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Hypoxia facilitates tumour cell detachment by reducing
expression of surface adhesion molecules and adhesion
to extracellular matrices without loss of cell viability
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Summary The effects of acute hypoxia on integrin expression and adhesion to extracellular matrix proteins were investigated in two human
melanoma cell lines, HMB-2 and DX3, and a human adenocarcinoma cell line, HT29. Exposure to hypoxia caused a significant down-
regulation of cell surface integrins and an associated decrease in cell adhesion. Loss of cell adhesion and integrin expression were transient
and levels returned to normal within 24 h of reoxygenation. Other cell adhesion molecules, such as CD44 and N-CAM, were also down-
regulated after exposure of cells to hypoxia. Acute exposure to hypoxia of cells at confluence caused rapid cell detachment. Cell detachment
preceded loss of viability. Detached HMB-2 and DX3 cells completely recovered upon reoxygenation, and floating cells re-attached and
continued to grow irrespective of whether they were left in the original glass dishes or transferred to new culture vessels, while detached HT29
cells partly recovered upon reoxygenation. Cell detachment after decreased adhesion appears to be a stress response, which may be a factor
enabling malignant cells to escape hypoxia in vivo, with the potential to form new foci of tumour growth.
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A variety of chemical and physical agents, as well as some physio-
logical stimuli, are able to affect biochemical pathways in cells.
Agents that elicit these so-called stress responses include ionizing
radiation, UV light, chemicals (including some drugs), heat,
nutrient deprivation and, in particular, exposure to hypoxia.
Radiation and hypoxia share some behavioural homology in their
ability to up-regulate some intracellular pathways, which include,
for example, enhanced phosphorylation of proteins involved in
signal transduction (Hasan et al, 1996).

It has been reported that tumour cells treated in vitro either with
ionizing radiation (Onoda et al, 1992) or with exposure to hypoxia
(Young et al, 1988), show an enhanced ability to form metastatic
lung nodules in recipient mice. This suggests that these two stimuli
evoke changes that alter the malignant phenotype of the treated
cancer cells, and there are some data to suggest that these changes
may involve the regulation of cell adhesion. Thus, in the radiation
study cited above, increased expression of the integrin aIIP3 on
treated cells was noted (Onoda et al, 1992). There is also clinical
evidence (Brizel et al, 1996; Hockel et al, 1996) indicating the
possible role of hypoxia in inducing progression of tumour cells to
increased malignancy and metastatic ability.
Many of the adhesive interactions of tumour cells are mediated

by the integrin family of cell surface receptors (Juliano, 1987;
Juliano and Varner, 1993). Cell adhesion to the extracellular matrix
can be influenced by either changes in regulation of integrin
expression or functional changes caused by conformational modi-
fication in the structure of integrin subunits (Juliano, 1987; Hynes,
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1992; Hart, 1996). It is clear that integrins play a major role in the
processes of invasion and metastasis, although precise mechanisms
of integrin involvement are complicated because these structures
also participate in other processes, such as in signal transduction,
as well as in simple cell adhesion (Hynes, 1992).

In the present paper, we report that changes in cell adhesion,
brought about by hypoxic stress, occur as a consequence of
changes in the expression of cell adhesion molecules (integrins in
particular) in human tumour cell lines. Should such changes also
occur in vivo then hypoxia could have significant effects upon the
adhesive and migratory behaviour of malignant cells.

MATERIALS AND METHODS

Cell culture

Human cutaneous melanoma (HMB-2) and (DX3) and human
adenocarcinoma (HT29) cells were cultured in minimum essential
medium (MEM) supplemented with 10% fetal calf serum (FCS),
glutamine (5 mM) and penicillin/streptomycin (100 U/100 gg ml-').
Cells were grown on glass dishes for at least 3 days. To initiate
hypoxia, glass dishes, without lids, were put in a polypropylene box
fitted with an inlet-outlet system and the box was purged with
continuous flow (500 ml min-1) of 95% nitrogen, 5% carbon
dioxide (BOC) for various periods. This system renders cells radio-
biologically hypoxic within 1 h (Stratford et al, 1980; Sutherland et
al, 1982), corresponding to an oxygen tension less than 400 p.p.m.
Duration of hypoxic exposure was defined from the start of
nitrogen purging.

