one hash function and one pass over
the set to generate all the p signatures of the data with iden-
tical statistical properties as p independent Minhash, for
any given p. Several improvements have been made for ef-
ficiently computing weighted Minhash as well (46), where
the elements of sets are allowed to have importance weight.

These recent advances have made it possible to convert data
into Minhashes in the same cost as data reading, which, oth-
erwise, was the main bottleneck step.

Genomic applications also use many LSH functions be-
yond MinHash. Simhash (47) was invented by Google to
find near-duplicates over large string inputs using cosine
similarity. It was shown in (48) that for sequence and string
datasets Minhash is provably and empirically superior to
Simhash, even for cosine similarity. B-bit minwise hashing
is a variation of MinHash that saves only the lowest b bits
of each hashed value (49). It requires less memory to store
each hash code and can be used to accurately estimate the
similarities among high-dimensional binary data. Sectional
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MinHash (S-MinHash) (50) includes information about the
location of k-mers or tokens in a string to improve duplicate
detection performance.

Universal (or random) hash functions seek to quickly and
uniformly map inputs to hash codes. Universal hash func-
tions are important building blocks for the CMS, Bloom
filter, hash table, and other fundamental data structures.
MurmurHash (https://sites.google.com/site/murmurhash,
Accessed March 2020) is a very well-known univer-
sal hash that has been widely used in many bioin-
formatic software packages, including Mash (40).
Although previous MurmurHash versions were vul-
nerable to hash collision, Murmurhash3 (https:
//github.com/aappleby/smhasher/wiki/MurmurHash3,
Accessed March 2020) is a good general-purpose func-
tion that is particularly well-suited to large binary
inputs. However, there are other options such as xxHash
(https://github.com/Cyan4973/xxHash, Accessed March
2020), which can be faster than MurmurHash, and
CityHash (https://opensource.googleblog.com/2011/04/
introducing-cityhash.html, Accessed March 2020). City-
Hash is relevant to genomics because it is optimized for
strings. It outperforms MurmurHash for short string inputs
but is appropriate for any length input. FarmHash is the
successor to CityHash and also focuses on improved string
hashing performance (https://opensource.googleblog.com/
2014/03/introducing-farmhash.html, Accessed March
2020). ntHash (51) is a specialized DNA hashing function.
It recursively calculates the hash values for the consecutive
k-mers in a given sequence. While ntHash can be faster
than xxHash, CityHash and MurmurHash, it is only
appropriate for sequence data.

Minimal perfect hash functions (MPHF) and perfect
hash functions (PHF) map inputs to a set of hash codes
without any collisions. A PHF maps N inputs, or keys, to a
set of >N hash codes, some of which are unused. An MPHF
maps N inputs to N codes. Although MPHFs have been
used to improve many bioinformatics applications, such as
the quasi-dictionary (52), the MPHF construction process
is often resource-intensive. Critically, all of the inputs must
be known in advance to construct an MPHF, and many
construction methods based on hypergraph peeling fail to
scale. BBhash is an MPHF construction method that was
introduced to scale to massive key sets (53). BBhash is con-
structed by a simple procedure that maps each key to a
fixed-size bit array using a universal hash. If two keys col-
lide in the bit array, the corresponding location is set to 1.
Otherwise, the bit remains 0. This recursive process is re-
peated with all of the colliding keys until there are no more
collisions. Due to the simplicity of the algorithm, BBhash
construction is much faster at the scale typically encoun-
tered in genomics.

MPHFs are usually used to implement fast, read-only
hash tables with constant-time lookups. However, clever
open addressing schemes can also be used to achieve sim-
ilar query performance without knowing the key set in ad-
vance. Rather than avoid hash collisions, open addressing
attempts to rearrange elements in the hash table for opti-
mal performance. For instance, hopscotch hashing (54) en-
sures that a key pair is always found within a small neigh-
borhood of its hash code. Since only a small collection of

consecutive buckets need to be searched when a query is
issued, hopscotch hashing has very strong query-time per-
formance. Robin Hood hashing (55) is another open ad-
dressing method. The key feature of this algorithm is that it
minimizes the distance between the hash code location and
the actual key-value pair, reducing worst-case query time.
Cuckoo hashing (56) uses two hash functions and guaran-
tees that the element will always be found at one of the two
hash indices.

Some fundamental advances in LSH have also been seen
with minimizers. Traditionally, minimizer selection is exe-
cuted according to lexicographic order. However, this pro-
cedure may cause ‘over-selection’ where more k-mers than
necessary become minimizers. Instead, researchers recently
proposed to select minimizers from a set of k-mers based
on a universal hitting set or a randomized ordering (57). If
minimizers are picked from the universal hitting sets, which
are the minimum sets of k-mers that cover every possible L-
long sequence (58), the expected number of minimizers in a
given sequence would decrease.

There is also recent progress in techniques to rapidly
characterize datasets. HyperLogLog has risen to promi-
nence recently thanks to its ability to efficiently count dis-
tinct elements in large data sets and databases. Many new
algorithms have since been developed based on Hyper-
Loglog to adapt to different scenarios. For instance, Hyper-
LogLog++ (59) was introduced to reduce the memory us-
age and increase the estimation accuracy for an important
cardinality range. Sliding HyperLogLog (60) adds a sliding
window to the original algorithm for more flexible queries,
but it requires more memory storage.

Bloom filters are attractive because they can substantially
compress a dataset, but this approach can return false pos-
itive answers. Cascading Bloom filters (61,62) improve the
accuracy of the standard Bloom filter. A cascading Bloom
filter recursively creates child Bloom filters to store the false
positives from a parent Bloom filter. This reduces the false
positive rate (FPR) of the overall system at a small mem-
ory cost. An alternative FPR reduction strategy is the k-
mer Bloom filter (kBF) (63). Each k-mer in a sequence over-
laps with its adjacent k-mers by k − 1 base pairs. Therefore,
the existence of two k-mers in a sequence is not indepen-
dent, and the presence of a particular k-mer in the Bloom
filter can be verified by the co-occurrences of its neighbors.
Based on this information, kBF lowers the FPR by check-
ing, for instance, the query’s eight possible neighboring k-
mers (four to the left and four to the right). If none of the
query’s neighbors exist in the Bloom filter, kBF rejects the
query as a false positive.

