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Abstract: This study discusses the localization problem based on time delay and Doppler shift
for a far-field scenario. The conventional location methods employ two steps that first extract
intermediate parameters from the received signals and then determine the source position from
the measured parameters. As opposed to the traditional two-step methods, the direct position
determination (DPD) methods accomplish the localization in a single step without computing
intermediate parameters. However, the DPD cost function often remains non-convex, thereby
it will cost a high amount of computational resources to find the estimated position through
traversal search. Weiss proposed a DPD estimator to mitigate the computational complexity via
eigenvalue decomposition. Unfortunately, when the computational resources are rather limited,
Weiss’s method fails to satisfy the timeliness. To solve this problem, this paper develops a DPD
estimator using expectation maximization (EM) algorithm based on time delay and Doppler shift.
The proposed method starts from choosing the transmitter-receiver range vector as the hidden
variable. Then, the cost function is separated and simplified via the hidden variable, accomplishing
the transformation from the high dimensional nonlinear search problem into a few one dimensional
search subproblems. Finally, the expressions of EM repetition are obtained through Laplace
approximation. In addition, we derive the Cramér–Rao bound to evaluate the best localization
performance in this paper. Simulation results confirm that, on the basis of guaranteeing high
accuracy, the proposed algorithm makes a good compromise in localization performance and
computational complexity.

Keywords: direct position determination (DPD); maximum likelihood (ML); expectation maximization
(EM); Doppler shift; Laplace approximation; Cramér–Rao bound (CRB)

1. Introduction

The transmitter localization is a classic problem in wireless communication systems. It is well known
that the conventional location approaches are composed of two separate steps: (1) The intermediate
parameters are estimated through the signals. (2) The source position is determined from the measured
parameters. In the past three decades, a great deal of work has been done in this field. Generally,
the intermediate parameters (e.g., angle of arrival (AOA) [1], time of arrival (TOA) [2], time difference
of arrival (TDOA) [3], Doppler shift [4–6] and frequency difference of arrival (FDOA) [7]) are usually
estimated by the maximum likelihood (ML)-based method [8] or the subspace data fusion (SDF)-based
method [5,9], and the position is mainly determined by an iterative algorithm [10] or a closed-form
algorithm [11]. It is worth mentioning that Doppler information is a key parameter in the location
problem based on the moving receiver. Gajewski [5] uses SDF criterion based on the Doppler effect
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to locate multiple emission sources. Since multipath propagation and Doppler effect are dominant
factors to deteriorate localization performance, Kelner [6] uses the signal Doppler frequency method to
resist non-line-of-sight (NLOS) conditions. As for the conventional approaches, it must be emphasized
that the intermediate parameters are extracted by ignoring the constraint that all measurements must
correspond to the same geolocation of the emitter, and more errors will be introduced in two separate
processes of the conventional methods [12]. As a result, the conventional two-step methods cannot
yield satisfactory location accuracy. For this reason, direct position determination (DPD) techniques
that exploit the intrinsic constraint and determine the source position from the received signals directly
were developed.

The DPD algorithms have been intensively investigated in recent years. An important
classification of localization methods is related to propagation conditions, and there are two general
cases: (1) multipath propagations with LOS and NLOS; (2) an additive white Gaussian noise (AWGN).
In the first case, the methods [13–16] for LOS or NLOS environments have been deeply developed. Note
that Du [16] proposed a DPD estimator for a novel localization architecture in multipath propagations,
called the “Multiple Transponders and Multiple Receivers for Multiple Emitters Positioning System”.
The second case is the most common condition, and the following discussion is also conducted
under this assumption. Weiss [17] first proposed an SDF-based DPD algorithm with the utilization of
orthogonality between signal subspace and noise subspace to estimate the emitter position. Chen [18]
developed a multi-target DPD approach using subspace based on compressive sensing, reaching a high
probability of locating the emitter without knowing the number of targets. Even if low computational
complexity appears in the SDF-based DPD method, localization performance is deteriorated in low
signal-to-noise ratios (SNRs), failing to reach the corresponding Cramér–Rao bound (CRB). To enhance
the performance, ML-based DPD approaches were developed. Since the DPD cost function is often
non-convex, traversal search is required to find the extremum. However, nuisance parameters
(e.g., unknown transmission time [19] and timing errors [20]) will result in high dimensional search,
which is impractical in a real-time application. To mitigate the computational load of traversal
search, Weiss [21] proposed an ML-based approach via finding the maximum eigenvalue of the
Hermitian matrix associated with the cost function, which also exhibits high localization accuracy. It
must be emphasized that Weiss’s method is an ideal solution to account for localization accuracy and
computation complexity in existing DPD algorithms. Moreover, the location performance can be further
enhanced by utilizing signal properties. These DPD algorithms [22–24] can obtain superior localization
precision by exploiting the constant modulus, orthogonal frequency division multiplexing, and the
cyclostationary properties of signals. Unfortunately, the above DPD methods are not fast enough in the
presence of limited computing resources, which is often a reality in moving receivers (i.e., airplanes or
unmanned aerial vehicles (UAVs)). This limitation results in non-timeliness performance for moving
emitter localization. On the other hand, DPD methods based on the ML criterion guarantee superior
localization accuracy. Therefore, an ML-based DPD method with rapidity needs to be studied.

