
molecules

Article

Generative Adversarial Learning of Protein Tertiary Structures

Taseef Rahman 1, Yuanqi Du 1, Liang Zhao 2 and Amarda Shehu 1,3,4,5,∗,†

����������
�������

Citation: Rahman, T.; Du, Y.; Zhao,

L.; Shehu, A. Generative Adversarial

Learning of Protein Tertiary

Structures. Molecules 2021, 26, 1209.

https://doi.org/molecules26051209

Academic Editor: José A. Gascón

Received: 18 December 2020

Accepted: 16 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, George Mason University, Fairfax, VA 22030, USA;
trahman2@gmu.edu (T.R.); ydu6@gmu.edu (Y.D.)

2 Department of Computer Science, Emory University, Atlanta, GA 30322, USA; liang.zhao@emory.edu
3 Center for Advancing Human-Machine Partnerships, George Mason University, Fairfax, VA 22030, USA
4 Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
5 School of Systems Biology, George Mason University, Manassas, VA 20110, USA
* Correspondence: amarda@gmu.edu
† Current address: 4400 University Dr., MS 4A5, Fairfax, VA 22030, USA.

Abstract: Protein molecules are inherently dynamic and modulate their interactions with different
molecular partners by accessing different tertiary structures under physiological conditions. Eluci-
dating such structures remains challenging. Current momentum in deep learning and the powerful
performance of generative adversarial networks (GANs) in complex domains, such as computer
vision, inspires us to investigate GANs on their ability to generate physically-realistic protein tertiary
structures. The analysis presented here shows that several GAN models fail to capture complex,
distal structural patterns present in protein tertiary structures. The study additionally reveals that
mechanisms touted as effective in stabilizing the training of a GAN model are not all effective, and
that performance based on loss alone may be orthogonal to performance based on the quality of
generated datasets. A novel contribution in this study is the demonstration that Wasserstein GAN
strikes a good balance and manages to capture both local and distal patterns, thus presenting a first
step towards more powerful deep generative models for exploring a possibly very diverse set of
structures supporting diverse activities of a protein molecule in the cell.

Keywords: protein modeling; tertiary structure; generative adversarial learning; deep learning

1. Introduction

Molecular structure and function are tightly related to each-other. Nowhere is this
more evident than in proteins, where the three-dimensional/tertiary structure is central to
recognition of molecular partners in the cell [1]. Recent news from the “Critical Assessment
of protein Structure Prediction” (CASP) competition suggest that DeepMind’s AlphaFold2
has “solved” what is known as protein structure prediction [2], a problem that has been
a 50-year old grand challenge in computational structural biology. The performance of
AlphaFold2 on the test set of target proteins in CASP14 certainly suggests that an incredible
milestone has been achieved.

Until we have access to the AlphaFold2 model or are able to reproduce it with fidelity,
we will not know the true extent to which we now have a tool that we did not have before,
giving us the ability to determine in silico a high-quality model of a biologically-active,
tertiary structure of a given protein. It would be a wonderful tool, indeed. Currently, many
regions of the protein universe are inaccessible in the wet or dry laboratory. Analysis of
546,000 unique proteins deposited in Swiss-Prot reveals that 44–54% of the proteome in
eukaryotes and viruses and about 14% of the proteome in archaea lack structural and/or
functional characterization [3].

Yet, focusing on obtaining just one structure betrays our understanding that protein
molecules are inherently dynamic, harnessing their ability to access different tertiary
structures to modulate interactions with different partners and so propagate signal across
different cellular pathways [4]. Much work in protein modeling has focused on obtaining a

Molecules 2021, 26, 1209. https://doi.org/10.3390/molecules26051209 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5230-4610
https://doi.org/10.3390/molecules26051209
https://doi.org/10.3390/molecules26051209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26051209
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/5/1209?type=check_update&version=2

Molecules 2021, 26, 1209 2 of 23

broader view of the structure space accessible to them under physiological conditions [5].
This is an exceptionally challenging task [6], and the majority of research harnesses previous
knowledge, whether via restricted physical models or existing structure data, in order to
focus/bias a search algorithm on the relevant region(s) of a structure space that is too vast
otherwise [7–9].

Current momentum in deep learning and the performance of generative adversarial
networks (GANs) in generating credible data across domains [10–12] inspires us in this
paper to investigate and evaluate GANs on their ability to generate physically-realistic
protein tertiary structures. Work in this direction has recently started. For instance, work
in [13] employs a long short-term memory GAN and trains it on backbone angles extracted
from a specific subset of short protein structures containing only alpha helices. The model’s
output structures are found to be quite varied in quality. The researchers report that some
protein-like structures are found among those generated, which encourages them to further
investigate GANs. In [14,15], the researchers take on this task but differ in two critical
ways. First, they expand the training set to include proteins of diverse structures. Second,
they change the representation of a tertiary structure from backbone angles to distance
matrices that record in every entry the distance between the main-chain carbon atoms of
two amino acids. We also find GANs in recent literature that are devoted to the narrow
problem of protein structure prediction as a prediction of contacts problem [16]; that is,
given a sequence of amino acids in a protein molecule, which pairs of main-chain CA
atoms are spatially proximate? Work in [17] extends this line of work and uses GANs to
predict actual Euclidean distances between pairs of main-chain CA atoms.

None of the above works, with the exception of [14,15], address the holistic setting of
GANs for generating tertiary structures [18]. We note that more progress has been made
recently with Variational Autoencoders (VAEs), which provide a generative framework
complementary to GANs. We point here two representative works in this area [19,20].
However, these works train a VAE on structures generated for a specific protein molecule,
and these structures are obtained from computational platforms, such as MD simula-
tions [19] or protein structure prediction platforms, such as Rosetta [20]. None of these
works leverage known experimental structures in the PDB, which has been the trend in the
nascent sub-area of GANs for protein structure modeling as a way of learning from the
actual ground truth distribution rather than other computational frameworks.

However, the current literature on GANs for protein structure modeling has not
explored well a detailed analysis into the quality of the generated data. For instance, the
issue of stability in training GANs is already well-recognized [21]. No indication is given
into which training mechanisms, if any, result in convergence of both the discriminator and
generator, particularly when the goal is to learn complex objects with inherent structure
in them.

Moreover, the quality of the generated data is not related in any meaningful detail.
To this day, we do not understand well the power (or lack of) of GANs for generating
physically-realistic tertiary structures. For instance, what kind of tertiary structures can
a GAN generate? Do the generated structures look like structures of proteins? Do they
contain a backbone that connects consecutive amino acids? Do they contain the hallmark
secondary structure elements (alpha helices, beta sheets, and so on). Are they compact,
as is typically expected from a folded protein, or are they extended? These are important,
fundamental questions if we want to start a line of research on GANs as viable frameworks
for important problems that expand our view of a protein molecule beyond a single
structure.

In this paper, motivated by our view of proteins as dynamic molecules, we seek to
answer these questions. Employing a distance matrix representation of a tertiary structure
as in [14,15], which we detail later in Section 2, we train various GAN models over diverse
tertiary structures of proteins deposited in the Protein Data Bank (PDB) [22]. Unlike
existing works [14,15], we generalize our observations on various training datasets of

Molecules 2021, 26, 1209 3 of 23

tertiary structures of protein molecules of varying lengths (varying number of amino acids).
We extract from the known structures in the PDB chains/fragments of varying lengths.

