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A B S T R A C T   

Background: Tuberculosis (TB) is a complex disease with a spectrum of outcomes for more than six 
decades; however, the genomic and epigenetic mechanisms underlying the highly heritable 
susceptibility to TB remain unclear. 
Methods: Integrated sequence-based genomic, transcriptomic, and methylation analyses were 
conducted to identity the genetic factors associated with susceptibility to TB in two pairs of 
Mongolian monozygous twins. In this study, whole-genome sequencing was employed to analyze 
single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and copy number 
variations (CNVs). Gene expression was assessed through RNA sequencing, and methylation 
patterns were examined using the Illumina Infinium Methylation EPIC BeadChip. The gene–gene 
interaction network was analyzed using differentially expressed genes. 
Results: Our study revealed no significant difference in SNP and InDel profiles between partici-
pants with and without TB. Genes with CNVs were involved in human immunity (human 
leukocyte antigen [HLA] family and interferon [IFN] pathway) and the inflammatory response. 
Different DNA methylation patterns and mRNA expression profiles were observed in genes 
participating in immunity (HLA family) and inflammatory responses (IFNA, interleukin 10 re-
ceptor [IL-10R], IL-12B, Toll-like receptor, and IL-1B). 
Conclusions: The results of this study suggested that susceptibility to TB is associated with tran-
scriptional and epigenetic alternations of genes involved in immune and inflammatory responses. 
The genes in the HLA family (HLA-A, HLA-B, and HLA-DRB1) and IFN pathway (IFN-α and IFN-γ) 
may play major roles in susceptibility to TB.   

1. Introduction 

Pulmonary tuberculosis (TB) is a lung parenchymal infection triggered by Mycobacterium tuberculosis [1,2]. In Southeast Asia, the 

Abbreviations: CNV, copy number variant; InDels, insertions and deletions; NGS, next-generation sequencing; SNPs, single nucleotide poly-
morphisms; TB, Tuberculosis. 
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incidence rate of TB stands at 246 cases per 100,000 individuals, while in China, it is reported at 52 cases per 100,000 people [1]. The 
well-established risk factors for TB include exposure to people with TB, younger age, immunosuppression, diabetes mellitus, silicosis, 
rheumatic diseases, steroid dosing, end-stage kidney disease, exposure to smoke, substance abuse, and healthcare workers [2,3]. One 
of the crucial features of TB is that only about 5–10 % of immunocompetent persons infected with M. tuberculosis will progress to active 
TB disease [4–6]. Therefore, in addition to the classical risk factors, host genetic factors have demonstrated to play important roles in 
susceptibility to TB. TB has been considered a complex trait for more than six decades [7]. Genetic susceptibility to this disease has 
been investigated using a number of twins from the last century, demonstrating a significant excess of monozygous twins with TB 
compared with dizygous twins and other pairs of siblings [8–10]. Given their virtually identical genetic background, homozygous 
twins have provided unmistakable evidence of the dominant role of genetic factors in the occurrence and development of TB. 

A number of genomic studies have recently been conducted to identify a set of genetic factors underlying susceptibility to TB 
including UBE3A [11,12], chromosome region 8q12–q13 [13], VDR, IL12, Il12RB1, INFG, MBL, DRB1, SFTPA1/2, and NRAMP1 
[14–17], MCP1 [18,19], chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, chromosome 7p22-7p21 for TB [20], TST1 and TST2 
[21], TNF1 [22], and CCL1 [23]. More specifically, genetic variants participating directly in human immunity such as interleukin 
(IL)-10, interferon (IFN)-γ, and nitric oxide synthase 2 play key roles in susceptibility to TB [24–28]. Additionally, previous studies 
have revealed the important roles of epigenetic modifications of a number of genes including NRAMP1, IFNG, NOS2A, VDR, ISG15, 
TACO, TLR1, TLR, IL18R1, PADI, DUSP14, and MBL, NLRP-3, and MASP-2 in TB susceptibility [29–32]. 

Most of these studies unraveling the contributions of host genetic factors to TB susceptibility have only been performed using a 
single gene expression method. To date, no study has integrated sequence-based genomic, transcriptomic, and methylation charac-
terization using monozygous twins, which is critical for understanding how DNA sequence and methylation affect RNA expression. 

In this study, we performed a twin study to identify the genetic factors underlying susceptibility to TB by integratively analyzing 
single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), gene expression profiles, copy number variant (CNVs), and 
gene methylation. 