The expectation maximization (EM) algorithm is an attractive method of estimating the ML result
when data can be divided into “incomplete data” and “complete data” in the model. In the past
three decades, the EM algorithm has provided an excellent way to solve machine learning problems
(i.e., speech processing and recognition [25] and image identification and restoration [26]). Via choosing
the appropriate hidden variable, the EM algorithm decouples a high-dimensional search problem into
a few subproblems with much lower computational complexity. In sight of the advantages of the EM
algorithm, many scholars have applied it to the parameter estimation domain. Mada [27] uses the
EM algorithm to solve the multi-source localization problem, leading to a soft computational load.
Moreover, Lu estimates the source position via the EM algorithm for spatially nonwhite noise [28] and
nonuniform noise [29], respectively, further demonstrating the effectiveness of the EM model in harsh
scenarios. However, the DPD methods have not received the same treatment on the EM application,
and only Tzoreff [30] discussed a DPD method based on the EM algorithm. Unfortunately, this method
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cannot suit for the moving-receiver scenario. As a result, there is a great demand for developing a
DPD method using the EM algorithm for moving receivers.

This paper proposes a fast ML-based DPD algorithm using the EM algortihm based on time delay
and Doppler shift, and the main processing steps are exhibited as follows:

(1) The transmitter-receiver range vector is selected as the hidden variable, successfully leading the
separation and simplification of the ML cost function.

(2) With the help of Laplace approximation, the high-dimensional multi-parameter search of the
prescribed ML estimator is decoupled into a closed form of the transmitter position and a line
search of transmitter-receiver distance as well as transmitted time. Therefore, the expressions of
EM repetition is determined.

(3) Iteration of the EM expressions, which alternately updates parameters in E-step and M-step,
is required until the norm of the difference between the adjacent estimated position converges to
a user’s predefined number.

In summary, the main contribution of this paper is the improvement of the prescribed ML DPD
estimator via the EM algorithm in moving-receiver application for a far-field scenario, leading to a
high effectiveness to find the global extreme. In addition, we also have derived the CRB to exhibit the
best localization performance in theory. The rest of this paper is organized as follows. Section 2 lists
the notations used in this paper. Section 3 constructs the signal model and formulates the problem.
Section 4 discusses the DPD methods, including the previous method and the proposed method, and
then makes a computational complexity comparison among different methods. Section 5 presents
several numerical simulations to verify the theoretical analysis. Finally, Section 6 draws the conclusions.

2. Notations

In this section, some mathematical notation explanations that will be used through this paper are
listed in Table 1.

Table 1. Mathematical notation explanation.

Notation Explanation

r‚s
T transpose

r‚s
H conjugate transpose

‚pRq the real part

‚pIq the imaginary part

diagt‚u a diagonal matrix with diagonal entries

b Kronecker product

} ‚ } Euclidean norm of the matrix

|‚| determinant of the matrix

pX,Y t‚u the joint distribution of X and Y

pX{Y t‚u the conditional distribution of X given Y

IN Nˆ N identity matrix

0N Nˆ N matrix with zero

3. Signal Model

This paper considers that L moving receivers intercepts the transmitted signal, and the signal
is partitioned into K short intervals. Note that the antennas of the emitter and receivers are
omnidirectional, and the positions of the emitter and receivers are determined in a two-dimensional
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coordinate system. In order to fully introduce the DPD model, three assumptions are included
as follows:

Assumption 1. The receivers are moving. Let pl,k and vl,k denote the position and velocity of the lth receivers
at the kth interception interval, which are precisely known to us. They are constant at each interception interval.

Assumption 2. The stationary emitter, denoted by p fi px, yq, locates in the far-field of the moving receivers.

Assumption 3. The propagation channel is an AWGN channel, and time delay as well as Doppler information
are used in the signal model.

Based on the above assumptions, the complex signals yl,k ptq observed by the lth receiver at the
kth interception interval at time t is expressed as [31]

yl,k ptq “ bl,ksk

`

t´ τl,k ppq ´ t0
˘

ej2π fl,kt ` nl,k ptq 1 ď l ď L; 1 ď k ď K (1)

where t0 is the signal transmission time, and during the kth interception interval, sk ptq is the complex
envelope of the emitter, bl,k denotes the channel attenuation, nl,k ptq is the white Gaussian, τl,k ppq is
the propagation time between the emitter and the lth receiver, and Doppler frequency fl,k observed
between the emitter and the lth receiver is given by [21]

fl,k fi fc ` fcµl,k ppq (2)

where fc is the nominal frequency of the transmitted signal, assumed known, with

µl,k ppq fi
1
c

vT
l,k
“

p´ pl,k
‰

›

›p´ pl,k
›

›

(3)

where c is the radio wave propagation speed. It is assume that each receiver performs a down
conversion of the intercepted signal by the nominal frequency. Thus, after down conversion the
Doppler frequency can be replaced by

fl,k – fcµl,k ppq . (4)

After sampling at t “ nTs, the received signal can be shown as

ỹl,k pnq “ bl,k s̃k

`

nTs ´ τl,k ppq ´ tk
˘

ej2π fl,knTs ` ñl,k pnq n “ 1, 2, . . . , N (5)

for l “ 1, ¨ ¨ ¨ , L, and k “ 1, ¨ ¨ ¨ , K, where N denotes the number of sample points at each interval.
Then, Equation (5) can be expressed by a vector form as