Our findings are revealing. They show, for instance, that a baseline model, to which
we refer as Vanilla GAN presents challenges with regards to reaching convergence and,
moreover, only captures local patterns/structure in the distance matrices that it generates.
We investigate a thorough list of variants of this baseline model in order to improve its
convergence and present models that indeed converge better. However, the improvements
in convergence do not relate to these models capturing more structure in their generated
datasets. Finally, we investigate a GAN variant that makes use of the Wasserstein distance
in its loss function. The model, to which we refer as WGAN, manages to capture the
long-range/distal structure that is the hallmark of realistic protein tertiary structures, but
the model has a harder time capturing the short-range structure. As expected, the training
datasets of larger distance matrices present more challenges to the baseline model and some
of the variants, but not to WGAN. Our evaluation relates many additional observations
of use to researchers considering GANs for structure-related studies in computational
structural biology. For instance, we show that a convergence-based analysis is necessary
but not sufficient to indicate on its own the expected quality of highly-structured data, such
as protein tertiary structures.

We make data and selected trained models publicly available through IEEE Dataport
(ieee-dataport.org) under DOI 10.21227/m8sa-cz14. The link https://doi.org/10.21227/m8
sa-cz14 (accessed on 18 December 2020) provides access to the input/training data, the four
top GAN models (further details in Section 3), and the data generated from these models.

We now proceed to relate methodological details in Section 2. The evaluation and
obtained results are described in Section 3. The paper concludes in Section 4 with a
summary and an exposition of further directions of research.

2. Methods

In the interest of brevity, we assume some basic familiarity with neural networks. We
first summarize GANs and their training challenges before relating various mechanisms
to improve training convergence, resulting in various models we investigate in this study.
We then relate the specific setting in which we train and evaluate the resulting models, the
data, representation choice, and performance metrics employed.

2.1. A Summary of GANs and Their Training
2.1.1. GANs

GANs were first proposed in [23], where they were first referred to as a framework
for generative models trained via an adversarial process. The framework contains two
models that are trained simultaneously, a Generative model/Generator, to which we refer
as G from now on, and a Discriminative model/Discriminator, to which we refer as D
from now on. The objective for G is to capture the data distribution; the objective for D
is to estimates the probability that a sample comes from the training data rather than G.
Figure 1 shows the schema of the GAN framework. During training, G seeks to maximize
the probability of D to make a mistake. In contrast, as in a minimax two-player game, D
seeks to distinguish whether a sample come from the training dataset or from G. Work
in [23] shows that in the space of arbitrary functions G and D, a unique solution exists,
where G recovers the training data distribution, and D equals 1/2 everywhere. Goodfellow
and co-authors also showed that when G and D are defined by multilayer perceptrons, the
entire GAN system could be trained with backpropagation.

https://doi.org/10.21227/m8sa-cz14
https://doi.org/10.21227/m8sa-cz14

Molecules 2021, 26, 1209 4 of 23

Generator

Discriminator

R
an

do
m

 In
pu

t

Real Images

Real or Fake?

Figure 1. Schematic of the GAN framework, where the Discriminator (D) and the Generator (G) are
trained simultaneously in an adversarial setting. G seeks to fool D into not being able to distinguish
between samples generated from G and samples from the training dataset.

2.1.2. GAN Training

GAN training is a minimax game with the following objective function:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(Dx)] +Ez∼pz(z)[log(1− D(G(x)))].

The discriminator D tries to maximize the above function, whereas the generator G
tries to minimize it. In particular, D(x) is D’s estimate of the probability that a real data
instance x is real. Ex∼pdata(x) is the expected value over all the real data instances x. G(z)
is G’s output when given noise z. D(G(z)) is D’s estimate of the probability that a fake
instance is real. Ez∼pz(z) is the expected value over all random inputs z to G; that is, the
expected value over all generated fake instances G(z).

Though in principle training a GAN is a straightforward process, many practical chal-
lenges have been identified that to some extent hamper their adoption across application
domains. These challenges include non-convergence (where the parameters oscillate, desta-
bilize, and never converge), mode collapse (where G collapses and so produces limited
varieties of samples), and diminished gradient (where D gets too successful too fast, caus-
ing G’s gradient to vanish and so learn nothing). To address these issues, various training
mechanisms have been proposed [21]. In this paper, we consider three reportedly effective
ones, such as spectral normalization, virtual batch normalization, and the two-time update
rule. Combination of these strategies results in various models that we investigate and
evaluate in this study.

2.2. Vanilla GAN

The basic model we investigate for its ability to generate realistic tertiary protein
structures is the one proposed recently in [14,15]. We refer to this model as Vanilla GAN.
D in Vanilla GAN combines several Conv2D, LeakyReLU, and Dropout layers together
to discriminate against training/input and generated data, as shown in Figure 2. As we
detail later in this section, our data are distance matrices.

2.3. Vanilla GAN Variants to Address Convergence

As summarized above, we consider three main mechanisms via which one aims to
improve convergence in Vanilla GAN: two-time update rule, spectral normalization, and
virtual batch normalization.

Molecules 2021, 26, 1209 5 of 23

Conv2D
leakyRe

LU
Dropout

Conv2D
leakyRe

LU
Dropout

Conv2D
leakyRe

LU
Dropout

Generated
Matrix

Real
Matrix

Conv2D
Sigmoid Real or Fake?

Figure 2. Schematic of D employed in this paper, modeled after work in [14,15].

2.3.1. Two-Time Update Rule (TTUR)

First proposed in [24] as a mean to achieve the Nash equilibrium, the two-time update
rule can be applied to a GAN simply by choosing two different learning rates for D and
G. In [24], the authors achieve a state-of-the-art result using the two-time update rule in
popular networks. Typically, having a higher learning rate for D ensures that G takes
smaller steps to learn the distribution and so does not rush to achieve an unrealistic solution
in the adversarial setting.

2.3.2. Spectral Normalization (SpecNorm)

First introduced in [25], spectral normalization seeks to address the exploding gradient
and mode collapse problem. It does so by controlling the Lipschitz constant (maximum
absolute value of the derivatives) of D. To be exact, the strategy normalizes the weight W
for each layer with the spectral norm σ(W), resulting in one being the Lipschitz constant
for each layer, as well as the whole network, and bounding of the gradients. Spectral
normalization is computationally expedient. One of its most useful applications lies in the
efficient computation of the Wasserstein distance in Wasserstein GANs.

2.3.3. Virtual Batch Normalization (VBN)

Virtual Batch Normalization was first presented as one of the techniques to improve
GAN training in deep convolutional GANs [21]. A drawback of regular batch normalization
is that it causes the output of a neural network to be highly dependent on other inputs of
the same minibatch as the original input. To avoid this, the reference batch is chosen at
the start of the training and remains fixed. Virtual batch normalization is computationally
expensive. For this reason, it is typically applied only on G. In this work, we consider three
settings, applying it to D alone, G alone, or applying it to both.

2.3.4. Resulting Vanilla GAN Variants

Considering the three mechanisms above, we construct the following 9 additional
models: Vanilla GAN + TTUR, Vanilla GAN + SpecNorm, Vanilla GAN + VBN, Vanilla
GAN + TTUR + SpecNorm, Vanilla GAN + TTUR + VBN, Vanilla GAN + SpecNorm +
VBN, and Vanilla GAN + TTUR + SpecNorm + VBN. This is a thorough list of models
that considers one mechanism (3 choose 1), two mechanisms jointly (3 choose 2), and three
mechanisms jointly (3 choose 3). With Vanilla GAN serving as our baseline, we have a
total of 8 models so far.