There are also many algorithms built around the gener-
alized Bloom filter data structure. These methods give the
Bloom filter different functions, but maintain its simplicity
and memory-efficiency. The counting bloom filter (CBF),
for instance, was developed to detect whether the count of
an element is below a certain threshold (64). The only dif-
ference between the BF and CBF is that when adding an
element, all the counters for that element increase by 1. The
Spectral Bloom filter (SBF) (65) functions similarly to a
CBF, but the SBF only increases the minimum value in the
table when inserting an element. This modification causes
SBF to have a lower error rate when compared to the CBF.

https://sites.google.com/site/murmurhash
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/Cyan4973/xxHash
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2014/03/introducing-farmhash.html
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In addition to extensions and variations of fundamen-
tal methods, recent advances have developed by combining
several core data structures and techniques. For instance,
RACE (66) is an algorithm to downsample sets of genetic
sequences while preserving metagenomic diversity. RACE
replaces the universal hash function in the CMS with an
LSH function. Using MinHash, RACE can identify fre-
quent clusters of sequences rather than frequent elements.
Since RACE is robust to sequence perturbations, it can
be used to implement diversity sampling. By adjusting the
LSH collision properties, RACE can create a sampled set
of sequences that retains metagenomic diversity while sub-
stantially downsampling a data stream.

The RACE diversity sampling algorithm is attractive be-
cause it can downsample accurately with high throughput,
low memory overhead, and only one online pass through
the dataset. For each sequence in an input stream, RACE
checks to see whether the sequence belongs to a frequent
cluster. This is done by replacing the minimum operation
in the CMS with an average over the count values. Due to
a deep connection between RACE and kernel density esti-
mation, the average is a measure of the number of nearby
sequences in the dataset, otherwise known as a density es-
timate. If the density is low, then RACE has not seen many
similar sequences and the sequence is kept. Otherwise, the
sequence is discarded. In theory and practice, RACE at-
tempts to select a constant number of sequences from each
cluster. When MinHash is properly tuned to differentiate
between species, the clusters in the RACE algorithm corre-
spond to different species in the dataset. As a result, RACE
provides a fast, online and robust way to downsample se-
quence datasets while retaining important metagenomic
properties.

Another important development comes from the CMS
and Bloom filters. RAMBO (Repeated and Merged Bloom
Filter) (67) is a recent development in multiple set com-
pression for fast k-mer and genetic sequence search. The
RAMBO data structure is inspired by the CMS, but the
goal is to report the sequence containment status rather
than sequence frequency. RAMBO consists of a set of B ×
R Bloom filters. Rather than maintain one Bloom filter for
each set of k-mers, RAMBO uses a 2-universal hash func-
tion to randomly merge K datasets into B groups ( 2 ≤ B
� K ) so that each group has approximately K/B datasets.
Each partition is compressed using a Bloom filter. This pro-
cess is independently repeated R times with different parti-
tions. To determine which sets contain a query sequence,
RAMBO queries each Bloom filter. Because the groupings
are random, each repetition reduces the number of candi-
dates by the factor 1/B until only the correct datasets are
reported at the end of the algorithm. The key insight is that
B × R � K.

With this approach, RAMBO can determine which
datasets contain a given k-mer or sequence using far fewer
Bloom filter queries, yielding a very fast sublinear-time se-
quence search algorithm (68). RAMBO also inherits many
desirable features from the CMS and the Bloom filter. This
includes a low false positive rate, zero false negative rate,
cheap update process for streaming inputs, fast query time,
and a simple systems-friendly data structure that is straight-
forward to parallelize.

In addition to methods that enable the scalable processing
of high dimensional data, there are fundamental extensions
of and considerations for CS that enable its efficient acqui-
sition. While applications of CS are constrained to those
where the sparsity assumption is appropriate, seemingly ir-
relevant signals may have a hidden sparse representation
in some basis. For example, JPEG image compression ex-
ploits the fact that natural images can be sparsely repre-
sented (or at least approximated) in a discrete cosine basis
(a cousin of the Fourier transform). When the sparsity ba-
sis is known in advance, the canonical CS problem can be
reformulated from y = �x to y = ��s where s is the sparse
representation of x in the basis defined by the columns of
�. This transformation was recently demonstrated in tran-
scriptomics (69) and may soon find an analogous applica-
tion in metagenomics.

Aside from signal sparsity, CS also imposes constraints
on the sensing matrix. Specifically, � must adequately
preserve signals’ separation distances; highly distinct N-
dimensional signals should not be forced into close prox-
imity in M-dimensional space once projected by � (70,71).
While Gaussian and other classes of random matrices have
been shown to work well in the general case, recent tech-
niques indicate that � can be iteratively optimized for a
given task by simulating measurements and sparse recovery
of signals (72). However, as we discuss below, practitioners
generally do not have full control of � in most applications.
In metagenomics, the values in � are constrained by the nu-
cleic acid content of natural organisms. Because each cho-
sen sensor makes up a row of �, a new algorithm can select
M sensors (e.g. k-mers or probes) from a set of options to
optimize the properties of � for CS (73).

Very recent techniques in CS are also exploring how to
merge machine learning with CS. Given a dataset, recent
work indicates that both the sensing matrix � and the pro-
cedure that recovers x from y = �x can be learned from spe-
cially designed deep neural networks (74–77), even in cases
where the signal’s sparsity structure is nonlinear. Datasets in
metagenomics are known to be highly structured and could
thus be positively impacted by these recent advances in CS
in the near future.

APPLICATIONS TO METAGENOMICS

Most, if not all, of the approaches described above have
found their way into previously published bioinformatics
methods. However, method development to date has been
primarily focused on genome sequencing for a single in-
dividual or isolate genome. Findings suggesting links be-
tween microbiomes, such as the human gut microbiome,
and human disease (78,79) has led to increased metage-
nomic sequencing. The rapid growth of this type of sequenc-
ing, where the set of reads is from a complex community of
organisms, adds additional complexity and new challenges
to fundamental comparative genomics problems. Here we
list a core set of these fundamental problems faced when
performing metagenomic sequence analysis: (i) sequence re-
semblance, (ii) sequence containment, (iii) sequence classifi-
cation, (iv) sequence downsampling, (v) sequence profiling,
(vi) sequence probe design. For each problem, we discuss
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the role of the previously described approaches and newer
tools incorporating recent advances (Table 2).