Cell adhesion assay

Ninety-six-well plates, untreated for cell culture (Costar), were
coated with collagen type I (10,g ml-'), fibronectin (10 ,ug ml-')
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or vitronectin (5 ,ug ml-') either overnight at 4°C or 90 min at
37°C, washed twice with phosphate-buffered saline (PBS) and
blocked in 0.1% bovine serum albumin (BSA) in PBS for 1-2 h at
37°C. The plates were re-washed with PBS just before addition of
the cells. Cells (either exposed to hypoxia or left under normoxic
conditions at 37°C) were trypsinized, washed once with full
medium and twice in serum-free medium. Cells were resuspended
in serum-free MEM at 1x106 cells ml-' and 50 gl were added to
coated wells in quadruplicate. The same number of cells was also
added to uncoated, but BSA-blocked, wells on the same plate to
act as a negative adherence (blank) control. In some experiments,
TS2/16 antibody (anti-,B1; 18 jg ml-' final concentration) was
added to the cells. Plates were then incubated at 37°C for 30-45
min. Unbound cells were washed off gently in PBS by immersion
and flicking; 100 gl of growth medium was then added to adherent
cells and the plates left at 37°C for a further 30 min. At the same
time, 50 gl aliquots from the same untreated and hypoxia-treated
cells were added to a tissue culture 96-well plate in quadruplicate,
to act as a positive input or as the total cell count to be used in the
calculation of percentage cell adhesion. The adhesion assay was
carried out in such a way to avoid using multiple control samples,
by terminating the different hypoxic exposures at the same time
and measuring adhesion of all hypoxic samples and the control
(normoxic, 0 h hypoxia) on one plate at the same time.

Adherent cells and total cell counts were quantified by the
CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay
(Promega). This assay uses an MTT derivative (MTS), which is a
tetrazolium salt, and an electron-coupling reagent, phenazine
methosulphate (PMS). MTS is bioreduced to a formazan that is
soluble in tissue culture medium. The absorbence of the formazan
at 492 nm can be measured directly from 96-well plates. Freshly
prepared reagent (20 pl) was added to cells in 100 pl of growth
medium. Plates were incubated at 37°C for 1-2 h and read at
492 nm using a plate reader. We confirmed that this assay was
linear with cell number.

Cell adhesion of each sample was calculated as follows:

% Adhesion = [Mean OD (adherent cells) - mean OD (blank
adherent cells) xlOO] / [Mean OD (total cells) -mean OD
(blank total cells)]

Data are expressed as the percentage adhesion ± s.d. of% adhesion
(calculated from the combination of the s.d. and the individual OD
values, according to Squires, 1968). Statistical analysis of the
significance of observed differences between samples and controls
was carried out by comparisons of all pairs using Tukey-Kramer
HSD in the SAS JMP statistics package (P < 0.05 was considered
to be significant).

Cell viability/colony-forming ability

The MTS assay above only measures metabolically active cells,
thus it was used to determine viability and reproductive integrity
of cells. After cells were either trypsinized or detached by hypoxic
exposure, 5 x 104 cells were added in quadruplicate to a 96-well
culture plate and assayed 1 h after plating to compare viability of
hypoxic and untreated cells. Cell viability was also confirmed by
trypan blue exclusion.
To determine the proliferative capacity of untreated and

hypoxia-detached cells, 1 x 104 cells per well were added in
quadruplicate to a 96-well cell culture plate and assayed with MTS
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Figure 1 Effect of exposure to hypoxia on adhesion of HMB-2 cells to
fibronectin substrate. Hypoxia-treated and normoxic cells (O h hypoxia) were
trypsinized, washed and adhesion to fibronectin was measured as described
in Materials and methods. Cells detached by longer hypoxic exposures (no
trypsinization) were washed in serum-free medium and assayed for adhesion
to fibronectin (horizontal rectangle represents the area where initial cell
detachment from growth vessel occurred, i.e. 4-5 h for confluent and 9-10 h
for exponential cells). The experiment shown is representative of five
independent experiments. *P < 0.05

after 3 days of growth. The plating efficiency (PE) of hypoxia-
detached and untreated cells was determined by plating known
numbers of cells in cell culture flasks and counting the number of
colonies that arose after 10 days of growth.

