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ABSTRACT
Peritoneal fibrosis is a crucial complication in patients receiving peritoneal dialysis. It is a
major pathological feature of peritoneal membrane failure, which leads to withdrawal of
peritoneal dialysis. No specific therapy has yet been established for the treatment of perito-
neal fibrosis. However, gene therapy may be a viable option, and various nano-sized carriers,
including viral and non-viral vectors, have been shown to enhance the delivery and efficacy of
gene therapy for peritoneal fibrosis in vivo. This review focuses on the use of nano-sized
carriers in gene therapy of peritoneal fibrosis in vivo.
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1. Introduction

Peritoneal dialysis is a home-based renal replacement
therapy for patients with end-stage renal disease [1].
The procedure involves injecting a peritoneal dialysis
solution into the abdominal cavity through an
inserted peritoneal dialysis catheter and using the
peritoneum as a dialysis membrane for ultrafiltration
and solute clearance [1]. Peritoneal dialysis has certain
advantages over hemodialysis, such as convenience,
economy, and a shorter dialysis time [1,2]. However,
peritoneal membrane failure represents a major
obstacle to continued long-term peritoneal dialysis
[3–6]. Peritoneal membrane failure manifests as dele-
terious structural and functional alterations caused by
exposure to bio-incompatible peritoneal dialysis solu-
tions [3–6]. Peritoneal fibrosis is a major pathological
feature of peritoneal membrane failure [6–8], charac-
terized histologically by myofibroblast proliferation
and excess accumulation of extracellular matrix,
including collagen, in the peritoneal mesothelium
[9,10]. No specific therapy has yet been established
for the treatment of peritoneal fibrosis. However,
numerous cell types, including mesothelial cells,
bone marrow-derived cells, endothelial cells, and
fibroblasts, have been reported to contribute to its
development [11], and in vivo studies aimed at
improving our understanding of the potential thera-
peutic approaches for peritoneal fibrosis are urgently
required. Gene therapy may be a potential therapeu-
tic option because it can target novel molecules that
were previously difficult to target using small mole-
cules or antibodies. Various nano-sized carriers,

including viral and non-viral vectors, have been
shown to enhance the delivery and treatment effects
of gene therapy [12,13]. This review focuses on the
use of nano-sized carriers in gene therapy of perito-
neal fibrosis in vivo.

2. Mechanism of peritoneal fibrosis
development

The mechanism of peritoneal fibrosis is shown in
Figure 1. Repeated exposure to peritoneal dialysis
solutions containing high concentrations of glucose
is considered to play a central role in the develop-
ment of peritoneal fibrosis in patients undergoing
peritoneal dialysis [3–6]. Glucose is degraded to glu-
cose-degradation products including methylglyoxal,
glyoxal, formaldehyde, and 3-deoxyglucosone during
heat sterilization [14–16], and these products are
further transformed to advanced glycation end-pro-
ducts [14,15,17–19]. Both the glucose-degradation
products and advanced glycation end-products have
been reported to activate transforming growth factor
(TGF)-β1 signaling in the peritoneal membrane, thus
promoting peritoneal fibrosis [14,15,17–20]. Activated
TGF-β1 promotes the proliferation of fibroblasts from
different origins, including mesothelial cells via
mesothelial–mesenchymal transition, bone marrow-
derived cells, and endothelial cells, in addition to
resident fibroblasts [21–24]. TGF-β1 also increases
the production of various extracellular matrix and
fibrogenesis-associated molecules such as Snail, fibro-
nectin, collagen I, and α-smooth muscle actin (α-SMA)
on the peritoneal membrane, leading to peritoneal
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fibrosis [21–24]. Both glucose-degradation products
and advanced glycation end-products have also
been reported to promote chronic inflammation char-
acterized by infiltration of macrophages [25,26], which
in turn secrete pro-fibrotic cytokines such as tumor
necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6,
as well as TGF-β1 [27–31]. These cytokines induce
peritoneal fibrosis by promoting fibroblast prolifera-
tion and type I collagen synthesis on the peritoneum
[32,33].