It is worth noting that the VBN and SpecNorm can in principle be applied to either D,
G, or both. We have experimented with these options, and our findings are in agreement
with related literature [21] that VBN is an expensive mechanism, and Spec norm is a
method that can be effective to stabilize D but ineffective on G. Therefore, we limit VBN to
G only, and SpecNorm to D only.

Molecules 2021, 26, 1209 6 of 23

In addition to the 10 GAN models list above, we investigate Wasserstein GAN
(WGAN), a different GAN that changes the way the loss function is computed and replaces
D with a critic. We summarize this model below.

2.4. Wasserstein GAN: A Promising Model for Tertiary Structures

Wasserstein GAN (WGAN) [26] has been recently proposed in machine learning
to improve stability when training GANs. WGAN can be considered an extension of
the baseline GAN in that it seeks an alternate way of training G. Instead of using a
Discriminator to classify that a generated sample is real or fake, WGAN replaces D with
a critic; the critic scores the authenticity of a generated sample. This introduction of the
critic is motivated by a theoretical argument in [26] that G should seek to minimize the
distance between the distribution of the training data and the distribution of the generated
data. The added benefit of WGAN is that the training process is also more stable and less
sensitive to the model architecture and choice of hyperparameter configurations. WGAN
implements three major steps to improve stability. (1) WGAN replaces the loss function
with the Wasserstein distance, whose gradient is smoother; (2) WGAN removes the sigmoid
activation function and uses linear activation; (3) WGAN clips the gradient to restrict the
maximum weight value to be in some range [−c, c], where c is a hyperparameter. These
changes result in improved stability, solving the possible mode collapse issue, and enable
G to learn even when the critic performs very well.

2.5. Experimental Setup and Architecture

As in [14,15], we employ a distance matrix representation of a tertiary structure. Work
in [13–15] reports that, when employing angles, the generated angles are not realistic and
lead to tertiary structures that are highly distended or in severe self-collisions. A distance
matrix encapsulates a tertiary structure as follows: Let us suppose that we are considering
chains of length n amino acids. As in [14,15], while each amino acid contains many atoms,
we simplify these chains by stripping them down to the main-chain carbon (CA) atom
contained in each amino acid. So, a tertiary structure of n amino acids can be considered
as a point in 3n-dimensional space. The corresponding distance matrix can be calculated
easily. A matrix of n rows and n columns stores distances dij in its entries that specify the
Euclidean distance between the CA atom of amino acid i and the CA atom of amino acid j.

Training Dataset(s)

The known protein structures in the PDB contain proteins of varying lengths. So,
we consider five settings and thus construct 5 different training datasets. All distance
matrices in a given training dataset have the same k× k size, where k ∈ {6, 9, 16, 64, 128}.
115,850 tertiary structures are extracted from the the PDB from the entries listed in [15].
In addition, as in [15], non-overlapping fragments of a given length l are sampled from
chain ’A’ for each protein structure starting at the first residue. The corresponding distance
matrix is calculated and added to the training dataset, which is noted as FLk. This process
is followed to obtain 115,850 distance matrices in FL6, FL9, and FL16, and 98,966 distance
matrices in FL64 and FL128.

2.6. Evaluating Generated Datasets

It is important to assess whether the model has learned the reference/training distri-
bution. We do so in various ways.

2.6.1. Evaluating the Presence of Backbone Structure

First, we evaluate the presence of a “backbone” in a generated distance matrix. The
backbone places consecutive (i, i + 1) CA pairs (of amino acids i and i + 1 in the se-
quence) at an ideal distance of 3.83 Å of each-other. There is typically some variation in
experimentally-obtained structures around this value, so we round this distance to 4 Å.
Using this information, we associate two scores to summarize the “presence of a backbone”

Molecules 2021, 26, 1209 7 of 23

in a distance matrix. First, we compute the average Euclidean distance between two consec-
utive (i, i + 1) CA pairs. This corresponds to summing the entries along the main diagonal
in a distance matrix and dividing them by the number of entries along the diagonal. We
refer to this value as Average Peptide Bond Length. Second, we associate with each distance
matrix a Backbone Length Score, which tallies the number of consecutive CAs that are within
4 Å of each-other. We expect this score to be k− 1 for a distance matrix of size k.

In each case, the distribution of a particular metric of interest is calculated over the
generated dataset, and the distribution is related in terms of summary statistics, such as
the mean, median, minimum, and maximum. It is worth noting that the “prediction” of
a backbone is a trivial task, in some sense. The order of amino acids in a given protein
sequence tells us where the backbone is. In that sense, we do not really need a GAN to learn
this structure, as we can recover it from fundamental knowledge of protein architecture.
However, it is revealing to understand whether this feature, which is shared across all
distance matrices in a training dataset (all experimentally-obtained tertiary structures), is
learned by a GAN in the generated dataset or not.

2.6.2. Evaluating the Presence of Local and Distal Structure

The additional off-backbone structure that characterizes tertiary protein structures can
be partitioned into two categories, local/short-range versus distal/long-range structure.
Each can be quantified with short-range and long-range contacts, respectively. Short-range
contacts refer to pairs of amino acids (represented here by their main-chain CA atoms)
that are no more than 4 positions away from each-other along the sequence/backbone
and are in contact. Long-range contacts refers to pairs of amino acids further away in the
sequence/backbone that are in contact. Two amino acids (represented by their main-chain
CA atoms) are considered to be in contact if they are spatially proximate. Proximity requires
a distance threshold. There are three popular thresholds in literature, 8, 10, and 12 Å. We
choose 10 Åfor the analysis here. When tallying up the number of short-range contacts
as a way of summarizing a distance matrix, the considered amino-acid pairs are (i, i + t),
where 1 < t ≤ 4 (the lower bound excludes the backbone). When tallying up the number
of long-range contacts, the considered amino-acid pairs are (i, i + t), where t > 4.

It is worth noting that the prediction/learning of long-range distances/contacts is a
more challenging task in protein modeling research. Short-range contacts delineate what is
known as the secondary structure in protein architecture, which is largely considered to be a
solved problem via classical, shallow machine learning models. Nonetheless, it is revealing
to understand what well-understood characteristics of realistic tertiary structures a GAN
has been able to learn and reproduce in its generated dataset.

The ability to summarize a distance matrix with one score, which gauges the presence
of local or distal structure, allows us to then capture a set of distance matrices with a
distribution. This in turn permits not only visualization of a training versus a generated
dataset but also quantitatively comparison of the (dis)similarity between these datasets as
a way of relating the performance of a particular GAN model.

2.6.3. Comparison of Distributions

We make use of several metrics to compare two given distributions, such as the
Maximum Mean Discrepancy (MMD), the Bhattacharya distance (BD), and the Earthmover
Distance (EMD), which we briefly summarize below.