Flow cytometry

After detachment by trypsin treatment and recovery in full growth
medium (30 min), cells were washed in ice-cold PBS containing
0.1% BSA and 0.1% sodium azide and resuspended at
106 cells ml-'. Several monoclonal antibodies were used in this
study (final concentrations in brackets): L230 (anti-av, 18 gg ml-')
and TS2/16 (anti-51, 12 jig ml') were obtained from the
American Type Tissue Culture Collection. LM609 (anti-av,3,
1:100; Chemicon International), P4H9 (anti-P2, 1:100; Life
Technologies), p2Al (anti-CD44, diluted hybridoma supernatant;
Marshall et al, unpublished), ERIC-I (anti-NCAM, 18 ,ug ml-'; a
gift from Dr J Kemshead, Bristol) were also used. Control antibody
was non-immune mouse IgG (Dako). Cells were incubated with
MAbs at 4°C for 30-45 min. The cells were then washed three
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Figure 2 Effect of hypoxia (4 h) on adhesion of HMB-2 cells to collagen in
absence or presence of anti-integrin antibodies. The anti-p1 antibody
(TS2/16; 12 ,ug ml-' final concentration) induced adhesion of HMB-2 cells to
collagen. The experiment is one of three similar independent experiments.
*P < 0.05

B
times. Secondary FITC-anti-mouse IgG (Sigma) was added (1:120
dilution) to cells for 30 min at 4°C, then washed three times and
resuspended in 0.5 ml of PBS. Finally, cells were analysed for
surface integrin expression by flow cytometry (FACScan, Becton
Dickinson) using the Lysis II program.

RESULTS

Cell adhesion

The adhesion of HMB-2, DX3 and HT29 cells to extracellular
matrix proteins (collagen, fibronectin and vitronectin) was tested
in initial experiments and it was found that HMB-2 cells adhere
mainly to fibronectin and vitronectin, with very little adherence to
collagen. DX3 cells showed substantial levels of adherence to all
three substrates, while HT29 cells mainly adhered to collagen with
less, but still significant, levels of binding to fibronectin and
vitronectin.

Figure 1 shows a representative experiment in which exposure

of HMB cells to hypoxia caused a reduction in cell adhesion to
fibronectin. The extent and rate of loss of adhesion was highly
dependent on the growth phase of the cell culture. Confluent cells
lost their adhesive capacity much faster than exponentially
growing cells; preliminary data (not shown), using conditioned
medium of confluent cells on exponentially growing cells, show
that the speed of loss of adhesion is dependent on both cell density
and factors in the culture medium. DX3 and HT29 cells behaved in
a similar way to HMB cells and adhesion to all extracellular
matrices tested was reduced in a similar fashion (data not shown).

Adherence of HMB-2 cells to collagen, which was already very

low, was apparently reduced even further by hypoxia. However,
the use of anti-integrin activating antibodies, such as TS2-16 (anti-
,B1), showed that, in both control and hypoxia-exposed cells, adhe-
sion was immediately and significantly increased by treatment
with this functional activator, as shown in Figure 2. The level of
adhesion of both HMB-2 cells (Figure 3) and DX3 cells (data not
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Figure 3 Effect of reoxygenation on cell adhesion. Confluent HMB-2 cells
(A) were exposed either to 2 h of hypoxia (to cause a medium loss of
adhesion) or to 5 h of hypoxia (to cause cell detachment) then allowed to
recover in an incubator gassed with 5% carbon dioxide in air. Exponential
HMB-2 cells (B) behaved in a similar manner but the hypoxic exposure had
to be longer (either 5 or 9 h) to achieve similar time scales. *P < 0.05

shown) returned to normal levels within 24 h of reoxygenation,
with the rate of return depending on the extent of hypoxic
exposure and growth phase.