Sequence and metagenome resemblance

One of the recent breakthroughs in the area of large-scale
biological sequence comparison is in the use of locality-
sensitive hashing, or specifically MinHash and Minimizers,
for efficient average nucleotide identity estimation, cluster-
ing, genome assembly, and metagenomic similarity analy-
ses.

Mash. In response to the high computational expense
of large-scale sequence similarity calculations, researchers
have begun to apply probabilistic approaches such as using
MinHash to approximate the similarity between sequences
(6). In the seminal work of Mash (40), it was shown that
MinHash could be used as an extremely efficient estimator
for genome similarities in both speed and resource use. It
was also shown how Mash could be applied to similarity es-
timates between entire metagenomes. In addition, Mashtree
has experimented with building phylogenetic trees based on
the genomic similarity estimated using Mash (80). These
and other applications led to a quick and widespread adop-
tion of Mash throughout the research community for rapid
sequence similarity calculations.

Despite representing a paradigm shift, one of the short-
comings of MinHash is that its similarity estimation is most
accurate when the two sets have similar sizes and their in-
tersection region is large (81). In the paper (82), the authors
also point out that the genomic similarity estimated via Jac-
card distance is sensitive to the data set size. Another lim-
itation of MinHash applied to metagenomics is that large
amounts of rare k-mers can dominate the sample sketches.
These k-mers which only occur a few times could be the re-
sult of sequencing errors as well as being actual rare species
present in a metagenome. We will now review several other
recent bioinformatic tools that have accelerated sequence
similarity in the era of terabyte-scale datasets.

BinDash (83), like Mash, takes in sequences, compresses
them into sketches and then compares sketches to esti-
mate the genome similarities. Specifically, BinDash focuses
on accelerating the sketch construction and sketch com-
parison time. To do this, BinDash uses the b-bit one-
permutation MinHash algorithm to compress sequences.
Given a sequence, BinDash first decomposes the sequence
into k-mers. Each k-mer of the sequence is hashed by one
predefined hash function. The hash values of k-mers are
then pooled together into B buckets. After all the k-mers
are hashed and then grouped into B buckets, BinDash
selects the smallest hash value from each bucket and
stores the b lowest bits of each selected hash value as the
sketch of a sequence. To account for potentially empty
buckets, the sketch process is optimized by the densifica-
tion operation as mentioned in the previous section. The
sketch similarities are then estimated using Jaccard in-
dices based on the B · b bit sketch. The experiments show
that, comparing to Mash, BinDash can characterize the
same data set with less error, less memory used and faster
speed.

Dashing. The recently introduced work of Dashing uses
HyperLogLog (HLL) sketching to approximate genomic

distances (84). One main motivation behind Dashing is to
improve the similarity estimation accuracy across input se-
quence datasets with different sizes. Dashing represents the
first time that HLL has been applied to estimate the over-
all similarity between sequence samples. Given that HLL is
used to estimate set cardinality, to use HLL to estimate ge-
nomic sequence similarities you must estimate the intersec-
tion of the two sequence data sets’ k-mers, then estimate the
cardinality of this intersection set. Dashing first sketches the
k-mers of each given sequence data set using HLL. It then
creates a union sketch using basic register maximum opera-
tions between the two HLL sketches. Now, having access to
the set cardinality of both independent sets, as well as the
union set size, the inclusion-exclusion principle yields the
set cardinality of the intersection between the two sequence
datasets. The HLL set cardinality calculations of Dash-
ing are estimated using a maximum-likelihood-based ap-
proach, which has higher accuracy than the traditional cor-
rected harmonic mean estimation approach. Dashing is able
to sketch metagenomes faster than previous approaches,
but it requires more CPU time to calculate the genomic dis-
tances. In the end, comparing to Mash, Dashing has faster
speed, higher accuracy and a lower memory footprint. Finch
Rare k-mers can distort the estimation of sequence compar-
isons and inter-metagenomic distances. To solve this prob-
lem, Finch (85) uses MinHash with a larger sketch size in
order to evaluate the abundance of each k-mer. It then de-
cides thresholds based on estimated abundances to filter out
low abundance k-mers. It also removes k-mers with unequal
frequencies of forward and reverse sequences. By deleting
erroneous or rare k-mers, Finch can estimate the distances
between metagenomic samples robustly. Finch also reports
including correction for sequencing depth biases.

HULK estimates the similarities among metagenomic
samples while taking k-mer frequencies into account (86).
In HULK, a metagenomic sample is sketched via histogram
sketching (87) into a final histosketch, which preserves
k-mer frequency information. To build a histoskech for a
given metagenome, reads are first decomposed into k-mers
and then streamed in a distributed fashion into indepen-
dent Count-Min sketch counters. Once a large number
of reads have been counted, HULK sends the CMS data
to be histosketched and resets the CMS counts to initial
values. In order to create the final histosketch, HULK first
summarizes the Count-Min sketch counters into a k-mer
spectrum and then applies consistent weighted sampling
(https://www.microsoft.com/en-us/research/publication/
consistent-weighted-sampling/, Accessed March 2020)
methods. HULK can successfully cluster metagenome
samples based on similarity between histosketches as
well as being a faster approach than that of naive k-mer
counting.