Maximum Mean Discrepancy (MMD)

The MMD test statistic allows measuring the distance between two distributions p(x)
and q(y). Briefly, MMD is the largest difference in expectations µx and µy over functions in
the unit ball of a reproducing kernel Hilbert space (RKHS) and is defined as the squared
distance between the embeddings in an RKHSH; that is, MMD(p, q) = |µx − µy|2H [27].
MMD has been recently used in training generative adversarial models [28,29] to measure
the distance of generated samples to some reference target set. Here, we follow work in [30]

Molecules 2021, 26, 1209 8 of 23

to use MMD for model selection, so we can distinguish between different VAE models.
Specifically, rather than train a model using the MMD distance to a reference distribution (as
opposed to KL divergence, for instance), we use MMD to evaluate the relative performance
of various VAE models and find models that generate samples significantly closer to the
reference/training distribution.

Bhattacharya Distance (BD)

BD [31] measures the distance between two distributions p(x) and q(x) defined over
the same domain X. It is defined as BD(p, q) = − ln(BC(p, q)). The Bhattcharaya
coefficient BC(p, q)=∑x∈X

√
p(x)q(x). BC varies from 0 to 1. BD varies from 0 to ∞.

Earth Mover’s Distance (EMD)

EMD [32] is also known as the Wasserstein metric. EMD measures the distance
between two probability distributions over a domain. If the distributions are interpreted as
two different ways of piling up a certain amount of dirt over the domain, EMD returns
the minimum cost of turning one pile into the other. The cost is assumed to be the amount
of dirt moved times the distance by which it is moved. EMD can be computed by solving
an instance of the transportation problem, using any algorithm for minimum cost flow
problem, such as the network simplex algorithm [32].

2.7. Implementation Details

Experiments were conducted using the Pytorch framework on 2 Tesla V100 GPU’s
in parallel. For Vanilla GAN, the learning rate is set to 10−4 for both D and G, as in [14].
Binary cross entropy is used as the loss function, and the Adam optimizer is used with
beta values of (0.5,0.999). Training times over one training epoch vary from 15.5 s to 146 s.
Specifically, considering the FL = 6 and FL = 128 as providing the range and training
over one epoch results in 15.5–139.0 s for Vanilla GAN, 19.5–146.9 s for Vanilla GAN +
SpecNorm, 17.8–146.4 s for Vanilla GAN + VBN, and 18.7–92.0 s for WGAN.

3. Results
3.1. Experimental Setup

The experimental evaluation is organized in three main parts. First, we analyze the
ability of a model to reduce the loss of D and G and possibly achieve convergence of the
two over training epochs. This analysis highlights a few better models and an optimal
number of epochs, which are then carried forward and evaluated further in the rest of the
analysis. The second part of our analysis then compares the performance of the top models.
Specifically, we compare the quality of a generated dataset with the training/reference
dataset to determine whether the network has learned the underlying characteristics
of the training dataset. We relate this qualitatively and quantitatively, on each of the
characteristics, the presence of a backbone, the short-range contacts, and the long-range
contacts. The third part of our analysis then relates some actual distance matrices visually
for the top models in comparison with experimental data.

3.2. PartI: Convergence Analysis

We track the ability of G and D to reduce loss and converge together over training
epochs. The latter vary in {10, 20, 30, 50, 70, 100}. The Supplementary Material relates this
for all 9 models considered, (1) Vanilla GAN; (2) Vanilla GAN + TTUR; (3) Vanilla GAN
+ SpecNorm; (4) Vanilla GAN + VBN; (5) Vanilla GAN + TTUR + SpecNorm; (6) Vanilla
GAN + TTUR + VBN; (7) Vanilla GAN + SpecNorm + VBN; (8) Vanilla GAN + TTUR +
SpecNorm + VBN; and (9) WGAN, on each of the five training datasets (FL = 6, FL = 9,
FL = 16, FL = 64, and FL = 128).

Here, we relate the performance on the two more challenging datasets, FL = 64 and
FL = 128, for Vanilla GAN, Vanilla GAN + SpecNorm, Vanilla GAN + VBN, and WGAN.

Molecules 2021, 26, 1209 9 of 23

Our detailed analysis on all 9 models on each of the five training datasets indicates
that the four models related in Figure 3, Vanilla GAN, Vanilla GAN + SpecNorm, Vanilla
GAN + VBN, and WGAN, are more consistent in their ability to lower loss in both D and
G across the datasets and have both D and G be close and even converge to each-other in
terms of loss. We note that in the case of WGAN, it is possible to obtain negative values for
loss; in WGAN, the loss function only aims to separate between the scores for real versus
synthetic data as larger and smaller.

FL = 64 FL = 128
Vanilla GAN

Vanilla GAN + SpecNorm

Vanilla GAN + VBN

WGAN

Legend

Figure 3. Model performance is related in terms of loss over the FL = 64 and FL = 128 training datasets. Vertical black
dashed lines indicate epochs 20, 30, 50, and 70 as possible termination points.

Molecules 2021, 26, 1209 10 of 23

Analysis of loss also reveals that 50 training epochs are sufficient. The rest of the
analysis then focuses on the four models arrested at 50 training epochs and evaluates the
quality of their generated datasets in comparison with the training datasets on which they
are trained.

3.3. Part II: Comparison of the Quality of the Generated Datasets

As summarized above, we first aim to understand the impact of several decisions on
the quality of the generated dataset. One of these has to do with the neural network archi-
tecture we select. So, we evaluate the top four models listed above on three characteristics:
their ability to learn the presence of a backbone, their ability to reproduce short-range
structure, and their ability to reproduce long-range structure.

3.3.1. Evaluation of the Learned Backbone Structure

First, the average peptide bond length is calculated over a distance matrix, as described
in Section 2. The resulting distribution over a training dataset can then be compared to the
distribution obtained over a generated dataset. We relate these distributions visually in
Figure 4, on a representative dataset, FL = 64, comparing the generated dataset for each of
the four models (arrested at 50 training epochs) to the FL = 64 training dataset.

Vanilla GAN Vanilla GAN + SpecNorm

Vanilla GAN + VBN WGAN

Legend

Figure 4. The distribution of the average peptide bond length corresponding to the generated dataset for each of the top
four models, Vanilla GAN, Vanilla GAN + SpecNorm, Vanilla GAN + VBN, and WGAN, is shown here. The models are
trained on the FL = 64 dataset and arrested at 50 training epochs.

Figure 4 provides valuable information. First, it relates that, as expected, there is varia-
tion around the ideal 3.83 Åpeptide bond length in the training data, which corresponds to
experimentally-known tertiary structures. Second, it shows that Vanilla GAN and Vanilla

Molecules 2021, 26, 1209 11 of 23

GAN + SpecNorm result in tighter distributions but tend to pack consecutive CA atoms
closer together than what is experimentally observed. In contrast, there is more variety in
the average peptide bond length over the datasets generated by Vanilla GAN + VBN and
WGAN. The distribution obtained by Vanilla GAN + VBN seems to be bimodal, whereas
that obtained by WGAN, while more varied than the ones obtained by Vanilla GAN and
Vanilla GAN + SpecNorm, aligns well with the experimental data. One notices higher
peptide bond lengths obtained by WGAN, so we proceed with the stricter, complementary
evaluation of the presence of a backbone via the backbone length score.

Figure 5 shows the distribution of the backbone length scores corresponding to the
generated dataset for each of the four models, Vanilla GAN, Vanilla GAN + SpecNorm,
Vanilla GAN + VBN, and WGAN. We restrict this visualization-based analysis here to the
models trained on the FL = 64 dataset at 50 training epochs.