ỹl,k “ bl,kAl,ks̃τl,k ` ñl,k (6)

where
ỹl,k fi

“

ỹl,k p1q , ỹl,k p2q ¨ ¨ ¨ , ỹl,k pNq
‰T

ñl,k fi
“

ñl,k p1q , ñl,k p2q ¨ ¨ ¨ , ñl,k pNq
‰T

Al,k “ diag
 

expp´j2π fl,kÑTsq
(

s̃τl,k “ s̃k
`

ÑTs ´ τl,k ppq ´ t0
˘T,

(7)

with Ñ “ r1, 2, . . . , NsT. We define s̃k “ rs̃k pTsq , s̃k p2Tsq , ¨ ¨ ¨ , s̃k pNTsqs
T, and the Fourier coefficients

of s̃τl,k and s̃k satisfy
s̃τl,k “ FHDτl,k FFHDt0Fs̃k (8)
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where

F “
1
?

N
exp

ˆ

´j
2π

N
ÑÑT

˙

Dτl,k “ diag
"

exp
ˆ

´j
2πτl,k

NTs
Ñ
˙*

Dt0 “ diag
"

exp
ˆ

´j
2πt0

NTs
Ñ
˙*

.

(9)

F is the discrete Fourier transform operator. Therefore, Equation (6) is rewritten as

ỹl,k “ bl,kCl,ks̃k ` ñl,k (10)

where Cl,k “ Al,kFHDτl,k FFHDt0F.

4. Direct Position Determination Methods

This section discuss the DPD methods, which locate the emitter directly through the raw
data. We first discuss the ML-based DPD method requiring traversal search, which can receive
the best location accuracy. Weiss [19] proposed a fast ML-based DPD method based on eigenvalue
decomposition. Unfortunately, the above methods cannot work effectively in the presence of limited
computational sources. Thus, in light of the EM idea in estimation theory [27], a fast DPD method
using EM algorithm will be proposed.

4.1. Previous Work

The DPD optimization based on time delay and Doppler shift is established, which was first
introduced by [21]. The received signal ỹl,k is a complex Gaussian random vector. Hence, the likelihood
function for ỹ can be formulated by [21]

l pθq “
1

`

πσ2
˘LKN exp

˜

´
1
σ2

K
ÿ

k“1

L
ÿ

l“1

›

›ỹl,k ´ bl,kCl,ks̃k

›

›

2
¸

(11)

where σ2 denotes the noise power, and θ “
“

t0, bT, pT‰T denotes all unknown parameters,

with b “
“

bT
1 , bT

2 , ¨ ¨ ¨ , bT
K
‰T and bk “

”

bT
1,k, bT

2,k, ¨ ¨ ¨ , bT
L,k

ıT
. The associated logarithmic likelihood

function can be written as

L pθq “ ´LKN ln πσ2 ´
1
σ2

K
ÿ

k“1

L
ÿ

l“1

›

›ỹl,k ´ bl,kCl,ks̃k

›

›

2. (12)

Therefore, the estimation of noise power σ2 is

σ̂2 “
1

LKN

K
ÿ

k“1

L
ÿ

l“1

›

›ỹl,k ´ bl,kCl,ks̃k

›

›

2. (13)

By substituting Equation (11) into Equation (10), the estimation of parameter θ can be determined by

θ̂ “ arg min
θ

f pθq , (14)

with

f pθq “
K
ÿ

k“1

L
ÿ

l“1

›

›ỹl,k ´ bl,kCl,ks̃k

›

›

2. (15)
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Since a high-dimensional nonlinear problem appears in Equation (14), it is difficult to compute
the closed-form solution of θ̂. Thus, traversal searches are required among these stray parameters
to obtain the best performance. However, this technique will take a long time to find the extreme
corresponding to the emitter position, which is not efficient in practical application.

4.2. The Proposed Method

4.2.1. EM Algorithm Review

The EM algorithm is an approach to iterative computation of the ML problem when the
observations are regarded as incomplete data. In each iteration, it includes an expectation step
and a maximization step. The meaning “incomplete data” reveals that there are two kinds of data:
the incomplete data Y and the complete data X. More specifically, Y is the observed data, and X is
the corresponding hidden data, (not observed directly). We denote the estimated parameter θ and
an expression Y “ f pXq, which shows a many–one mapping from X to Y. Via the Bayesian rule, we
have [30]

L pθq fi log pY pY; θq “ log pX,Y pX, Y; θq ´ log pX{Y pX{Y; θq (16)

where L pθq is the logarithmic likelihood function.
Since pY pY; θq is independent to X, the conditional expectation operation with associated with

pX{Y
`

X{Y; θ1
˘

will not make change to L pθq. The conditional expectation of Equation (14) can be
expressed by

L pθq “ E tlog pX,Y pX, Y; θqu ´ E
!

log pX{Y pX{Y; θq
)

(17)

where E ” E
pX{Y;θ1q t‚u and θ

1
denotes an arbitrary value of θ.

We define
Q
´

θ, θ
1
¯

“ E tlog pX,Y pX, Y; θqu

W
´

θ, θ
1
¯

“ ´E
!

log pX{Y pX{Y; θq
)

.
(18)

Thus, Equation (17) can be rewritten as

L pθq “ Q
´

θ, θ
1
¯

`W
´

θ, θ
1
¯

. (19)

Based on the ML criterion, we can maximize L pθq to estimate the unknown parameters. Since
pX{Y pX{Y; θq is generally unknown to us, we need to approximate W

´

θ, θ
1
¯

.