kWIP is yet another recent approach that tries to im-
prove the accuracy of estimating sequence dataset similarity
via k-mer weighted inner product (kWIP) (88). kWIP first
uses khmer (89), which is a k-mer counting software rely-
ing on Count-Min Sketch, to compress each metagenomic
read sample into a sketch. Each sketch is an array consist-
ing of m bins. Each bin is responsible for counting the num-
ber of occurrences of some of the k-mers (with collisions)
in the sample. To calculate the distance between two sam-

https://www.microsoft.com/en-us/research/publication/consistent-weighted-sampling/
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Table 2. Metagenomics software based on probabilistic and signal processing algorithms. Six main application areas are highlighted: containment, down-
sampling, probe design, profiling, resemblance and taxonomic classification. Speed indicates the relative computational speed of CPU operations, memory
the relative maximum RAM used during index construction/query steps and year the publication year. More ‘�’s means better time and memory effi-
ciency. Less ‘�’s indicate more resource intensive tools. Performance estimates using only literature based comparison are marked in gray (‘�’). The stars
(1-5) correspond roughly to time (days, hours, minutes, seconds and milliseconds) and memory (>64GB (server), >16GB (workstation), >1GB, >16MB
and <16MB). Datasets used were Shakya et al. (133) (Downsampling, Profiling and Taxonomic Classification), 99 sequencing experiments from SRA
(132) (Containment), 1028 E. coli genomes from NCBI Refseq (134) (Resemblance) and a dataset containing Coronavirus, West Nile virus, Zika virus,
Yellow Fever virus and Ebola virus genomes from NCBI RefSeq (134) (Probe Design). Tools supporting multithreading were run with 30 threads. Krak-
enUniq and Kraken2 were run on their standard databases and are expected to show better memory efficiency if MiniKraken DB is chosen instead.
BioBloom Tools and Opal were indexed using the training data provided by Opal which is much smaller than the DBs other tools use. MetaMaps is
a classifier specifically for Long Read sequences as compared to the other tools in the category. The datasets and results for each tool can be found at
https://gitlab.com/treangenlab/hashreview

ples, each of the m bins is assigned a weight to be used in a
weighted inner product. In order to assign weights to in-
dividual bins, kWIP first counts the number of non zero
bins across all of the n samples. An m length vector con-
taining these frequencies is then used by kWIP to create an-
other m length vector converting the frequency values to a
new value based on Shannon entropy. This entropy conver-
sion causes bins that have k-mers present in roughly half
of the samples to be heavily weighted versus bins that have
k-mers present in all or none of the samples (which get a
weight of zero). Genetic similarity is then approximated by
the kWIP distance. The kWIP distance is calculated using
the inner product between two sample sketches, with each
bin weighted by the Shannon Entropy for that bin. The au-
thors show that kWIP can produce more accurate results
than Mash, especially for metagenomic samples with low

divergence. Of note, kWIP is specifically designed to create
a distance matrix from multiple samples, using all samples
in the sketching process, as opposed to comparing individ-
ual sketches for individual samples like most other methods
discussed here.

Order Min Hash (OMH) introduces a new way of sketch-
ing a sequence that estimates the edit distance of the se-
quences. (90) Unlike most other hashing based techniques
for similarity calculations, which treat all the k-mers with-
out respect to the order in which they occur, OMH preserves
the k-mer ordering in its sketching process. The sketch for
a given sequence consists of n vectors of length l. Each of
the n vectors contains l representative k-mers, which are se-
lected according to a pre-defined permutation function, and
whose relative ordering is maintained from the original se-
quence. The distance calculation uses the weighted Jaccard

https://gitlab.com/treangenlab/hashreview
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distance, where the number of appearances of a k-mer are
taken into account.

Sourmash (42) is closely related to Mash and based on
MinHash. It modifies the sketching procedure such that the
sketch size can be of variable length for different sequences.
In their approach, the size of the sketch is based around
the number of unique k-mers unlike the fixed size Min-
Hash sketch. Additionally, sourmash includes functional-
ities such as k-mer frequency calculations as well as a se-
quence containment method that combines the Sequence
Bloom Tree and MinHash methodologies.

Metagenome containment

Searching for the containment of a read, gene fragment,
gene, operon, or genome within a metagenomic sample
or sequence database is a frequent computational task in
bioinformatics. This is an open challenge for two key rea-
sons: first, the size of metagenomic and sequence reposito-
ries are on the scale of terabytes to petabyes. Thus, methods
able to quickly eliminate all the non-matching sequences
in the database are crucial. Second, sequences evolve over
time and rarely, if ever, will be an exact match especially
as metagenomes and sequence databases contain a huge
amount of sequence diversity. Methods that tolerate mis-
matches and indels have much improved sensitivity com-
pared to methods that require more strict exactly match-
ing sequences to satisfy containment. Despite the break-
throughs made via Bloom Tree inspired structures in se-
quence search, these approaches are not without draw-
backs. First, they have to make a trade-off between false-
positives and the filter size due to the inherent limitations
of the Bloom filter. Second, they commonly lack flexibility;
once the filter size is determined, they cannot be changed
based on the size of the input sequences. No matter how
many k-mers a sequence has, they all have to be sketched
into a fixed size array. Finally, as the size of the input data
increases, the precision of the Bloom filter-based sequence
search typically declines. We will now review a few recent
approaches that have tackled this important task in com-
putational biology.

Sequence Bloom Tree (SBT) (91) is a binary tree where
each node in the tree is a Bloom filter. An SBT is used
to index large sequence databases for efficient containment
check of a query sequence within the database sequences or
datasets. To construct an SBT, each sequence or dataset is
added one by one, beginning with adding the first dataset
as the root of the SBT. For each additional sequence or
dataset, you first compute the Bloom filter for the contained
k-mers, and then scan from the root of the SBT to the leaves,
inserting the dataset’s representative Bloom filter at the bot-
tom of the tree. At each bifurcation, the insertion traversal
follows the path of the child with the closest Hamming dis-
tance similarity to the Bloom filter for the current dataset.
After insertion is finished, the new dataset’s Bloom filter is
added as a leaf node, and each node in the SBT contains
the union of the Bloom filters of its children. To be spe-
cific, if a k-mer is present in node u, it should also exist in
all the direct ascending nodes’ Bloom filters from u to the
root. Therefore, as a Bloom filter gets closer to the root,
it becomes more populated and the false-positive rate of

the Bloom filter is higher (a process known as saturation).
Querying for sequence containment proceeds by querying
each node’s Bloom filter, starting with the root, and deter-
mining if enough k-mers are contained from the query’s
k-mers. If the Bloom filter contains enough of the query’s
k-mers, then each child node’s Bloom filter is queried for
containment. The process proceeds until each sequence or
dataset containing the query at the leaves of the SBT is de-
termined.