Vanilla GAN Vanilla GAN + SpecNorm

Vanilla GAN + VBN WGAN

Figure 5. The distribution of the backbone scores corresponding to the generated dataset for each of the top four models,
Vanilla GAN, Vanilla GAN + SpecNorm, Vanilla GAN + VBN, and WGAN, is shown here. The models are trained on
the FL = 64 dataset and arrested at 50 training epochs.

Figure 5 additionally confirms that Vanilla GAN and Vanilla GAN + SpecNorm
learn the backbone very well; the distributions are narrow and peak at 63 results in a
long-tailed distribution. Figure 5 also shows that WGAN learns tertiary structures with
the correct amount of backbone, but also generates a more diverse distribution consisting
of many tertiary structures with non-ideal placements of consecutive CA atoms.

We now summarize the distributions of the backbone length score with summary
statistics (mean, median, minimum, and maximum) and do so for all the settings; that is,
models arrested at 50 training epochs trained over the FL = 6, FL = 9, FL = 16, FL = 64, and
FL = 128 datasets. Table 1 relates these statistics.

Molecules 2021, 26, 1209 12 of 23

Table 1. For each fragment length (training dataset), the generated distribution of BackboneScores is
computed and summarized via its mean, median, minimum, and maximum values.

FL
Vanilla GAN

Mean Med Min Max

128 125.31 126 94 127

64 62.82 63 48 63

16 12.75 13 9 15

9 4.02 4 0 6

6 2.93 3 0 4

FL
Vanilla GAN + SpecNorm

Mean Med Min Max

128 125.04 126 101 127

64 62.83 63 18 63

16 12.62 13 11 14

9 5.99 6 3 6

6 0.01 0 0 2

FL
Vanilla GAN + VBN

Mean Med Min Max

128 127.00 127.0 127 127

64 49.08 61 0 63

16 15.00 15 13 15

9 7.94 8 4 8

6 4.98 5 3 5

FL
WGAN

Mean Med Min Max

128 51.94 49 0 127

64 25.56 24 0 63

16 0.005 0 0 10

9 5.52 6 0 8

6 0.47 0 0 5

Table 1 shows that Vanilla GAN and Vanilla GAN + SpecNorm learn the backbone
well. Both the mean and median are very close to the value FL− 1. Some variation is
observed on the FL = 64, FL = 16, and FL = 6 datasets, where distance matrices with shorter
backbones than expected (see minimum values reported) are present. The performance
of both models deteriorates when trained over the datasets of shorter fragments (FL = 6,
FL = 9, FL = 16).

Table 1 also shows that Vanilla GAN + VBN and WGAN underperform in compar-
ison with Vanilla GAN and Vanilla GAN + SpecNorm. In particular, under this strict
metric, WGAN captures essentially half or less of the backbone across all datasets. This
observation agrees with the distributions related above, which show that there is a broader
range in which WGAN places consecutive CA atoms in a generated distance matrix.

3.3.2. Evaluation of the Learned Short-Range Structure

We additionally summarize the performance of the top four models with respect to
the number of short-range contacts. In Figure 6, we compare such distributions over the
training versus the generated dataset in terms of BD, EMD, and MMD, and do so for each
model over the various training epochs on each of the training datasets. Specifically, the
distribution of the number of short-range contacts (computed as in Section 2) is constructed

Molecules 2021, 26, 1209 13 of 23

for a training and a generated dataset, respectively, and the two are compared via the
distance metrics related in Section 2.

Figure 6 shows that Vanilla GAN + SpecNorm and Vanilla GAN + VBN perform
better in the FL = 16 setting. However, as the size of the distance matrix increases (FL = 64
and FL = 128), Vanilla GAN and WGAN perform better. In addition, the performance of
Vanilla GAN improves with further training. Overall, all four models capture short-range
contacts well.

FL = 16

FL = 64

FL = 128

BD EMD MMD

Legend

Figure 6. The distribution of the number of short-range contacts in the generated dataset is compared to that in the training
dataset via the BD (left panel), EMD (middle panel), and the MMD (right panel) metrics described in Section 2. The
progression of these values as a function of the number of training epochs for a specific model is tracked here to show its
impact on the quality of the generated dataset. This comparison is conducted separately, for the models trained on the
FL = 16, FL = 64, and FL = 128 datasets. Due to the various ranges observed across these metrics and/or across the datasets,
the y axes are not scaled.

Figure 7 provides more detail and shows the distribution of the short-range contacts
corresponding to the generated dataset for each of the top four models, Vanilla GAN,

Molecules 2021, 26, 1209 14 of 23

Vanilla GAN + SpecNorm, Vanilla GAN + VBN, and WGAN. We restrict this here to the
models trained on the FL = 64 dataset. Figure 7 additionally confirms that all four models
do well with regards to learning short-range contacts.

VGAN VGAN + SpecNorm

VGAN + VBN WGAN

Legend

Figure 7. The distribution of the number of short-range contacts corresponding to the generated dataset for each of the top
four models, Vanilla GAN, Vanilla GAN + SpecNorm, Vanilla GAN + VBN, and WGAN, is shown here. The models are
trained on the FL = 64 dataset and arrested at 50 training epochs.

3.3.3. Evaluation of the Learned Long-Range/Distal Structure

We first relate a summary observation and compare the four models obtained at
50 training epochs. Figure 8 shows the generated versus the reference histograms of the
number of long-range contacts for each of the four models trained, respectively, over the
longer-fragment libraries of FL = 64 and FL = 128. Figure 8 shows that the two Vanilla
GAN variants underperform in capturing the long-range structure in a distance matrix.

Vanilla GAN versus WGAN: The above findings prompt us to investigate more in
detail the performance of Vanilla GAN and WGAN. Paying attention only to convergence
in loss can be misleading, as the model can converge in a local optimum of the loss surface.
Instead, here we now “arrest” a model at various training epochs varying in {10, 20, 30, 50}
and utilize the model learned at each “arrest” point to generate a dataset of the same size
(number of fragments) as the training dataset. We show representative results, where we
train models separately on the FL = 16, FL = 64, and FL = 128 datasets. As summarized
above, for each of these decisions, we compare the generated to the training dataset in
terms of the number of long-range contacts, as shown in Figure 9; effectively, each data

Molecules 2021, 26, 1209 15 of 23

point/sample is summarized by the number of long-range contacts in it, as described in
Section 2.

FL = 64 FL = 128

Vanilla GAN

Vanilla GAN + SpecNorm

Vanilla GAN + VBN

WGAN

Legend

Figure 8. The datasets generated by the top four models are compared to the reference dataset in terms of the number of
long-range contacts. The models are trained separately on each of the longer-fragment datasets (FL = 64 and FL = 128) and
are arrested here at 50 training epochs.

Molecules 2021, 26, 1209 16 of 23

Vanilla GAN, FL = 16

WGAN, FL = 16

Vanilla GAN, FL = 64

WGAN, FL = 64

Vanilla GAN, FL = 128

WGAN, FL = 128

Nr Epochs = 10 Nr Epochs = 20 Nr Epochs = 30 Nr Epochs = 50
Legend

Figure 9. In each plot, the distribution of the number of long-range contacts in the generated dataset is compared to that in
the training dataset. This is done for Vanilla GAN and WGAN, respectively. Results are shown separately, when these
models are trained on the FL = 16, FL = 64, and FL = 128 datasets. Results are shown as models are trained, as a function of
the number of training epochs, in order to additionally determine an optimal value for the length of the training in terms of
its impact on the quality of the generated dataset.