2. Materials and methods 

2.1. Twin study design 

Two pairs of Mongolian monozygous twins (participant #1 and #6; participant #2 and #4) were recruited by the Affiliated 
Hospital of Inner Mongolia University for the Nationalities (Inner Mongolia, China) and The First Hospital of Jilin University (Jilin, 
China) in 2017. The study was approved by the ethics committee of the Affiliated Hospital of Inner Mongolia University for the 
Nationalities (Approval No. NM-LL-2016-10-13). Written informed consent was provided by all participants. All methods were per-
formed in accordance with the relevant guidelines and regulations. To avoid the impact of interference factors such as the disease itself 
and drug treatments on the multiomics analysis during the onset period, only patients who were cured for more than 1 year were 
included. The families of the two pairs of identical twin Mongolian girls in this study have lived for more than three generations in 
Inner Mongolia Xing’an Meng Keyouzhong Banner and ChifengBalin Right Banner, without blood relationship histories of inter-
marriage or histories of other immunological diseases or hereditable diseases. Two girls of each pair of twins (#1 and #2) were 
diagnosed with TB by sputum smear and computed tomography imaging, while the other girls (#4 and #6) were TB-free but had close 
or lengthy contact and lived with a person with TB. 

2.2. DNA and RNA extraction from blood samples 

A volume of 4 mL blood was added to the PAXgene Blood RNA Tube by venipuncture and EDTA-containing tube (2 mL) in January 
2017 and stored at − 80 ◦C. Total blood RNA was extracted using the PAXgene RNA Blood Mini Kit (Qiagen, Venlo, The Netherlands), 
according to the manufacturer’s instructions. The amount of RNA was quantified by the spectrophotometric A260 to A280 ratio of 1.8, 
whereas quality was assessed using denaturing gel electrophoresis using the Agilent 2100 system (Agilent Technologies, Santa Clara, 
CA, USA). Total blood DNA was extracted using the EDTA DNA Blood Mini Kit (Qiagen) according to the manufacturer’s instructions. 
The amount of DNA was quantified by the spectrophotometric A260 to A280 ratio of 1.8. All DNA and RNA samples were stored at 
− 80 ◦C. 

2.3. SNP and InDel detection 

Next-generation sequencing (NGS) was performed to analyze SNPs, CNVs, and InDels. Genomic DNA libraries were generated as 
previously described [33,34] for sequencing reads using the Illumina HiseqX Ten system (Illumina, Inc., San Diego, CA, USA). The 
sequences were aligned to the human reference genome (hg19) using GSNAP (https://www.gvst.co.uk/gsnap.htm) with a tolerance of 
5 % mismatch [34]. SNPs and InDels were detected with Alpheus software [33,34]. For SNP analysis, data filtering was conducted 
according to methods outlined in existing literature. Briefly, the data were filtered to validate genuine mutations due to the initial 
high-throughput sequencing data containing numerous false positive SNVs. Criteria for validation included mutations appearing in 
more than three reads covering the base position. Additionally, at least 30 % of all reads were required to cover the mutation. The GS20 
quality score was set at 20, discernible in reads from both directions. Furthermore, the target RefSeq mRNA sequence was detected in 
over 90 % of the same reads across the entire length. 
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2.4. CNV calling 

CNVs were identified based on sequence read depth. It employs diverse cluster sizes for guiding read clustering and utilizes a 
customized cutoff to identify discordant read pairs. The GC% and averaged sequencing depth of every sliding window of the sequenced 
genome were calculated. Then the values were modeled to a normal distribution with an estimated mean depth and standard deviation 
(SD) for each level of GC content. The region that had a depth significantly different from that of the whole genome average at the same 
level of GC content and with flanking sequences that had a depth significantly different from that in the region was considered a 
potential CNV. 

2.5. Gene expression and DNA methylation analysis by microarray 

DNA methylation patterns were analyzed using the Illumina Infinium HumanMethylation850 Bead Chip (Illumina, Inc.), according 
to the manufacturer’s instructions. R package minfi was used to perform methylation data preprocessing. Gene expression profiles 
were analyzed by PrimeView Human Gene Expression Array (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s 
instructions. 

Table 1 
CNVs in the two pairs of twins.  