Split sequence bloom tree (SSBT) (92) were implemented
to quickly search short transcripts within a large database.
Although the SSBT was originally designed for RNA-seq
data, it can be adapted to other sequence containment prob-
lems just like SBTs. The SSBT is an improvement over the
sequence Bloom tree (SBT) data structure (91). Similar to
SBTs, each sequence or dataset in the database is inserted
into the SSBT by traversing from the root of the tree to the
bottom. The SSBT is also a binary tree, but each node has
two Bloom filters instead of one. The first filter, called the
similarity filter, saves k-mers shared by all the datasets in the
subtree under a particular node. The second filter, named
the remainder filter, stores the k-mers that are not univer-
sally shared among all the datasets but are specific to at least
one dataset in the subtree for a node. The union of the sim-
ilarity filter and the remainder filter is a single Bloom filter
for the node similar to the nodes of an SBT. SSBT is a clever
re-organization of SBT resulting in accuracy similar to an
SBT but with reduced space occupancy and search time.

BIGSI represents a significant advance in sequence con-
tainment search; BIGSI was introduced to allow efficient
search for a query sequence among a large bacterial and vi-
ral genome database (93). It also relies on Bloom filters to
solve this problem. But, instead of using a tree-like struc-
ture (e.g. SBT), BIGSI employs a flat Bloom filter-based
data structure. BIGSI first indexes the reference datasets,
where these datasets are raw FASTQ read datasets or as-
semblies from which to search for the presence of a query
sequence. To index the reference datasets, BIGSI first ex-
tracts a set of non-redundant k-mers from each dataset,
and then builds a corresponding Bloom filter. After this ini-
tial step, BIGSI then concatenates all the Bloom filters to-
gether. BIGSI compresses the whole database into a matrix,
in which each column is a Bloom filter for a given dataset.
To conduct an exact search of a sequence, BIGSI is expected
to find the index of all the k-mers of the query sequence
inside the matrix. For inexact search, as referenced above,
BIGSI just needs to find the index for a subset of the k-mers
present in a sequence of interest. BIGSI can also dynami-
cally update the size of the sketch based on the amount of
input datasets. When new datasets arrive, BIGSI can add a
new column to the matrix for each new dataset.

RAMBO (68) is a very recent method which also allows
indexing new sequences and new datasets in a streaming
fashion. Contrary to BIGSI, which has O(K) (K is the num-
ber of datasets) query time, RAMBO is sublinear in query
time with a slight increase in memory.

Mash Screen (94) was developed to determine which ref-
erence sequences are contained within a metagenomic sam-
ple using MinHash, though the methodology is also pre-
sented as a method for sequence similarity. Similar to Meta-
Pallette (described below), it uses references found to be
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contained in a metagenome to describe the metagenome’s
taxonomic composition, but does not classify individual
reads. Mash Screen first converts a reference sequence and
a given metagenomic sample into two sets of k-mers A and
B. Following that, Mash Screen compresses the set of ref-
erence k-mers A into sketch S(A) using MinHash. It then
creates �(B) by hashing every k-mer in B and checks if each
hashed k-mer intersects (is contained) in S(A). The calcu-
lation of |S(A)∩π(B)|

|S(A)| represents the fraction of k-mers in the
sketch of A contained in B, and is referred to as the contain-
ment index. Finally, the containment index is converted to a
score that approximates sequence similarity. This final score
is referred to as the Mash containment score. The presence
or absence of one or more reference sequences in a metage-
nomic sample is then determined by this Mash containment
score. An example is given, for instance, of searching for a
set of reference viral sequences in hundreds of metagenomes
by calculating the Mash containment score between each
reference and each metagenome.

Metagenome classification

Metagenomic sequence classification software typically
uses reads to search against known genomes and perform
lowest common ancestor based taxonomic classification. As
the size of the reference databases (terabytes to petabytes)
and the number of reads (10s of millions to billions) in
metagenomic samples increase, it becomes computation-
ally intractable to perform exhaustive comparison of all k-
mers in the reads against all k-mers within the reference
databases, opening the door for efficient new tools. Tools
like Kraken (95) and DIAMOND (96) were two of the first
ultra efficient tools for fast metagenomic classifications. We
now review a few recently developed approaches for metage-
nomic sequence classification.

KrakenUniq is built based on Kraken and its main goal
is to decrease the false-positive read classification rate (97).
Compared to Kraken, one of the additional features of
KrakenUniq is that the number of unique k-mers of each
taxon is recorded while processing all reads of a metage-
nomic data set. KrakenUniq uses HyperLogLog to effi-
ciently estimate these unique k-mer counts. By tracking the
number of unique k-mers for a taxa alongside the coverage
for that taxa across all the reads in a metagenome, Krak-
enUniq can identify likely false-positive read classifica-
tions caused by events such as sample contamination, low-
complexity regions, and contaminated database sequences.

Kraken2 substantially reduces memory usage, while si-
multaneously gaining a significant boost in classification
speed, when compared with Kraken 1 (98). This advance-
ment in memory use and speed comes from using a com-
pacted hash table that stores LCA assignments for hashed
minimizers of k-mers instead of a table storing LCA assign-
ments for all k-mers as in Kraken 1. While this hash table
saves significant memory, it comes at a small specificity and
accuracy cost given that it only stores pairs of minimizers
and LCAs which are further subsampled through hashing.
This hashing process includes adding spaced seed masking
to the minimizer before hashing. The size of this new com-
pact hash table can be specified by the user, with smaller
sizes reducing the memory footprint and increasing speed

but lowering classification accuracy. When compared with
other state of the art tools, Kraken2 ultimately provides sim-
ilar or better classification accuracy alongside its memory
and speed improvements.