Molecules 2021, 26, 1209 17 of 23

Several observations can be drawn from Figure 9. First, Vanilla GAN performs better
than WGAN on the shorter fragments (FL = 16 dataset), even though the performance is
overall not optimal and worsens with longer training. The negative relationship between
the quality of the generated dataset and the longer training is revealing, as it suggests
that the model diverges into a sub-optimal part of the loss surface. This divergence is
more visible for WGAN. In contrast, this behavior is not observed on the longer fragments
(FL = 64 and FL = 128). In addition, in these datasets, WGAN performs better than Vanilla
GAN, as it achieves better overlap between the generated and reference datasets.

The above observations can be quantified by measuring the distance between the
generated and training dataset (the histogram of the number of long-range contacts) via the
metrics outlined in Section 2. Figure 10 tracks these distances over the number of training
epochs for each model (Vanilla GAN versus WGAN), trained separately on the FL = 16,
FL = 64, and FL = 128 datasets.

FL = 16

FL = 64

FL = 128

BD EMD MMD

Legend

Figure 10. The distribution of the number of long-range contacts in the generated dataset is compared to that in the training
dataset via the BD, EMD, and the MMD metrics described in Section 2. The progression of these values as a function of the
number of training epochs for a specific model (Vanilla GAN versus WGAN) is tracked here to show its impact on the
quality of the generated dataset. This comparison is conducted separately, for the models trained on the FL = 16, FL = 64,
and FL = 128 datasets.

Molecules 2021, 26, 1209 18 of 23

Figure 10 allows drawing the same observations from the visual analysis in Figure 9.
The divergence of the models (higher in its rate for WGAN over Vanilla GAN) is obvious
with the growing number of epochs on the shorter-length dataset (FL = 16). The improve-
ment of the quality of the generated dataset with longer training is obvious for both models
on the longer-fragment datasets (FL = 64 and FL = 128). While the improvement is more
drastic (higher rate of change) for Vanilla GAN, WGAN reaches lower distances overall
at each arrest point (over training epochs). Incidentally, this analysis also shows that the
results obtained with BD are not as intuitive to interpret; in contrast, EMD and MMD are
more robust.

3.4. Part III: Visualizing Distance Matrices as Heatmaps

Finally, we show some 64× 64 distance matrices generated by each model. These are
selected at random over the dataset generated by each model and are shown as heatmaps
in Figure 11, with darker colors indicating lower distances.

Training Dataset Vanilla GAN Vanilla GAN + SpecNorm Vanilla GAN + VBN WGAN

Figure 11. Three sets of distance matrices are selected at random and visualized as heatmaps, with darker colors indicating
lower distances. Column 1 shows distance matrices obtained from the training dataset. Columns 2–5 show distance matrices
obtained from datasets generated from the various models compared here.

Figure 11 shows the presence of the backbone in the distance matrices generated by
Vanilla GAN, Vanilla GAN + SpecNorm, and WGAN. This is visible as a dark line along
the main diagonal. In contrast, the distance matrices obtained by Vanilla GAN + VBN
lack such structure. Overall, the presence of some additional structure is visible in the
distance matrices generated by all the models. Darker regions can be seen off the main
diagonal. The distance matrices generated by each of these models, however, vary in
quality. In contrast to the other models, Vanilla GAN + VBN yields very atypical distance
matrices that do not resemble protein-like ones (compare with the left panel). Portions of
the backbone are missing, and many off-diagonal regions are dark, indicating that a large
number of the CA atoms are proximal. The distance matrices obtained by WGAN contain

Molecules 2021, 26, 1209 19 of 23

more realistic long-range structure off the diagonal that resembles what is observed in
protein tertiary structures (as shown for reference in the leftmost panel).

4. Conclusions

The study related in this manuscript seeks to understand the capabilities of founda-
tional GAN architectures that have performed so well in the image domain, such as the
baseline Vanilla GAN model analyzed here. However, a detailed investigation exposes
shortcomings of such architectures. The information present in tertiary structures, even
when encoded as distance matrices, is very rich, and the analysis presented here shows
that Vanilla GAN architectures fail to capture complex patterns, such as long-range con-
tacts, and their performance is highly susceptible to the size of the data objects (to which
we refer as fragment length). The study additionally reveals that mechanisms that are
touted as effective in stabilizing the training of a GAN model are not all effective, and that
performance based on loss alone may be orthogonal to performance based on the quality
of generated datasets.

The novel component of the presented study is the demonstration that Wasserstein
GAN, to which we refer as WGAN in this study, manages to capture both local and
distal patterns known as short- and long-range contacts, respectively. The fact that the
loss function in WGAN correlates with the quality of the generated distance matrices
seems to be key to learning protein-like tertiary structures. However, WGAN slightly
underperforms in capturing the backbone. To some extent, this is not as problematic, as
the location of the backbone is readily given away by the order of the amino acids in
the sequence. The more challenging problem is that of learning long-range patterns that
cannot be derived from just knowledge of the amino-acid sequence. In this respect, the
study in this paper relates a novel finding, that WGAN is effective for generating realistic,
protein-like tertiary structures.

We emphasize that the objective of this study is not to seek GANs for the problem
of tertiary protein structure prediction, though there is value in exploring alternative
approaches to AlphaFold2, particularly models with less inductive bias and leaner models
that do not require hundreds of TPUs for training. Though we await an actual publication
detailing AlphaFold2, we recognize here the latest development of its superior performance
in the latest CASP, which has led many to note that the tertiary protein structure prediction
is solved. We note that, while this is a scientific leap, it simplifies the problem of protein
structure prediction to the attainment of a single structure.

As we note in Section 1, we have known for a while that proteins are dynamic
molecules that switch between different structures under physiological conditions. There
has never perhaps been a better time when protein dynamics has been front and center
in the public eye; we point here to a growing number of studies reported broadly in
media showing the equilibrium motions of the receptor binding domain, the S1 subunit,
of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein
between a closed to a partially-open structure being key to its ability to bind to the human
Angiotensin-converting enzyme 2 (ACE2) receptor and so mediate viral entry in human
host cells [33–35]. Finding the structures that a protein accesses to regulate interactions
with molecular partners in the cell is an important problem. Obtaining a broad view of the
structure space is thus highly informative. We consider GANs as viable mechanisms to
obtain such a view, though the work, as we show in this paper, is in its infancy, and much
remains to be done. There is often interest in obtaining a view of the structure space in
atomistic detail. While we are eager to investigate end-to-end platforms that can directly
generate tertiary structures in the Cartesian representation in future work, in this paper we
utilize the distance matrix representation. Given a distance matrix (of distances of pairs of
CA atoms), there are multiple approaches to generate corresponding Cartesian Coordinates.
For instance, one can utilize the ADMM algorithm, which stands for “Alternating Direction
Method of Multipliers” [36]. ADMM combines dual decomposition and the technique of
multipliers and is based on a formulation of the tertiary structure reconstruction problem

Molecules 2021, 26, 1209 20 of 23

as a convex optimization one [37]. Our experimentation with ADMM (beyond the scope of
this paper) reveals that the algorithm often fails to complete, particularly on large distance
matrices corresponding to fragments of 64 and longer. In contrast, protocols can be setup
in Rosetta that utilize the distances in the distance matrix as restraints for a simulated
annealing algorithm seeking Cartesian Coordinates that optimize a restraint-based scoring
function. This approach presents its challenges, as well, as it may result in sub-optimal
solutions that may not satisfy all the specified restraints.