3. Nano-sized carriers for gene therapy of
peritoneal fibrosis in vivo

Various nano-sized carriers, including viral and non-
viral vectors, have been studied for the gene therapy
of peritoneal fibrosis (Figure 2) [34–45]. The different
categories of vectors, transgenes, and administration
routes, and their effects on peritoneal fibrosis in vivo
are summarized in Table 1.

3.1. Viral vectors

Various viral vectors have been investigated for peri-
toneal fibrosis, including adenoviral, adeno-associated
viral (AAVs), and retroviral vectors.

3.2. Adenoviral vectors

Adenoviral vectors are one of the most widely studied
viral vectors for gene therapy of peritoneal fibrosis in

vivo. Adenoviral vectors are double-stranded, non-
enveloped DNA viral vectors of 70–90 nm in diameter,
with a genome of 36–38 kb [46,47]. Transgenes can be
inserted into the DNA sequence of adenoviral vectors
[46,47], which are then transfected into cells via recep-
tor-mediated endocytosis [46,47]. Adenoviral vectors
have many advantages in terms of gene delivery,
including high transduction efficiency and a large capa-
city for transgene insertion into their DNA. However,
the high expression efficiency of transgenes delivered
using adenoviral vectors is transient because the trans-
genes are not integrated into the host genome by
these vectors [46,47]. However, adenoviral vectors
have been reported to deliver transgenes to the peri-
toneal membrane with high efficiency in peritoneal
fibrosis rodent models, and intraperitoneal administra-
tion of adenoviral vectors expressing the angiogenesis
inhibitor, angiostatin, inhibited peritoneal fibrosis by
inhibiting angiogenesis in rodent models [34,35].
Another study reported that intraperitoneal administra-
tion of adenoviral vectors expressing decorin, which
blocks TGF-β1 signaling, inhibited collagen accumula-
tion in the peritoneum but failed to improve the ultra-
filtration rate of the peritoneal membrane in a rat
peritoneal fibrosis model [35]. Intraperitoneal adminis-
tration of adenoviral vectors expressing bone morpho-
genetic protein-7 (BMP-7), which is an anti-fibrotic
molecule, was also shown to ameliorate peritoneal
fibrosis in a rat model [36]. In that study, adenoviral
vector-mediated BMP-7 delivery maintained increased
expression levels of BMP-7 in the peritoneum for up to
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Figure 1. Mechanism of peritoneal fibrosis development.
TGF: transforming growth factor; TNF: tumor necrosis factor; IL: interleukin; SMA: smooth muscle actin.
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14 days after administration [36], and inhibited
mesothelial–mesenchymal transition of cultured
human peritoneal mesothelial cells [36].

3.3. Adeno-associated viral vectors

AAVs are single-stranded, non-enveloped DNA viral
vectors 18–26 nm in diameter, with a genome of
4–5 kb [46,48,49]. AAVs can deliver transgenes into
both dividing and non-dividing cells, and can incorpo-
rate their transgenes into the host genome [46,48,49].
Intraperitoneal administration of AAVs expressing dec-
orin significantly inhibited peritoneal fibrosis, asso-
ciated with preserved peritoneal cell size, decreased
peritoneal thickness, and decreased expression of α-
SMA in the peritoneum in a mouse peritoneal fibrosis
model [37].