Both sides of Equation (19) subtract L
´

θ
1
¯

yielding

L pθq ´ L
´

θ
1
¯

“ Q
´

θ, θ
1
¯

´Q
´

θ
1

, θ
1
¯

`W
´

θ, θ
1
¯

´W
´

θ
1

, θ
1
¯

. (20)

With the help of Gibbs inequality, we find W
´

θ, θ
1
¯

ě W
´

θ
1
, θ
1
¯

. Thus, we obtain

L pθq ´ L
´

θ
1
¯

ě Q
´

θ, θ
1
¯

´Q
´

θ
1

, θ
1
¯

. (21)

The above expression shows that an increment of Q associated with θ also ensures an increment
of L. Therefore, the maximization problem of L is transformed into the maximization problem of Q.
The EM algorithm contains two steps, and each iteration process can be given by

E´ step : Calculate Q
´

θ, θpiq
¯

,

M´ step : θpi`1q “ arg max
θ

Q
´

θ, θpiq
¯

.
(22)



Sensors 2018, 18, 4139 7 of 18

An iteration cycle exists in Equation (20). We obtain θpi`1q in a current iteration step, and it will
be the initial value to repeat the EM operation of Equation (20) in the next iteration step. When Q
converges, the iteration stops.

4.2.2. Derivation of the EM-DPD Algorithm

After the above analysis, we choose the received signals Ỹ “

”

ỹT
1,1, ¨ ¨ ¨ , ỹT

l,k, ¨ ¨ ¨ , ỹT
L,K

ıT
as the

observed data and the transmitter-receiver range vectors X̃ “
”

x̃T
1,1, ¨ ¨ ¨ , x̃T

l,k, ¨ ¨ ¨ , x̃T
L,K

ıT
as the hidden

data, respectively. We assume that x̃l,k is a Gaussian vector, and the probability distribution function
(PDF) of X̃ can be shown as

pX̃
`

X̃; p
˘

“

K
ź

k“1

L
ź

l“1

px̃
`

x̃l,k; p
˘

“

K
ź

k“1

L
ź

l“1

N
´

εl,k ppq , σ2
xI2

¯

(23)

where εl,k ppq “ p´ pl,k and σ2
x is the variance of x. We define Gl,k fi Cl,ks̃k, and Equation (6) is

rewritten as
ỹl,k “ bl,kGl,k ` ñl,k. (24)

We assume that ñl,k are complex Gaussian vectors with mean 0N and covariance σ2IN . Therefore,
the pdf of ỹl,k is given by

pỹ
`

ỹl,k; p, t0
˘

“
1

`

πσ2
˘N exp

#

´

›

›ỹl,k ´ bl,kGl,k
›

›

2

σ2

+

. (25)

Assuming the signals observed by different receivers and different observations intervals are
independent, we have

pỸ
`

Ỹ; p, t0
˘

“

K
ź

k“1

L
ź

l“1

pỹ
`

ỹl,k; p, t0
˘

9

K
ź

k“1

L
ź

l“1

exp
!

´σ2›
›ỹl,k ´ bl,kGl,k

›

›

2
)

. (26)

Note that the source coordinates p is the direct relation parameter to the observations Ỹ. We need
to separate this variable to the subsequent derivation. By introducing X̃ in Equation (23) and defining
φ “

“

t0, bT‰T, Equation (26) can be rewritten as

pỸ
`

Ỹ{X̃; φ
˘

“

K
ź

k“1

L
ź

l“1

pỹ{x̃
`

ỹl,k{x̃l,k, bl,k, t0
˘

9

K
ź

k“1

L
ź

l“1

exp
!

´σ2›
›ỹl,k ´ bl,kGl,k

›

›

2
)

(27)

where Gl,k ” Gl,k
`

x̃l,k, t0
˘

for brevity.
From the analysis in Section 4.2.1, we can estimate the emitter position via maximizing the

auxiliary function Q
´

θ, θ
1
¯

. Next we introduce the key procedure of the derivation.

Proposition 1. The auxiliary function Q
´

θ, θ
1
¯

is separated into

Q
´

θ, θ
1
¯

“ Q1

´

φ, φ
1
¯

`Q2

´

p, p
1
¯

. (28)
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Proof of Proposition. . Via the Bayesian rule, the joint probability pX̃,Ỹ
`

X̃, Ỹ; θ
˘

is expressed by the
product of Equations (23) and (26), which depend only on p and only on φ, respectively. Since the
logp‚q of pX̃,Ỹ

`

X̃, Ỹ; θ
˘

exists in Equation (18), the separation of Q
´

θ, θ
1
¯

can be shown as

Q1

´

φ, φ
1
¯

“ ´σ´2
K
ÿ

k“1

L
ÿ

l“1

E
!

›

›ỹl,k ´ bl,kGl,k
›

›

2
)

(29)

Q2

´

p, p
1
¯

“ ´σ´2
x

K
ÿ

k“1

L
ÿ

l“1

E
!