In principle, the process of adding more resolution (more atoms) is well understood.
There are many other options available to researchers to fill in missing backbone atoms
given CA atoms. We point, for instance, to BBQ [38], which is one of the top backbone
reconstruction protocols. Once the backbone is built, side chains can then packed onto the
reconstructed backbone via the Rosetta relax protocol [39] or the SCWRL software, both of
which yield low-energy atomistic tertiary structures.

Investigating how redundancy in the input dataset affects the generated dataset is an
interesting direction of future work. While the collection of the over 100K tertiary structures
we employ to construct the training dataset in this paper is certainly redundant, the training
dataset itself is under-sampled in the extraction/sampling of fragments. In contrast, if one
constructs a non-redundant dataset (reducing sequence identity and additionally using
SCOP or CATH classification as guidance to reduce structure redundancy, as well), then
one can better utilize a structure to sample many fragments from it. It is important that the
GAN see diverse examples of realistic small pieces.

Many other directions of future research present themselves, such as conditioning
generative models on specific amino-acid sequences, relaxing the condition of having fixed-
size objects in the training dataset, exploring loss functions that encode multiple objectives
related to capturing backbones, local, and distal structure precisely, as well as building
end-to-end models that start with tertiary structures and end with tertiary structures.

Data and Model Availability: The reader can find datasets and models at https:
//dx.doi.org/10.21227/m8sa-cz14 (accessed on 18 December 2020), which is housed at
IEEE Dataport. Specifically, the input dataset listing all PDB ids, alongside with code
to extract and build the training dataset for a given fragment length (to which we refer
as FL throughout this paper), is publicly-available at this link. In addition, the reader
can download all the top four models (Vanilla GAN, Vanilla GAN + SpecNorm, Vanilla
GAN + VBN, and WGAN), arrested/saved at different training epochs; namely, at epoch
10, 20, 30, 50, 70, and 100. Generated data are also available at the same link. We restrict the
latter to the data generated from the top two models, Vanilla GAN and WGAN, arrested
at epoch 50.

Supplementary Materials: The following are available online, Figure S1: Part I: Performance over
the FL = 6, FL = 9, and FL = 16 training datasets, respectively, is shownhere in terms of the average loss
over each training dataset. Loss is tracked over training epochs andshown for both the disriminator
and generator. Vertical red lines indicate epochs 20, 30, 50, and 70 aspossible termination points;
Figure S2: Part II: More models are related here in terms of their loss over the FL = 6, FL = 9, and
FL = 16 training datasets. Vertical red lines indicate epochs 20, 30, 50, and 70 as possible termination
points; Figure S3: Part III: Performance over the FL = 64 and FL = 128 training datasets, respectively,
is shownhere in terms of the average loss over each training dataset. Loss is tracked over training
epochs andshown for both the disriminator and generator. Vertical red lines indicate epochs 20, 30,
50, and 70 aspossible termination points; Figure S4: Part IV: More models are related here in terms of
their loss over the FL = 64 and FL = 128 training datasets. Vertical red lines indicate epochs 20, 30,
50, and 70 as possible termination points; Figure S5: The performance of WGAN is related here in a
similar manner, in terms of loss over eachof the training datasets. Vertical red lines indicate epochs
20, 30, 50, and 70 as possible terminationpoints. Recall that in WGAN, the loss function only aims to
separate between the scores for real versussynthetic data as larger and smaller, so negative values
can be obtained.

https://dx.doi.org/10.21227/m8sa-cz14
https://dx.doi.org/10.21227/m8sa-cz14

Molecules 2021, 26, 1209 21 of 23

Author Contributions: T.R. conceptualized and implemented the methodologies described here,
carried out the evaluation, and drafted the manuscript. Y.D. assisted with implementation and
evaluation of the methodologies and drafting of the manuscript. L.Z. and A.S. guided the research,
conceptualization, evaluation, and edited and finalized the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported in part by NSF Grant No. 1907805.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Training and generated data, as well as the top trained models, are
publicly-available at ieee-dataport.org under DOI 10.21227/m8sa-cz14 and can be downloaded
directly at https://dx.doi.org/10.21227/m8sa-cz14 (accessed on 18 December 2020).

Acknowledgments: Computations were run on ARGO, a research computing cluster provided by
the Office of Research Computing at George Mason University, VA (http://orc.gmu.edu accessed on
18 December 2020). This material is additionally based upon work by AS supported by (while serving
at) the National Science Foundation. Any opinion, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

Abbreviations
The following abbreviations are used in this manuscript:

ADMM Alternating Direction Method of Multipliers
BBQ Backbone Building from Quadrilaterals
BD Bhattacharya distance
CA Alpha Carbon
CASP Critical Assessment of protein Structure Prediction
EMD Earthmover Distance
GAN Generative Adversarial Networks
MMD Maximum Mean Discrepancy
PDB Protein Data Bank
SpecNorm Spectral Normalization
TTUR Two-Time Update Rule
VBN Virtual Batch Normalization
WGAN Wasserstein GAN

References
1. Boehr, D.D.; Wright, P.E. How do proteins interact? Science 2008, 320, 1429–1430. [CrossRef]
2. Callaway, E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 2020, 588,

203–204. [CrossRef] [PubMed]
3. Perdigao, N.; Heinrich, J.; Stolte, C.; Sabir, K.S.; Buckley, M.J.; Tabor, B.; Signal, B.; Gloss, B.S.; Hammang, C.J.; Rost, B.; et al.

Unexpected features of the dark proteome. Proc. Natl. Acad. Sci. USA 2015, 112, 15898–15903. [CrossRef] [PubMed]
4. Boehr, D.D.; Nussinov, R.; Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem.

Biol. 2009, 5, 789–796. [CrossRef] [PubMed]
5. Maximova, T.; Moffatt, R.; Ma, B.; Nussinov, R.; Shehu, A. Principles and Overview of Sampling Methods for Modeling

Macromolecular Structure and Dynamics. PLoS Comput Biol. 2016, 12, e1004619. [CrossRef]
6. Nussinov, R.; Tsai, C.; Shehu, A.; Jang, H. Computational Structural Biology: The Challenges Ahead. Molecules 2018, 24, 637.

[CrossRef]
7. Clausen, R.; Ma, B.; Nussinov, R.; Shehu, A. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic,

Cellular, and Multiscale Evolutionary Algorithm. PLoS Comput Biol. 2015, 11, e1004470. [CrossRef]
8. Sapin, E.; Carr, D.B.; De Jong, K.A.; Shehu, A. Computing energy landscape maps and structural excursions of proteins. BMC

Genom. 2016, 17, 456. [CrossRef]
9. Maximova, T.; Plaku, E.; Shehu, A. Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.