Name Individual Haploid Type Confidence 

AGER 2# 2.79 Gain high 
4# 2.51 Normal high 
1# 1.92 Normal high 
6# 1.46 Loss high 

HLA-A 2# 1.69 Normal high 
4# 1.38 Loss high 
1# 3.05 Gain high 
6# 1.85 Normal high 

HLA-DMB 2# 1.65 Normal high 
4# 1.45 Loss high 
1# 1.87 Normal high 
6# 1.48 Loss high 

HLA-DOA 2# 2.55 Normal high 
4# 2.62 Gain high 
1# 1.71 Normal high 
6# 1.41 Loss high 

HLA-DQB1 2# 1.76 Normal high 
4# 1.39 Loss high 
1# 4.02 Gain low 
6# 1.82 Normal low 

HLA-E 2# 1.88 Normal high 
4# 1.44 Loss high 
1# 2.69 Gain high 
6# 1.79 Normal high 

HSPA1A 2# 1.56 Normal high 
4# 1.52 Loss high 
1# 1.74 Normal high 
6# 1.5 Loss high 

IFNA2 2# 1.91 Normal high 
4# 1.43 Loss high 
1# 2.26 Normal high 
6# 2.72 Gain high 

LTA 2# 1.98 Normal high 
4# 1.51 Loss high 
1# 2.86 Gain high 
6# 2.03 Normal high 

POU3F3 2# 0.47 Loss low 
4# 3.36 Gain low 
1# 2.41 Normal high 
6# 3.2 Gain high 

PSMB8 2# 2.73 Gain high 
4# 2.19 Normal high 
1# 1.55 Normal high 
6# 1.4 Loss high 

PSMB9 2# 1.98 Normal high 
4# 2.63 Gain high 
1# 2.73 Gain high 
6# 2.41 Normal high  
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2.6. Bioinformatics analysis 

The differentially expressed genes (DEGs) with official gene symbols (ID) between case and healthy participant in each pair of 
identical twins were detected using |log FC| ≥ 1.5 and maximum gene probe signal ≥ 7 as cutoff thresholds, after which pathway 
analysis was performed. Differentially methylated genes (DMGs) were identified using the beta difference value > 0.1 or < − 0.1 and p 
< 0.05 as a cutoff criterion. Gene-gene interaction analysis was performed by considering genes related to the TB pathway as the total 
gene. The Search Tool for the Retrieval of Interacting Genes database (https://string-db.org/) was used to extract the interaction 
relationships among genes in the TB pathways. Cytoscape software (version 3.5.1; www.cytoscape.org) was used to construct the gene 
interaction network. Meanwhile, the screened genes with differential methylation and differential expression profile interacted with 
genes in the TB pathways, followed by labeling of the genes according to the upregulation or downregulation relationship. 

2.7. Quantitative PCR validation 

SNPs and InDels detected with NGS were validated using Sanger sequencing on the ABI 7500 Sanger sequencer (Applied Bio-
systems, Foster City, CA, USA). The gene expression patterns were further confirmed by quantitative PCR (qPCR). CNVs and 
methylation were not further validated in the present experiment. 

3. Results 

3.1. SNPs and InDels 

SNPs were detected with NSG in the four participants, which were not further confirmed by Sanger sequencing, indicating that they 
were false positive. No differential frameshift variant or stop-gain InDel was detected. 

3.2. CNV calling 

Genomic CNVs (gains, losses, amplification, and homozygous deletion) in the two pairs of twins are summarized in Table 1. 
Participant #2 showed gain of copy numbers in AGER and PSMB8 and a loss in POU3F3 and PSMB9, whereas participant #4 had gain 
of copy numbers in HLA-DOA, POU3F3, and PSMB9 and a loss in HLA-A, HLA-DMB, HLA-DQB1, HLA-E, HSPA1A, IFNA2, and LTA. 
Participant #1 showed gain of copy numbers in HLA-A, HLA-DQB1, HLA-E, LTA, and PSMB9 and no loss, whereas participant #6 had 
gain of copy numbers in IFNA2 and POU3F3 and a loss in AGER, HLA-DMB, HLA-DOA, HSPA1A, and PSMB8. The DEGs between 
participant #1 and participant #6 as well as between participant #2 and participant #4 are presented in Supplementary Tables S1, S2, 
and S3. 

3.3. Methylation analysis 

As shown in Table 2, a total of nine DMGs were identified between participant #2 and participant #4 by a non-overlapping sliding 
window of 10 kb (Table 3) including BCHE, CARD16, CASP1, CD5L, HLA-DRB1, IRAK4, PDE3B, PRKCZ, and TNFAIP3; and six DMGs 
including AMELY, BBS2, HLA-B, IFRD1, IGF2R, and PLGC2 were detected between participants #1 and #6. 