›

›x̃l,k ´ εl,k ppq
›

›

2
)

. (30)

By maximizing Equation (29), we obtain

b̂l,k “
ḠH

l,kỹl,k

Es
@ l “ 1, ¨ ¨ ¨ , L; k “ 1, ¨ ¨ ¨ , K (31)

where Ḡl,k ” EtGl,ku and Es ”
›

›Gl,k
›

›

2. Substituting Equation (31) into Equation (29) yields

Q1

´

t0, t
1

0

¯

“ ´σ´2
K
ÿ

k“1

L
ÿ

l“1

ỹH
l,kΨl,kỹl,k (32)

where Ψl,k “ IN ´ E´1
s Ḡl,kḠH

l,k. We continue to maximize the above expression, yielding

t̂0 “ arg max
t0

K
ÿ

k“1

L
ÿ

l“1

ˇ

ˇ

ˇ
ỹH

l,kḠl,k pt0q
ˇ

ˇ

ˇ

2
. (33)

Similarly, maximizing Equation (28) with respect to p yields

p̂ “ arg min
p

K
ÿ

k“1

L
ÿ

l“1

›

›pl,k ´ p
›

›

2
´ 2pTx̄l,k

“
1

KL

K
ÿ

k“1

L
ÿ

l“1

`

pl,k ´ x̄l,k
˘

.

(34)

After eliminating b in the optimization process, we obtain the ML estimated expression of t0

and the closed-form solution of p through the EM procedure. Note that Ḡl,k in Equation (31) and x̄l,k
in Equation (32) are need to estimate. This work is promoted by Laplace approximation, which is

shown in Appendix A. We define rl,k fi
›

›xl,k
›

›, Rl,k fi
›

›εl,k
›

›, and λ “ σ2
x

σ2 , the expression of the EM-DPD
algorithm is written as follows:

E-step:

r˚l,k “ arg max
rl,k

´
r2

l,k

2
` Rl,krl,k ´ λ

›

›

›
ỹl,k ´ b̂l,kGl,k

`

rl,k
˘

›

›

›

2

@l “ 1, ¨ ¨ ¨ , L; k “ 1, ¨ ¨ ¨ , K.

(35)

M-step:

ppi`1q “
1

KL

K
ÿ

k“1

L
ÿ

l“1

«

pl,k

˜

1´
r˚l,k
Rl,k

¸

`
r˚l,k
Rl,k

ppiq
ff

. (36)

tpi`1q
0 “ arg max

t0

K
ÿ

k“1

L
ÿ

l“1

ˇ

ˇ

ˇ
ỹH

l,kḠl,k

´

r˚l,k, tpiq0

¯
ˇ

ˇ

ˇ

2
. (37)



Sensors 2018, 18, 4139 9 of 18

For easy understanding, the main steps of the proposed method are exhibited in Algorithm 1.

Algorithm 1: The main steps of the proposed method.
Input:
The observed data: ỹl,k, the position, and the velocity of receiver: pl,k and vl,k,
pl “ 1, ¨ ¨ ¨ , L, k “ 1, ¨ ¨ ¨ , Kq;
1. Choose a small positive number ε ą 0, and set the iteration counter to i “ 1;
2. Set i=0, initialize ppiq, tpiq0 ;
3. Calculate r˚l,kpl “ 1, ¨ ¨ ¨ , L, k “ 1, ¨ ¨ ¨ , Kq via Equation (35) in E-step;
4. Substitute r˚l,kpl “ 1, ¨ ¨ ¨ , L, k “ 1, ¨ ¨ ¨ , Kq into Equations (36) and (37) to obtain ppi`1q and

tpi`1q
0 through M-step, respectively. And then set i “ i` 1;

5. Calculate ∆=
›

›

›
ppiq ´ ppi´1q

›

›

›
. If ∆ ď ε, stop the iterations; Otherwise, set i “ i` 1, repeat

steps 3–4;
Output: The estimated position of target p̂ “ ppiq.

Remark 1. By choosing the hidden data X, the high-dimensional nonlinear problem in Equation (14) is simplified
as a few subproblems with soft computational load. The final operations are the line search of rl,k in the E-step
and the closed-form solution of p and the line search of t0 in the M-step.

4.3. Computational Complexity Analysis

Based on the above analysis, we have achieved the transformation from high-dimensional
multi-parameter nonlinear problem into several optimization subproblems, whose computational
complexity is substantially reduced. Nonetheless, the computational complexity differs among
the traversal search method, Weiss’s method [21], and the proposed method. The traversal search
method requires a three-dimensional search to find the extreme of the cost function corresponding
to the emitter position. Weiss’s method mainly has a two-dimensional search of the maximum
eigenvalue of a Hermitian matrix. The proposed method is dominated by the line searches of
r˚l,kpl “ 1, ¨ ¨ ¨ , L, k “ 1, ¨ ¨ ¨ , Kq in Equation (35) and t0 in Equation (37).

To better exhibit the computational complexity, Table 2 lists the computational complexity of the
traversal search method, Weiss’s method, and the proposed method. Note that Np is the number of grid
search points with respect to a line search, and Iiter is the number of iterations of the proposed method.
It must be emphasized that the key contributor to computational complexity is Np. Compared with the
two- or three-dimensional searches in other methods, the proposed method only has a one-dimensional
search, which reduces the computational complexity significantly.

Table 2. Computational complexity.