IEEE/ACM Trans. Comput Biol. Bioinf. 2017. [CrossRef]

https://dx.doi.org/10.21227/m8sa-cz14
http://orc.gmu.edu
http://dx.doi.org/10.1126/science.1158818
http://dx.doi.org/10.1038/d41586-020-03348-4
http://www.ncbi.nlm.nih.gov/pubmed/33257889
http://dx.doi.org/10.1073/pnas.1508380112
http://www.ncbi.nlm.nih.gov/pubmed/26578815
http://dx.doi.org/10.1038/nchembio.232
http://www.ncbi.nlm.nih.gov/pubmed/19841628
http://dx.doi.org/10.1371/journal.pcbi.1004619
http://dx.doi.org/10.3390/molecules24030637
http://dx.doi.org/10.1371/journal.pcbi.1004470
http://dx.doi.org/10.1186/s12864-016-2798-8
http://dx.doi.org/10.1109/TCBB.2016.2586044

Molecules 2021, 26, 1209 22 of 23

10. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative adversarial
networks. Commun ACM 2020, 63, 139–144. [CrossRef]

11. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks. In Proceedings of the 4th International Conference on Learning Representations (ICLR), Caribe Hilton, San Juan,
Puerto Rico, 2–4 May 2016.

12. Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. In Proceedings of the
7th International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

13. Sabban, S.; Markovsky, M. RamaNet: Computational De Novo Protein Design using a Long Short-Term Memory Generative
Adversarial Neural Network. F1000Research 2019, 9, 298. [CrossRef]

14. Namrata, A.; Po-Ssu, H. Generative modeling for protein structures. In Proceedings of the ACM Conference on Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; pp. 7494–7505.

15. Namrata, A.; Raphael, E.; Po-Ssu, H. Fully differentiable full-atom protein backbone generation. In Proceedings of the
International Conference on Learning Representations (ICLR) Workshops, New Orleans, LA, USA, 6–9 May 2019.

16. Hang, H.; Wang, M.; Yu, Z.; Zhao, X.; Li, A. GANcon: Protein contact map prediction with deep generative adversarial network.
IEEE Access 2020, 8, 80899–80907.

17. Ding, W.; Gong, H. Predicting the Real-Valued Inter-Residue Distances for Proteins. Adv. Sci. 2020, 7, 2001314. [CrossRef]
[PubMed]

18. Hoseni, P.; Zhao, L.; Shehu, A. Generative Deep Learning for Macromolecular Structure and Dynamics. Curr. Opin. Struct. Biol.
2020, 67, 170–177. [CrossRef]

19. DeGiacomi, M.T. Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space. Structure 2019,
27, 1034–1040. [CrossRef] [PubMed]

20. Alam, F.F.; Shehu, A. Variational Autoencoders for Protein Structure Prediction. In Proceedings of the ACM Conference on
Bioinformatics and Computational Biology (BCB), Virtual Event, USA, 21–24 September 2020; pp. 1–10.

21. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training GANs. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain; 5–10 December 2016; pp. 2234–2242.

22. Berman, H.M.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980.
[CrossRef]

23. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the
International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 2,
pp. 2672–2680.

24. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. arXiv 2017, arXiv:1706.08500.

25. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv 2018,
arXiv:1802.05957.

26. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein gan. arXiv 2017, arXiv:1701.07875.
27. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A Kernel Two-Sample Test. J. Mach. Learn. Res. 2012,

13, 723–773.
28. Li, Y.; Swersky, K.; Zemel, R. Generative moment matching networks. In Proceedings of the International Conference on Machine

Learning (ICML), Lille, France, 7–9 July 2015; pp. 1718–1727.
29. Dziugaite, G.K.; Roy, D.M.; Ghahramani, Z. Training generative neural networks via maximum mean discrepancy optimization.

arXiv 2015, arXiv:1505.03906.
30. Bounliphone, W.; Belilovsky, E.; Blaschko, M.B.; Antonoglou, I.; Gretton, A. A Test of Relative Similarity For Model Selection

in Generative Models. In Proceedings of the International Conference Learn Representations (ICLR), San Juan, Puerto Rico,
2–4 May 2016; pp. 1–16.

31. Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 1967, 15, 52–60.
[CrossRef]

32. Rubner, Y.; Tomasi, C.; Guibas, L.J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 2000, 40, 99–121.
[CrossRef]

33. Majumder, S.; Chaudhuri, D.P.; Datta, J.; Giri, K. Exploring the intrinsic dynamics of SARS-CoV-2, SARS-CoV and MERS-CoV
spike glycoprotein through normal mode analysis using anisotropic network model. J. Mol. Graph. Model. 2021, 102, 107778.
[CrossRef]

34. Henderson, R.; Edwards, R.J.; Mansouri, K. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol.
2020, 27, 925–933. [CrossRef] [PubMed]

35. Tian, H.; Tao, P. Deciphering the protein motion of S1 subunit in SARS-CoV-2 spike glycoprotein through integrated computational
methods. J. Biomol. Struct. Dyn. 2020. [CrossRef] [PubMed]

36. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Res. Mach. Learn. 2011, 3, 1–122.

37. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.

http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.12688/f1000research.22907.2
http://dx.doi.org/10.1002/advs.202001314
http://www.ncbi.nlm.nih.gov/pubmed/33042750
http://dx.doi.org/10.1016/j.sbi.2020.11.012
http://dx.doi.org/10.1016/j.str.2019.03.018
http://www.ncbi.nlm.nih.gov/pubmed/31031199
http://dx.doi.org/10.1038/nsb1203-980
http://dx.doi.org/10.1109/TCOM.1967.1089532
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1016/j.jmgm.2020.107778
http://dx.doi.org/10.1038/s41594-020-0479-4
http://www.ncbi.nlm.nih.gov/pubmed/32699321
http://dx.doi.org/10.1080/07391102.2020.1802338
http://www.ncbi.nlm.nih.gov/pubmed/32746720

Molecules 2021, 26, 1209 23 of 23

38. Gront, D.; Kmiecik, S.; Kolinski, A. Backbone building from quadrilaterals: A fast and accurate algorithm for protein backbone
reconstruction from alpha carbon coordinates. J. Comput Chem. 2007, 28, 1593–1597. [CrossRef] [PubMed]

39. Kaufmann, K.W.; Lemmon, G.H.; DeLuca, S.L.; Sheehan, J.H.; Meiler, J. Practically Useful: What the Rosetta Protein Modeling
Suite Can Do for You. Biochemistry 2010, 49, 2987–2998. [CrossRef]

http://dx.doi.org/10.1002/jcc.20624
http://www.ncbi.nlm.nih.gov/pubmed/17342707
http://dx.doi.org/10.1021/bi902153g

	Introduction
	Methods
	A Summary of GANs and Their Training
	GANs
	GAN Training

	Vanilla GAN
	Vanilla GAN Variants to Address Convergence
	Two-Time Update Rule (TTUR)
	Spectral Normalization (SpecNorm)
	Virtual Batch Normalization (VBN)
	Resulting Vanilla GAN Variants

	Wasserstein GAN: A Promising Model for Tertiary Structures
	Experimental Setup and Architecture
	Evaluating Generated Datasets
	Evaluating the Presence of Backbone Structure
	Evaluating the Presence of Local and Distal Structure
	Comparison of Distributions

	Implementation Details

	Results
	Experimental Setup
	PartI: Convergence Analysis
	Part II: Comparison of the Quality of the Generated Datasets
	Evaluation of the Learned Backbone Structure
	Evaluation of the Learned Short-Range Structure
	Evaluation of the Learned Long-Range/Distal Structure

	Part III: Visualizing Distance Matrices as Heatmaps

	Conclusions
	References