BioBloom Tools (BBT) (99) is novel in that it applies a
multi-index Bloom Filter (miBF) to the sequence classifica-
tion problem. The miBF is a Bloom filter-like data structure
that consists of three arrays. The first array serves as a tradi-
tional Bloom filter, recording the existence of hashed items
in a set. The second array, named the rank array, tracks the
number of non zero bits stored in the first Bloom filter ar-
ray at certain intervals (by default, the number of non ze-
ros every 512 bits in the Bloom filter is stored). To reduce
memory usage, the rank array is ultimately interleaved with
the first Bloom filter. The third array, also referred as the
ID array, saves the integer identifiers (IDs) for reference se-
quences inserted into the miBF. These IDs allow the miBF
to additionally store associated taxonomic classification in-
formation for entries so as to be used as a classifier.

For each reference sequence, BBT hashes spaced seeds
into the miBF rather than contiguous k-mers. Spaced seeds,
unlike k-mers, allow mismatches between the references and
the queries which can increase the sensitivity of approxi-
mate sequence search (100). To classify a given read, spaced
seeds from the read are looked up in the Bloom filter. The
rank array is then used to help retrieve IDs from the ID ar-
ray. Ultimately, the retrieved IDs lead to a final taxonomic
classification. To reduce the false positive rate, BBT makes
use of nearby spaced seeds within adjacent sliding windows,
referred to as frames, when performing its classifications.
BBT also intelligently populates the ID array in multiple
passes such that the effects of data loss from hash collisions
is minimized.

Ganon (101) focuses on quick database indexing in order
to ensure usage of the most up to date sequence database
data to accurately classify reads. Many existing tools ap-
ply static, out-of-date versions of databases to assign reads.
This approach can miss, for instance, classifications for
species that have been newly sequenced and very recently
added to existing databases. To overcome this problem,
Ganon employs Interleaved Bloom Filters (IBF) (102) to in-
dex up-to-date reference genomes efficiently. An IBF is an
array of length b · n. It encompasses b Bloom filters of length
n. To index the references, Ganon first groups the sequences
into clusters. These clusters should roughly mirror different
groups for a given taxonomic rank such as different species
or strains. It then sketches each cluster into a single Bloom
filter. Lastly, all the Bloom filters are interleaved into one
IBF. Reads are classified that pass a minimum threshold for
the number of matches found within the read and the ref-
erences. If a given read can map to multiple references, an
optional lowest common ancestor (LCA) approach can be
applied.

MetaMaps was designed to perform classification on
noisy long read data including making both classifications
and abundance estimates down to the strain level (103).
MetaMaps classifies long reads by mapping them to ref-
erence genomes. Given that reads could map to many
closely related references, metamaps simultaneously per-
forms mapping as well as estimating the community com-
position of a metagenome sample. Thus, when determin-
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ing the probability of mapping a read to a reference, the
probability is a combination of both a probabilistic map-
ping quality to the reference as well as the estimated abun-
dance of the reference’s taxonomic unit in the sample. To
quickly find mapping locations for reads across all refer-
ence genomes, an efficient probabilistic approach is used
that generates initial candidate mappings using minimiz-
ers followed by a winnowed-minhash statistical modelling
approach for further ANI estimation (104). The read map-
pings and metagenome abundance estimates are then itera-
tively updated through an Expectation-Maximization (EM)
algorithm.

MetaOthello (105) is one of the latest efforts in improving
the classification speed of metagenomic classification. Sim-
ilar to Kraken2, MetaOthello reports significant improve-
ments in both memory use and speed when compared to, for
instance, Kraken 1. MetaOthello applies the recently devel-
oped l-Othello data structure to speed up the process, which
is a hashing based classifier. MetaOthello uses k-mers that
act as signatures for taxa to make its classifications. A k-
mer is a signature for a taxon if it is only present in that
taxon or that taxon’s subtree, and nowhere else in the tree of
life (it is taxon specific). MetaOthello indexes all reference
sequences, finds all taxon signature k-mers and their taxo-
nomic mappings, and populates an l-Othello data structure
that efficiently maps from signature k-mers to taxa. The l-
Othello, once built, maintains two arrays A and B popu-
lated with binary values. When looking up a k-mer’s taxa
mapping in the l-Othello, the k-mer is hashed by two hash
functions ha and hb that map to the matching positions in
A and B. The final corresponding taxa value t for the k-mer
is calculated through a bit-wise XOR operation of the two
values found in A and B. Thus t = A[ha(s)]⊕B[hb(s)].

The classification step of MetaOthello operates similarly
to other approaches. A query sequence is decomposed into
its constituent k-mers and the corresponding taxa for each
k-mer is looked up using the l-Othello data structure. Then,
differing from other approaches, MetaOthello uses a win-
dowed approach to make the final classification. For a given
taxonomic rank, the classification takes into account the
maximum number of contiguous taxa assignments that all
occur consecutively within the query sequence.

Opal (106) is an LSH-based metagenomic classifier that
uses Low Density Parity Check (LDPC) codes. The ratio-
nale for using an LDPC LSH approach is to ensure even
coverage for all of the positions in the k-mer while using as
few hash functions as possible. The authors highlight that
this is the first application of low-density LSH in bioinfor-
matics. The rationale for using low-density LSH is that it
will avoid coverage bias issues and offer increased accuracy
when using long k-mers.

Downsampling

In addition to newer more efficient methods for analyz-
ing large metagenomic data sets, a parallel effort has been
emerging that instead reduces the data set size first be-
fore running further downstream analyses. Intelligently
down sampling, for instance, a read data set can dra-
matically speed up any further computations performed,
while ideally preserving the important characteristics of the

metagenome. Another alternative approach to analyze less
data than a full metagenome would be to restrict sequenc-
ing to a small subset of regions in the metagenome such as
the 16S rRNA. This sequencing approach, referred to as
metabarcoding (107) or amplicon sequencing, can help to
simplify other downstream tasks such as community pro-
filing and taxonomic assignments of reads. Here, however,
we consider only the recent computational approaches that
shrink large metagenomic datasets previously generated or
in an online streaming fashion.