Algorithm Amount of Computation

Traversal search method O
´

N3
pKL

`

8N3 ` 7N2 ` N
˘

¯

Weiss’s method O
´

N2
p
`

K
`

p5L` 3qN3 ` 3N2 ` 2L3˘˘
¯

Proposed method O
`

Iiter
`

NpKL
`

14N3 ` 8N2 ` 3N
˘

` KL
˘˘

5. Numerical Experiments

In this section, several numerical experiments are reported to corroborate the theoretical analysis.
All simulations results are based on 200 Monte Carlo trials. In this scenario, the receivers equipped with
only one sensor are included, and the source emits a Gaussian random signal with a center frequency
of fc = 200 MHz. The channel attenuation coefficient amplitude obeys a normal distribution with a
mean of 1 and a standard deviation of 0.1, and the channel phase obeys a uniform distribution over
r´π, πs. Unless otherwise specified, we collect N “ 32 sample points in each interval at a sampling
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rate of fs = 400 kHz, use L = 3 receivers, perform a total of K = 5 observations, and set the velocity of
receiver v = 300 m/s.

To examine the performance comparisons, we take simulations works with the following
four algorithms

1. the proposed method in this study;
2. the traversal search method;
3. Weiss’s method;
4. the TOA/Doppler two-step algorithm.

The details of the comparison algorithms are shown in Table 3.

Table 3. Algorithms.

Algorithm Method

TOA/Doppler
two-step method

Method in [2] to estimate TOA ;
Method in [8] to estimate Doppler;
Least square (LS) location using the TOA
and Doppler estimations.

Traversal search method Method in [17] using a three-dimensional search

Weiss’s method Method in [21] using eigenvalue decomposition

Additionally, the CRB presented in Appendix B is also included in this part, providing a theoretical
best performance benchmark. Moreover, root mean square error (RMSE) and cumulative distribution
function (CDF) are adopted to evaluate localization accuracy in this paper.

We now examine the localization performance of the proposed algorithm for three different
scenarios. The target locates at [5, 4] km, and the receivers move along different trajectories, which
can be found in Figure 1. As shown in Figure 2, the performance of our algorithm is not sensitive
to the receiver trajectories because there is no significant difference between the RMSE curves of our
algorithm for different scenarios. Additionally, as expected, the proposed method for Scenario (a) has
better localization precision in low SNRs. On the other hand, although the RMSE of our algorithm is
far from that of the corresponding CRB in low SNRs, it has a substantial advantage in computation
time (see the descriptions for Table 4).
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Figure 1. The simulated localization scenarios: (a) scenario 1, (b) scenario 2, (c) scenario 3.
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Figure 2. The RMSE and Cramér–Rao bound (CRB) versus SNRs for different scenarios.

It must be emphasized that the next simulations are all based on Scenario (a) in Figure 1. Firstly,
we continue to conduct the simulation for algorithm performance comparison versus SNRs. The RMSEs
of all algorithms can be easily found in Figure 3. Unsurprisingly, all DPD methods outperform the
two-step method, and the traversal search method shows the best localization performance especially
in low SNRs. Although the performance of the proposed method is slightly inferior than that of
Weiss’s method in low SNRs, it is more efficient. However, the other two DPD methods will cost a
high amount of time in the presence of limited computing resources, losing its timeliness to moving
target. The detailed runtime information can be seen in Table 4.
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0
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400
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800
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1200
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S
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(m
)

TwoStep
EM-DPD
Weiss
TravSearch
CRB

Figure 3. The RMSEs of different algorithms versus SNRs.

Secondly, to better exhibit the computational complexity of each algorithm, the runtime is
investigated. From the results in Table 4, we observe that the two-step method requires the least
runtime, but its localization performance is deteriorated in low SNRs (see Figure 3). Due to the
high-dimensional search, the traversal search method is more computationally expensive than other
DPD methods. Obviously, Weiss’s method has a great improvement in the running time. Compared
with Weiss’s method, the run time of our method is further reduced (approximately 40%). However, the
reduction of computational complexity of our method does not deteriorate localization performance
significantly (also see Figure 3). As indicated by these finding, the proposed approach receives
acceptable localization performance with a low computation resource cost.
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Table 4. Mean runtime of different methods.

Algorithm Runtime (s)

Two-step method 0.8

Traversal search method 67

Weiss’s method 7.9

Proposed method 4.7

Thirdly, the CDF curves of all methods at the nominal constellation are depicted in Figure 4a,b at
the SNR level of 5 dB and´10 dB, respectively. It can be readily observed that the traversal search curve
is highest at a different localization error level. The proposed method curve is associated with Weiss’s
DPD curve, which indicates it can receive high localization accuracy with high SNRs. From Figure 4,
the two-step method curve deviates from the DPD methods. The proposed method curve is slightly
apart from the curve of Weiss’s method, which is acceptable in terms of low complexity.
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Figure 4. The CDF of different algorithms versus localization errors: (a) SNR = 5 dB; (b) SNR =´10 dB.

Finally, to further examine the influence of system parameter values on localization performance,
we set SNR = ´5 dB and exhibit the RMSE curves for K,N,L, and v in Figure 5, respectively.
Additionally, the simulation conditions are K ranging from 2 to 10, N ranging from 50 to 200, L ranging
from 1 to 6, and v ranging from 100 to 1000. It can be readily found in Figure 5a–c that all algorithms
perform better in terms of localization accuracy, as more system parameter information exists. These
results imply that the increase of these system parameters can enhance the localization performance.
However, more parameter requirements mean greater system overhead and computational pressure.
Consequently, our method can play an excellent role in the presence of limited computational resources.
Furthermore, Figure 5d indicates that v does not have much impact on position accuracy.