3.4. Retroviral vectors

Retroviral vectors are enveloped RNA viral vectors
80–130 nm in diameter, with a genome of 8–11 kb
[50]. Retroviral vectors can deliver transgenes into the
cell via an interaction between their envelope and cell
surface receptors [50]. Unlike adenoviral vectors, retro-
viral vectors only deliver transgenes into dividing cells
[50]. They can incorporate transgenes into the host gen-
ome and are therefore capable of long-term transgene
expression [38,50]. Cultured human peritoneal mesothe-
lial cells transfected with small interfering RNA (siRNA)
targeted to connective tissue growth factor (CTGF) using
retroviral vectors knocked down CTGF expression and
inhibited extracellular matrix production, including

fibronectin, collagen I, and laminin, as well as vascular
endothelial growth factor expression under stimulation
by TGF-β1 [38]. These results suggest that retroviral vec-
tor-mediated CTGF knockdown in peritoneal mesothelial
cells may be a promising tool for preventing peritoneal
fibrosis in vivo. However, the therapeutic effects of retro-
viral vector-mediated transgene delivery on peritoneal
fibrosis have not been investigated in vivo.

4. Non-viral vectors

Several studies have reported on the possible effects
of gene therapies using non-viral vectors for the treat-
ment of peritoneal fibrosis. Non-viral vectors have the
advantages of less immunogenicity and toxicity than
viral vectors when administered in vivo. In addition,
their preparation is relatively simple compared with
viral vectors. Non-viral vectors used for the treatment
of peritoneal fibrosis in vivo include liposome nano-
particles [39], gold nanoparticles [37], and cationic
gelatin nanoparticles [40], which have been shown
to deliver transgenes to the peritoneum effectively
in peritoneal fibrosis animal models and have demon-
strated efficacy in vivo (Figure 2) [37,39,40].

4.1. Liposome nanoparticles

Liposome nanoparticles consist of phospholipids and
cholesterol, which are the main components of the cell
membrane, and thus show high biocompatibility
[39,51,52]. Liposome nanoparticles have been reported
to deliver transgenes to the peritoneal membrane, and
demonstrated therapeutic efficacy in a mouse peritoneal

Viral vectors non-viral vectors

Adenoviral and AAV vector Retroviral vector Liposome nanoparticle 

Gelatine nanoparticle

Gold nanoparticle 

Figure 2. Viral and non-viral vectors for renal fibrosis in vivo.
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fibrosis model [39]. Intraperitoneal administration of lipo-
some nanoparticles encapsulating TGF-β1-siRNA
knocked down TGF-β1 expression in the peritoneum
and inhibited peritoneal fibrosis, associated with
decreased proliferation of α-SMA-positive myofibroblasts
derived from different cell types, including mesothelial
and bone marrow-derived cells [39].

4.2. Gold nanoparticles

Gold nanoparticles comprise a colloidal gold suspen-
sion in a fluid and have demonstrated high stability,
low toxicity, and low immunogenicity [53]. They were
shown to deliver transgenes to the peritoneum for
the treatment of peritoneal fibrosis in vivo [37].
Intraperitoneal administration of plasmid DNA expres-
sing decorin with gold nanoparticles inhibited perito-
neal fibrosis by inhibiting the effects of TGF-β1 in a rat
peritoneal fibrosis model [37].

4.3. Cationic gelatin nanoparticles

Gelatin is a protein derived from collagen [54]. Cationic
gelatin nanoparticles are produced chemically by intro-
ducing cations such as ethylenediamine, putrescine,
spermidine, or spermine to the carboxyl group of gela-
tin, and have been shown to protect transgenes against
degradation in vivo [40]. The release rate of transgenes
from cationic gelatin nanoparticles can be modulated by
changing the degradability of the gelatins [40]. Cationic
gelatin nanoparticles demonstrated therapeutic efficacy
in a mouse peritoneal fibrosis model [40]. Intraperitoneal
single injection of heat shock protein 47 (HSP47)-siRNA
entrapped with cationic gelatin nanoparticles was
shown to release HSP47-siRNA continuously over
21 days as a result of degradation of the gelatin nano-
particles [40]. They also significantly inhibited both
expression of HSP47 in the peritoneum and peritoneal
fibrosis, together with decreased expression of type III
collagen, TGF-β1, α-SMA, and monocyte chemoattrac-
tant protein-1 in peritoneal tissue in a mouse peritoneal
fibrosis model [40].