Diginorm (108) is a CMS-based method for downsam-
pling shotgun sequencing data. Diginorm is a streaming al-
gorithm that can select a small set of reads from a large
dataset using relatively few computational resources with-
out substantial information loss. This improves the speed of
downstream tasks. Diginorm begins by finding the frequen-
cies of all k-mers in a sequence using a CMS. If the median
frequency value is larger than a threshold, usually 20, the se-
quence is discarded. This process discards reads with k-mers
that have already been observed in other reads. Since rare
reads have many rare k-mers, they will have a lower median
count than common reads and will be kept. An easy-to-use
Python implementation is provided in the khmer package.

Bignorm (109) is an extension of the ideas behind Digi-
norm. Bignorm obtains better downsampling performance
by including additional information, such as quality scores
and common error modalities, when determining whether
to accept a read. While Bignorm is still based on k-mer
abundance counts and the CMS, the decision threshold is
based on a weighted summary of k-mer counts rather than
simply the median. The decision process attempts to remove
bias in Diginorm that may incorrectly accept a read. For
instance, Bignorm attempts to differentiate between rare
k-mers caused by single substitution errors and authentic
uncommon reads. While Diginorm and Bignorm are both
efficient streaming algorithms, Bignorm is implemented in
C++ and uses parallelism to achieve faster processing times.

RACE (66) is a recent downsampling method based on
LSH and the CMS. Rather than consider explicit k-mer
abundance statistics, RACE is based on Jaccard similarity.
Diginorm and Bignorm both discard reads which contain
many k-mers that have already been observed. RACE dis-
cards reads that have a high Jaccard similarity with many
observed reads. While these decision criteria are similar,
density estimation with Jaccard similarity is incredibly ef-
ficient using the RACE algorithm.

Metagenome profiling

Quikr/WGSQuikr (110,111) are CS-based approaches that
leverage differences in bacterial k-mer frequencies to re-
cover the relative abundances of bacteria in complex sam-
ples. The setup of the CS problem is similar to our depic-
tion in Figure 3. In Quikr, each column of the sensing ma-
trix � is populated with the 6-mer frequency profile of a
bacterial species’ 16S gene. Sequence measurements across
a whole sample are converted to raw 6-mer frequencies (y)
from which the sparse combination of species can be re-
covered using CS with sparsity-based optimization. Quikr
was soon followed up with WGSQuikr (110) that leveraged
the same core method except with 7-mer analysis of whole-
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genome shotgun sequencing data. At the time of publica-
tion, these techniques achieved competitive accuracy with
orders of magnitude improvement in speed over state-of-
the-art read-by-read classifiers. However, they were limited
to genus-level taxonomic depth and exhibited difficulty in
recovering rare organisms.

MetaPallette (112) takes a CS-inspired approach similar
to WGSQuikr for metagenomic community reconstruction
with a few subtle but significant differences. The authors de-
fine a matrix A created from k-mers of database reference
genomes, known as the common k-mer training matrix.
This matrix is analogous to the sensing matrix � in CS, but
A stores pairwise similarities of reference genomes based
on shared k-mers. A is able to be efficiently constructed for
long k-mers by using bloom count filters. Ultimately, the
relative taxa abundances x is recovered from the aggregate
sample k-mer counts y by solving Ax = y for a sparse x.
While we only discuss a single A, x and y here, MetaPallete
in fact creates multiple A and x for different values of k for
k-mers (30 and 50). The authors also augment A with artifi-
cial ’hypothetical organisms’ of similar k-mer profiles. The
use of long k-mers and the mathematical representation of
unknown organisms enables MetaPallette to classify even
novel organisms at the strain level.

MISSION (113) is a hybrid compressed sensing and
hashing-based approach. Specifically, MISSION uses a
Count-Sketch data structure and will acquire the heavy hit-
ters from the data and apply stochastic gradient descent
to update the data structure. The sparsity of the features
keeps the top heavy hitters while setting the rest to zero. This
algorithm was used for metagenomic classification on the
dataset from (114) and showed how many features of the
data would be adequate relative to performance.

Metagenome probe design

Metagenomic sequencing has opened the gate for biologists
to detect novel or rare organisms in different environments.
However, detection with high sensitivity can demand exten-
sive sequencing runtimes to capture novel fragments among
the innumerable metagenomic background data (115). To
circumvent these challenges, single stranded nucleic acid
probes can enrich or sense DNA fragments by binding to
intended target strands. Many software packages have been
developed for designing probes for a specific target genome,
but generating probes for metagenomic analysis is difficult
because of the uneven and diverse sequences in metage-
nomic samples. Capturing rare sequences while excluding
highly similar sequences is challenging. Therefore, metage-
nomics requires probe design techniques that scale well with
the number of organisms found in samples.

CATCH is a newly developed method to design opti-
mal probes for targeted microbial enrichment to facilitate
downstream detection in sequencing (116). This approach
is particularly important for viral detection in samples with
low titers; without probe-based enrichment, low abundance
viruses may evade detection. Moreover, CATCH pursues a
set of probes that can scalably capture the full diversity of
viruses. CATCH first yields a set of candidate probes from
the input sequences and then collapses the probes with high
similarity using LSH. Specifically, it detects nearly-identical

probes through either Hamming distance or MinHash, and
then removes the similar candidate probes. To make sure
that the final set of probes encapsulates the diversity of
the input sequences, CATCH computes the smallest set of
probes needed to cover the whole set of target sequences.
CATCH treats this as a set cover problem and solves it us-
ing the canonical greedy solution (117). Ultimately, thou-
sands of probes are chosen to cover the targets based upon
the optimization criteria.

InSense While CATCH focuses on probe design for en-
richment of target sequences in a complex sample be-
fore metagenomic sequencing, applying CS permits another
workflow with orders of magnitude fewer probes at the cost
of some taxonomic depth. If a sample is known to be v-
sparse, i.e. contain a subset of v or fewer of the N possi-
ble microbes, CS can be applied with M = O(vlog(N/v))
mismatch-tolerant DNA probes. The sensing matrix � is
populated by the expected number of binding events be-
tween each probe (in rows) and each target organism (in
columns). These nonspecific probes can be thought of as
directly measuring the abundance of soft-matching k-mers.
Proof-of-concept work was first explored in a CS microar-
ray (CSM) format (118). The same principle has also been
demonstrated for sensing bacterial pathogen genomes at
species resolution in bulk solution with less than a dozen
fluorescent, random DNA probes (119). Although fewer
probes can be resolved in bulk solution compared to a mi-
croarray (M is limited), such an approach may find applica-
tions in rapid infection diagnostics where the species library
is constrained to pathogens (N is much smaller) and patient
samples are very sparse with at most a few unique species
(120). Given a set of possible microbes (library), a set of
probes, and the simulated hybridization behavior between
them, a subset of probes can be selected with the InSense
algorithm (73). InSense optimizes for the incoherence of �,
a common quality metric for CS sensing matrices, with a
convex relaxation.