Sensors 2018, 18, 4139 13 of 18

2 3 4 5 6 7 8 9 10

K

0

50

100

150

200

250

300

350

400

450

500

R
M

S
E

(m
)

TwoStep
EM-DPD
Weiss
TravSearch
CRB

(a)

50 100 150 200

N

0

50

100

150

200

250

300

350

400

R
M

S
E

(m
)

TwoStep
EM-DPD
Weiss
TravSearch
CRB

(b)

1 2 3 4 5 6

L

0

100

200

300

400

500

600

R
M

S
E

(m
)

TwoStep
EM-DPD
Weiss
TravSearch
CRB

(c)

100 200 300 400 500 600 700 800 900 1000

v

0

100

200

300

400

500

600

R
M

S
E

(m
)

TwoStep
EM-DPD
Weiss
TravSearch
CRB

(d)

Figure 5. The RMSEs of different algorithms versus system parameters: (a) the value of K; (b) the value
of N; (c) the value of L; (d) the value of v.

6. Conclusions

The traditional two-step methods have high computational efficiency but low localization
performance. To enhance positioning accuracy, DPD approaches have been developed. Since the
DPD technology locates the target from the signal directly, computational complexity of this estimator
is high. To solve this problem, this paper proposes a fast ML-based direct localization method
using an EM algorithm based on time delay and Doppler shift. The EM scheme was developed to
solve the ML problem in the DPD model. We simplify this ML problem via the theories of Gibbs
inequality and Laplace approximation, transforming the high-dimensional nonlinear search into a few
one-dimensional searches. Simulation results show that the proposed algorithm has operates faster
than other DPD methods. Furthermore, when limited computing resources appear, our method leads
a more efficient result on the basis of guaranteeing high localization accuracy. Therefore, compared
with other localization approaches, the proposed method becomes a good way to balance localization
accuracy and computational complexity.
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Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 4139 14 of 18

Appendix A. Evaluation of x̄l,k and Ḡl,k via Laplace Method

We consider the multivariate functions h pzq : Rn Ñ Rm and f pzq : Rn Ñ R. An integral is
expressed by

I f “

ż

zPZ
h pzqe f pzqdz. (A1)

Assume that f pzq has a global maximum within the interval. According to [27], the Laplace
approximation is written as

I f « p2πqn{2|´F pz˚q|´1{2h pz˚q e f pz˚q (A2)

where F pz˚q is the Hessian of f pzq at z˚. Next we approximate the integral of x̄l,k and Ḡl,k. For the
sake of brevity, we omit l, k in the subsequent derivation.

The expression of the conditional expectation is

h̄ px̃q fi

ż

h px̃qpx̃{ỹdx̃ “
ż

h px̃q
px̃,ỹ

pỹ
dx̃

9p´1
ỹ

ż

h px̃qe
´
}x̃´εppq}2

σ2
x

´
}ỹ´b̂Gpx̃q}

2

σ2 dx̃.

(A3)

The polar coordinates can be written as

x̃ “ r

«

cos ξ

sin ξ

ff

, ε “ R

«

cos η

sin η

ff

. (A4)

Substituting (A4) into (A3) yields

h̄ pr, ξq9p´1
ỹ

ż 8

0
re f prqdr

ż π

´π
h pr, ξqeαr cospξ´ηqdξ (A5)

where f prq “ ´σ´2
x

ˆ

r2

2 ´ λ
›

›

›
ỹ´ b̂G prq

›

›

›

2
˙

, λ “ σ2
x

σ2 and α “ Rσ´2
x . We assume r " 1 and have [28]

I1 prq “
1

2π

ż π

´π
cos ξer cos ξ dξ «

er
?

2πr
,

I0 prq “
1

2π

ż π

´π
er cos ξ dξ «

er
?

2πr
,

0 “
ż π

´π
sin ξer cos ξ dξ

(A6)

where I1 p‚q, I0 p‚q denote the first kind of modified Bessel function. We substitute Equation (A6) into
Equation (A5), yielding

¯̃x9

«

cos η

sin η

ff

ż 8

0
r3{2e f prq`αrdr. (A7)

Recalling the expression in Equation (A2), we can search for the global extreme r˚ through

r˚ “ arg max
r

f prq ` αr. (A8)

Therefore, we have

¯̃x «

«

cos η

sin η

ff

r˚ “
ε

}ε}
r˚. (A9)
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Similarly, we have Ḡ « G pr˚q.

Appendix B. Derivation of the Cramér–Rao Bound

It is well known that the CRB provides a benchmark for the best localization accuracy for any
unbiased estimator. This section derives the compact CRB formula for source position with known
signal waveforms and unknown transmitted time.

Let Dl,k pθq “ bl,kCl,ks̃k. According to [22], the q, jth entry of the fisher information matrix of
unknown parameter θ is shown as

rJsq,j “
2
σ2

K
ÿ

k“1

L
ÿ

l“1

˜

BDl,k pθq

B rθsTq

¸H ˜

BDl,k pθq

B rθsTj

¸

. (A10)

For easy derivation, θ can be redefined by

θ “
”

bpRqT, bpIqT, t0, pT
ıT

(A11)

where b “
“

bT
1 , bT

2 , ¨ ¨ ¨ , bT
K
‰T and bk “

”

bT
1,k, bT

2,k, ¨ ¨ ¨ , bT
L,k

ıT
. Thus, J can be expressed by

J “

»

—

—

—

–

Jpp Jpt0 JpbpRq JpbpIq

Jt0p Jt0t0 Jt0bpRq Jt0bpIq

JbpRqp JbpRqt0
JbpRqbpRq JbpRqbpIq

JbpIqp JbpIqt0
JbpIqbpRq JbpIqbpIq

fi

ffi

ffi

ffi

fl

. (A12)

Next we calculate the subblocks of Equation (A12).