5. Other methods of gene therapy for renal
fibrosis in vivo

Intraperitoneal injection of naked, artificial, modified
oligonucleotides has shown therapeutic effects
against peritoneal fibrosis in vivo [41,42]. Ultrasound-
mediated transgene delivery also resulted in effective
delivery of transgenes to the peritoneum and thera-
peutic effects against peritoneal fibrosis in vivo [43].

5.1. Naked artificial modified oligonucleotides

Intraperitoneal injection of naked, antisense oligonu-
cleotides and artificially synthesized bridged nucleic

acids (BNA) inhibited peritoneal fibrosis in vivo [41,42].
Antisense oligonucleotides are short, artificial syn-
thetic 15–25 nt oligonucleotides [55], which include
phosphorothioate linkages that confer nuclease resis-
tance to enhance intracellular stability [55]. BNAs are
modified RNA nucleotides including a molecule with a
five- or six-membered bridged structure with a fixed
C3'-endo sugar puckering [56]. BNAs increase the
binding affinities to target oligonucleotides and trans-
gene stability [56]. Intraperitoneal injection of naked
HSP47 antisense oligonucleotides inhibited peritoneal
fibrosis in a rat model, associated with reduced
expression levels of HSP47, types I and III collagen,
and α-SMA, as well as reducing the number of infil-
trating macrophages in a rat peritoneal fibrosis model
[41]. In that study, HSP47 antisense oligonucleotides
were shown to inhibit HSP47 expression in cells,
including fibroblasts, in the peritoneal sub-mesothe-
lial zone [41]. Intraperitoneal injection of naked, artifi-
cially synthesized BNAs of microRNA (miRNA)-21
inhibitor inhibited peritoneal fibrosis by inhibiting
proliferation of myofibroblasts from different origins,
such as mesothelial cells, bone marrow-derived cells,
and endothelial cells, in addition to resident fibro-
blasts, and increased expression of the miRNA-21 tar-
get gene, peroxisome proliferator-activated receptor,
in a peritoneal fibrosis mouse model [42].

5.2. Ultrasound-microbubble-mediated transfer

Ultrasound-microbubble-mediated gene transfer has
been reported to deliver transgenes to the perito-
neum and to have therapeutic effects against peri-
toneal fibrosis in vivo [43]. Plasmid DNA expressing
mothers against decapentaplegic homolog 7
(Smad7) mixed with albumin-stabilized perfluorocar-
bon gas microbubbles was injected intraperitone-
ally, and the surface of the abdomen was then
exposed to ultrasound from the costal margin to
the pubic symphysis, resulting in overexpression of
Smad7 in the peritoneum, adipose tissue, mesen-
tery, greater omentum, and spleen, but not in the
liver, kidney, pancreas, or intestine in a rat model
[43]. This delivery method was shown to maintain
overexpression of Smad7 in the peritoneum for up
to 2 weeks and inhibited peritoneal fibrosis in a rat
peritoneal fibrosis model [43]. Ultrasound-microbub-
ble-mediated delivery of plasmid DNA expressing
miRNA-29b and miRNA-30a to the peritoneum
induced overexpression of the respective miRNAs
in the peritoneum and inhibited mesothelial–
mesenchymal transition of peritoneal mesothelial
cells, resulting in inhibition of peritoneal fibrosis in
a mouse peritoneal fibrosis model, by inhibiting
TGF-β1 and Snail signaling pathways, respectively
[44,45].

NANO REVIEWS & EXPERIMENTS 5



6. Summary

Various delivery systems for gene therapy of peritoneal
fibrosis have been developed. However, their long-term
efficacy, effects on other organs, and possible adverse
effects remain unclear. In addition, no study has yet
reported on vectors that can specifically target the perito-
neum. Further studies are therefore needed to investigate
these aspects and to develop delivery systems suitable for
delivering transgenes exclusively to the peritoneum.
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