This CS approach bypasses sequencing by capturing in-
formation directly from probe-target hybridization events,
and it will be exciting to see how it performs in real pa-
tient and environmental samples. If � can be accurately pre-
dicted from probe and target sequences, it is plausible that
future applications can synergize with sequencing databases
by automatically updating � based on known trends in mi-
crobial evolution. However, nonspecific hybridization man-
dates a thorough understanding of the library of possi-
ble species and perhaps careful sample processing; out-of-
library, unexpected nucleic acids that interact with nonspe-
cific probes would corrupt the measurements and down-
stream sparse recovery.

DISCUSSION

Despite the nascent state of metagenomic sequencing and
analysis, its accelerated adoption has led to both an ex-
plosion in available data as well as an ever increasing de-
mand for new data analysis methodologies. In this survey,
we have covered what we believe to be a core set of fun-
damental probabilistic data structures and algorithms that
are uniquely positioned to tackle the burgeoning growth of
metagenomic data, as well as the added nuances of anal-
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yses involving a diverse community contained inside of
a metagenome. Despite the relative youth of the field of
metagenomics, many fast methods have already emerged
that can be used or were designed for this area. For in-
stance, as seen in Table 2, methods like BinDash and Dash-
ing are being developed in an effort to further accelerate
sequence similarity estimations beyond the speed of the
seminal Mash tool. Similarly, recent advances like BIGSI,
RAMBO, and SSBT are opening the door to petabyte-scale
sequence searches among vast sequencing datasets.

However, continued breakthroughs are still needed to
better handle metagenomic-specific intricacies such as se-
quencing error, low abundance community members, and
uneven coverage. In addition, probabilistic approaches as
discussed in this paper generally come with an accompany-
ing set of pros and cons. For instance, most Bloom filter al-
gorithms involve a fundamental trade-off between memory,
query cost, and quality. Standard Bloom filters balance the
size of the bit array with the possibility of false positives.
The tradeoff is implicit for any algorithm using this data
structure. The FPR can be reduced by choosing the right
number of hash functions, which may increase query time,
or by making assumptions about the input data, as with k-
mer Bloom filters. Cascading Bloom filters provide an alter-
native way to trade query time and memory for FPR at the
expense of a more complex hierarchical structure.

Additionally, CS approaches come with their own set of
tradeoffs. While CS confers measurement efficiency for cost
and time savings, it is inherently database-dependent. For
instance, in some of the applications we discussed, the sens-
ing matrix � was precomputed by leveraging a sequence
database (sequences at a specified position, k-mer frequen-
cies, response to a set of probes etc.). Similarly, the discovery
of sparse representations requires a training set of signals.
This requirement for a dataset becomes limiting in chaotic
applications such as the identification of rapidly evolving
organisms either through vertical or horizontal gene trans-
fer. Such novel differences that real-world samples may ex-
hibit would likely be treated as noise in sparse recovery
and ignored until the database is updated. CS is therefore
likely limited to applications that exhibit an acceptable level
of stability in the dataset. More generally, while the CS
technique is provably robust to errors (noise) in the low-
dimensional measurements y, any errors in the signal x are
amplified by the factor N/M (121). In metagenomics, mea-
surement noise may be attributed to whether an expected
nucleic acid fragment in the sample generates a read during
sequencing, and signal noise could be the result of unfore-
seen mutations or contamination. In applications featuring
significant signal noise, the ratio N/M controls the trade-
off between the efficiency of the measurement process and
signal-to-noise ratio degradation.

In addition to all of the considerations directly involved
in the inner workings of the discussed methods, there are
many considerations surrounding these methods that can
also greatly affect both their accuracy and scale. While we
have discussed various tradeoffs involved in probabilistic
approaches, many of these tradeoffs involve carefully se-
lected hyper parameters. To a non expert user of the meth-
ods, it may not be obvious how to set the various parame-
ters for each method, and even advanced users may struggle

to find the truly optimal parameter settings derived from
underlying theory. Another consideration is in the model-
ing of processes such as natural genome evolution. Many
k-mer based approaches and hashing techniques are ini-
tially developed in a way that is blind to underlying bio-
logical processes such as evolutionary drift which gradually
introduces point mutations, insertions, and deletions into
closely related genomes that otherwise might be identical.
Conversely, phylogenetic methods which explicitly model
events like drift and recombination have been slow to incor-
porate recent advances discussed in this survey. Considera-
tions can also be given to the actual data collection proce-
dures, such as how the DNA sequencing is performed. One
new advance on the sequencing side of metagenomics is the
concept of genome skimming (122), which is a technique to
lightly sequence metagenomic samples. Similarly, Metabar-
coding (107) or amplicon sequencing can reduce metage-
nomic data by only sequencing a small set of amplified re-
gions, potentially speeding up and simplifying downstream
analyses.

A final consideration surrounding newer methodologies
is that of the sequence databases that nearly all metage-
nomics tools rely on for sequence classification. While re-
cent advances in probabilistic data structures and algo-
rithms may drastically shrink computational requirements,
these speedups can be easily offset and even outpaced by
exponential growth in sequence databases that these al-
gorithms must interact with. New methods should also
seek to overcome challenges such as database quality is-
sues such as misassembled or mislabelled genomes or sets
of reads. Following methodologies such as simple uni-
form random downsampling and more intelligent down-
sampling like Diginorm (123), recent advances like the
RACE method (66) attempt to address the need to shrink
databases and remove contaminants and error, while pre-
serving biologically important characteristics like diversity.
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