Appendix B.1. The Partial of Dl,k pθq with Respect to b

Note that b is a complex variable, so we obtain

„

BDl,k pθq

BbpRqT



m,n
“

#

Gl,k m “ l, n “ k

0 m ‰ l, n ‰ k
,

„

BDl,k pθq

BbpIqT



m,n
“

#

jGl,k m “ l, n “ k

0 m ‰ l, n ‰ k
.

(A13)

Appendix B.2. The Partial of Dl,k pθq with Respect to t0

We obtain
BDl,k pθq

Bt0
“ Hl,k, (A14)

where Hl,k “ bl,kAl,kFHDτl,k FFH ‚

D t0Fs̃k, with
‚

D t0 “ Dt0 ¨ diag
!

´j2π Ñ
NTs

)

.

Appendix B.3. The Partial of Dl,k pθq with Respect to p

We define Γl,k “
BAl,kFHDTl,k

F

BpT

´

I2b s̃t0
k bl,k

¯

with s̃t0
k “ rs̃k pTs ´ t0q , s̃k p2Ts ´ t0q , ¨ ¨ ¨ , s̃k pNTs ´ t0qs

T.
The derivative with respect to p can be expressed by

BDl,k pθq

BpT “ Γl,k (A15)
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where
BAl,kFHDTl,k F

BpT “
BAl,k

BpT

´

I2 b FHDτl,k F
¯

`Al,kFH BDτl,k

BpT pI2 b Fq , (A16)

with
BAl,k

BpT “ Al,k ¨ diag
"

j2π
B fl,k

BpT Ts, j2π
B fl,k

BpT 2Ts, . . . , j2π
B fl,k

BpT NTs

*

(A17)

B fl,k

BpT “
fc

c

¨

˝

vT
l,k

›

›p´ pl,k
›

›

´
vT

l,k
`

p´ pl,k
˘ `

p´ pl,k
˘T

›

›p´ p,k
›

›

3

˛

‚ (A18)

BDτl,k

BpT “ Dτl,k ¨ diag
"

´j2π
1

NTs

Bτl,k

BpT ,´j2π
2

NTs

Bτl,k

BpT
s
, . . . ,´j2π

N
NTs

Bτl,k

BpT
s

*

(A19)

Bτl,k

BpT “
1
c

`

p´ pl,k
˘T

›

›p´ pl,k
›

›

. (A20)

By substituting Equations (A13)–(A15) into Equation (A10), we can obtain the subblocks of Jξξ

J
bpRqm1,n1 bpRqm2,n2

“

#

2
σ2 Re

 

GH
m1,n1

Gm2,n2

(

m1 “ m2 X n1 “ n2

0 m1 ‰ m2 Y n1 ‰ n2
. (A21)

J
bpRqm1,n1 bpIqm2,n2

“

#

´ 2
σ2 Im

 

GH
m1,n1

Gm2,n2

(

m1 “ m2 X n1 “ n2

0 m1 ‰ m2 Y n1 ‰ n2
. (A22)

J
bpRqm,n t0

“
2
σ2 Re

!

GH
m,nHm,n

)

. (A23)

J
bpRqm,np

“
2
σ2 Re

!

GH
m,nΓm,n

)

. (A24)

J
bpIqm1,n1 bpIqm2,n2

“

#

2
σ2 Re

 

GH
m1,n1

Gm2,n2

(

m1 “ m2 X n1 “ n2

0 m1 ‰ m2 Y n1 ‰ n2
. (A25)

J
bpIqm,nt0

“ ´
2
σ2 Im

!

GH
m,nHm,n

)

. (A26)

J
bpIqm,np

“ ´
2
σ2 Im

!

GH
m,nΓm,n

)

. (A27)

Jt0t0 “
2
σ2

L
ÿ

l“1

K
ÿ

k“1

Re
!

HH
l,kHl,k

)

. (A28)

Jt0p “
2
σ2

K
ÿ

k“1

L
ÿ

l“1

Re
!

HH
l,kΓl,k

)

. (A29)

Jpp “
2
σ2

L
ÿ

l“1

K
ÿ

k“1

Re
!

ΓH
l,kΓl,k

)

. (A30)

Since submatrices of Equation (A12) with respect to diagonal symmetry are transposed matrices
of each other, we can easily obtain the remaining submatrices.
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Thus, the inverse of the CRB of position can be obtained by

`

CRBp
˘-1=Jpp-

”

JpbpRq JpbpIq Jpt0

ı

»

—

–

JbpRqbpRq JbpRqbpIq JbpRqt0

JbpIqbpRq JbpIqbpIq JbpIqt0

Jt0bpRq Jt0bpIq Jt0t0

fi

ffi

fl

-1
”

JpbpRq JpbpIq Jpt0

ıT
. (A31)

This concludes the derivation.
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