3.4. mRNA expression profile 

The differentially expressed mRNAs are presented in Fig. 1. Compared with participant #4, participant #2 had lower mRNA 
expression of DMGs DLAT, CXCL8, and PTPN22 and higher expression of MMP9 (Fig. 1A). The mRNA expression of DMGs including 
ANXA1, ANXA4, CASP3, DEFA4, FCGR3A, CXCL5, STAT1, STAT2, and CCR2 were lower, whereas expression of CASP1, CARD16, AIF1, 
ANXA3, CASP4, FCGR1A, SO110, IL15, S100A8, SOCS3, LY96, and CLEC12A were higher in participant #1 compared with identical 
twin participant #6 (Fig. 1B). Fig. 2A and B presents the gene-gene interaction network of DEGs leading to TB. A total of 216 DEGs 
were screened as potential core regulators of TB development in identical twin pairs, indicating very complex gene-gene interactions 
among all DEGs. Among them, 157 and 59 DEGs were overlapped with TB pathways between participant #1 and #6, and between 
participant #2 and # 4, respectively. The genes participating in inflammation (IFNA, IL-10R, IL-12B, TLR, and IL-1B), immunity (HLA 

Table 2 
Gene methylation between participants #1 and #6.  

UCSC_REFGENE_NAME UCSC_REFGENE_GROUP UCSC_CPG_ISLANDS_NAME 

AMELY TSS1500  
BBS2 Body  
HLA-B Body chr6:31323946-31325211 
IFRD1 TSS200;5′UTR chr7:112090122-112091412 
IGF2R Body  
PLCG2 Body   
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family), and the cell cycle (mitogen-activated protein kinase and phosphoinositide 3-kinase) had higher betweenness centrality, de-
gree, indegree, and outdegree, playing crucial roles in TB progression. 

4. Discussion 

As a complex trait, genetic studies on TB have been extensively ongoing for decades; however, genomic and epigenetic mechanisms 
underlying inheritable susceptibility to TB remain unclear. Monozygotic twin pairs have long been thought to share 100 % of their 
genomic information. Genetic differences between monozygotic twins through genomic analyses of CNVs and sequence level variants 
provide the fundamentals for detection of TB risk genes and variants. In the present study, we performed integrated sequence-based 
genomic, transcriptomic, and methylation analyses with NSG for two pairs of monozygotic twins to characterize the genetic factors of 
TB susceptibility. The results revealed associations of inheritable susceptibility to TB with genomic and epigenetic alternations of genes 
participating in the immune and inflammatory responses. 

In this study, we demonstrated several alternations at the SNP and InDel levels in each pair of identical monozygotic twins. 
However, these alternations were confirmed to be false positives by Sanger sequencing, indicating that susceptibility to TB might not be 
due to the gene itself, but rather to gene expression affected by the environment and exposure. Alternations of several key genes such as 
HLA-DOA, POU3F3, PSMB9, HLA-A, HLA-DMB, HLA-DQB1, HLA-E, HSPA1A, IFNA2, and LTA were detected between participants with 
and without TB in each pair of identical twins at the CNV level, contributing to the immune and inflammatory responses during TB 
development. The HLA family consists of major histocompatibility complex (MHC) class I and II in humans, and regulates the 
immunological recognition to play critical roles in the immune responses against many diseases and disorders. HLA class I molecules 
present peptides of proteins from within the cell to cytotoxic T cells for destruction of infected cells, whereas class II proteins present 
peptides from outside the cells to T cells for defense against pathogens [35]. HLA class I [36–38] and class II [39–42] alleles are 

Table 3 
Gene methylation between participants #2 and #4.  

UCSC_REFGENE_NAME UCSC_REFGENE_GROUP UCSC_CPG_ISLANDS_NAME 

BCHE TSS200;TSS200  
CARD16 TSS200;Body;Body;Body;Body;Body;TSS200  
CASP1 TSS200;Body;Body;Body;Body;Body;TSS200  
CD5L 3′UTR  
HLA-DRB1 Body chr6:32551851-32552331 
IRAK4 1stExon;5′UTR;TSS1500;TSS1500;5′UTR;5′UTR;TSS1500;TSS1500;TSS1500 chr12:44152506–44152922 
PDE3B Body  
PRKCZ Body; Body; Body  
TNFAIP3 3′UTR   

Fig. 1. Differential mRNA expression between participants #2 and #4 (A), and between participants #1 and #6 (B).  
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diagnostic markers for TB susceptibility, specifically in HLA-DQA1, HLA-DQB1, and HLA-DRB1. Accordingly, our study further 
confirmed associations of genomic alternations in HLA-DQB1, HLA-DQB5, HLA-A, HLA-DRB5, HLA-DRB1, HLA-DOA, HLA-DMB, and 
HLA-E, with inheritable susceptibility to TB. In addition, epigenetic variations in HLA-DRB1 and HLA-B were apparent to be involved in 
TB. 

IFNs are a group of signaling proteins released by host cells to regulate the activity of the immune system in response to the 
presence of a pathogen [43]. Genetic changes of IFNs are associated with TB susceptibility. Mutations in IFN-γ confer different sus-
ceptibilities to different M. tuberculosis strains [44–46]. Susceptibility to atypical TB might be associated with mutations in one of the 
five genes in the IFN-γ pathway [47]. Lee et al. [45] revealed that three IFN-γ polymorphisms confer higher TB risk in Han Taiwanese. 
In this study, we revealed the association of a SNP in IFNA8 and a CNV in IFNA2 with TB in two pairs of Mongolian monozygous twins. 

In this study, some factors including chemokine (C motif) ligand (XCL1), phosphodiesterase 4 (PDE4) and MUCB5 are also involved 
in the immune response to TB. XCL1 is a C class chemokine produced by T cells and natural killer T cells during infectious and in-
flammatory responses, playing an important role in the dendritic cell-mediated cytotoxic immune response [48] and TB [49]. In this 
study, we detected the association of a SNP in XCL1 with TB. PDE4 is a target for improving the antibiotic response in TB [50]. A SNP in 
PDE4A was found to be associated with TB in the present study. MUCB5 [51,52] and SERPINA1 [53] are reportedly involved in lung 
disease, but there has been no report of their involvement in TB. We detected the association of MUCB5 and an InDel in SERPINA1 with 
TB for the first time in the present study. MUCB5 is the major mucin associated with lung disease, whereas SERPINA1 serves as a serine 
protease inhibitor that participates in the protection of lungs against neutrophil elastase [53]. The findings of this study provide new 
insights into other factors that were previously unknown; however, further studies are needed to address the functions of novel factors 
in TB development and progression. 

Our study also demonstrated the potential roles of genes affected by CNVs in TB development including AGER, HSP1A1, LTA, and 
PSMB8/9. AGER within MHC class III region is a cell surface transmembrane multiligand receptor that plays an important role in 
inflammation and lung disease [54]. HSP1A1 is believed to play a role in modulating the macrophage response to M. tuberculosis after 
silver nanoparticle treatment [55]. Polymorphisms of LTA are reported to be involved in the response of TB to treatments [56]. 
Polymorphisms of PSMB8 are reportedly associated with intestinal TB [57], whereas PSMB9 is a major hub gene for TB [58]. The 
function of POU3F3 in TB remains unclear. Further study is required to fully characterize the potential functions of these CNV-altered 
genes in TB. 

Previous studies have revealed that the epigenetic changes in TB are very important issue for the diagnosis and treatment of TB [29, 
59]. A number of methylated genes are associated with TB including HLA-DRB1 and HLA-B. However, the epigenetic mechanisms of 
several methylated genes underlying TB are still undetermined and need to be addressed by additional studies. Our study provided the 
expression profiles of several mRNAs involved in TB. The mechanisms of mRNA regulating TB development are very complex, 
involving a set of factors such as epigenetics. In the present study, two pairs of monozygous twins with and without TB were compared 

Fig. 2. Gene-gene interaction analysis of DEGs leading to TB between participants #2 and #4 (A) and between participants #1 and #6 (B). A total 
of 216 DEGs were screened as potential core regulators of TB development in identical twin pairs, indicating very complex gene–gene interactions 
among all DEGs. The outermost circle refers to methylation, where purple represents upregulation, yellow represents downregulation, and white 
represents genes that were not differentially methylated. The inner circle refers to the expression profile, where red represents upregulation, green 
represents downregulation, and white represents genes that were not differentially expressed. Genes with non-significant differences in methylation 
and expression profiles are shown in light blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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to identify differences in transcriptional genes with a high degree of genetic consistency, which could be considered one factor 
associated with susceptibility to TB or one of the changes caused by TB. However, gene expression in both pairs of identical twins were 
different in this study. Additional studies are essential to address the factors influencing the expression of these mRNAs. 

The findings of this study are limited by the fact that they are from only two pairs of Mongolian monozygous twins. Additional 
studies are needed to validate the findings in clinics for a better understanding of the genetics underlying the inheritable susceptibility 
to TB. 

5. Conclusions 

In conclusion, inheritable susceptibility to TB is associated with transcriptional and epigenetic alternations of genes involved in the 
immune and inflammatory responses. The genes in the HLA family and IFN pathway play major roles in susceptibility to TB. Further 
studies using larger twin cohorts and additional DNA sources of cases are needed to confirm our results and overcome the limitations of 
this study. 
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