Cell detachment

Hypoxia caused eventual detachment of cells from the growth
vessels. Continuous observation of cells under hypoxia showed
that the detachment process is rapid and complete within 30 min
after detachment is initiated. Cells detached in confluent layers or
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Figure 4 Effect of hypoxia/reoxygenation on cell viability/growth. HMB-2 cells were detached completely by hypoxia (4 h) and plated in 96-well plates at similar
cell numbers to untreated, trypsinized cells. Cells were assayed after 1 h (viability) or 3 days (growth). At the same time, cells were plated at known numbers in
cell culture flasks to be assayed for colony formation 10 days later

small multicellular aggregates termed 'flakes' (80% flakes, 20%
single cells are estimated), hence it was possible to observe the
onset of detachment by the naked eye. The suggestion from these
empirical observations is that adhesion to the extracellular matrix
is lost before the loss of cell-cell contact. Aspiration of these
flakes by gentle pipetting resulted in the formation of a single-cell
suspension. Hypoxia-detached cells retained about 60% of adhe-
sion compared with untreated cells (the horizontal box in Figure 1
shows the area where initial cell detachment is observed).
Confluent cells detached sooner (5-6 h) than exponentially
growing cells (10 h). Further hypoxia treatment of detaching cells
resulted in further loss of adhesion to extracellular components
(Fibronectin), as shown in Figure 1, and caused cell-cell detach-
ment and the formation of a single-cell suspension. Therefore, the
initial detachment of cells was used as a marker point to terminate
the hypoxic exposure of cells so as to retain cell viability.

Cell viability/colony-forming ability

Exposure of HMB and DX3 cells to hypoxia sufficient to detach
cells had no effect on cell viability and the capacity of cells to
grow and form new colonies. This was most evident when
hypoxia-detached cells were found to be able to reattach within a
couple of hours, in a similar way to trypsinized untreated cells, and
to continue growth after reoxygenation if left in the original
growth vessel or when transferred to new culture vessels. Figure 4
shows data comparing the viability of untreated and hypoxia-
detached cells using the MTS cell proliferation assay and the
colony-forming assay. The data show that detachment of cells by
hypoxia had no effect on cell viability or colony-forming ability of
these cells. Plating efficiency (PE) of hypoxia-detached cells
seemed to be slightly higher.

Flow cytometry: integrin expression

Flow cytometric analysis revealed that exposure to hypoxia was
accompanied by marked down-regulation of integrin expression,
thus suggesting a possible mechanism for the observed reduction
in adhesion. Hypoxia caused a marked down-regulation of ,1, av,

avP3 (around 40% in detaching cells), while no change was
observed with the negative control ,2 integrin (Figure 5). To
determine whether the down-regulation of cell adhesion molecules
upon hypoxic exposure of cells was specific to integrins, we inves-
tigated two other cell adhesion molecules that are expressed on
HMB-2 and DX3 cells, CD44 and N-CAM. It was found that
hypoxia treatment also down-regulated these two adhesion mole-
cules (Figure 5). Integrin expression returned to normal levels
within 24 h after reoxygenation; the kinetics of P1 integrin down-
regulation and recovery are shown in Figure 6.

DISCUSSION

The effects of exposure to hypoxia on adhesion of cells to extra-
cellular matrices and on changes in selected integrin expression in
human tumour cell lines were investigated. Modulation of integrin
activity by alterations in the conformation of the alpha and beta
subunits as well as increased or decreased integrin expression can
all lead to changes in cell adhesion. Most relevant studies in the
literature have concentrated on studying the effect of hypoxia on
adhesion of normal cells, such as haemopoietic and endothelial
cells, with no information on neoplastic cells. It was shown that
hypoxia increased adhesion of leucocytes and polymorphonuclear
cells to endothelial cells (Milhoan et al, 1992; Arnould et al, 1993,
1995; Ginis et al, 1995; Klein et al, 1995) and that this effect was
attributable to increased expression of endothelial cell adhesion
molecules. In another investigation, hypoxia was shown to
decrease adhesion of granulocytes to endothelial cells (Pietersma
et al, 1994), suggesting that adhesive responses to this stimulus
might represent a cell lineage-specific response.

In the present study, hypoxia caused down-regulation of cell
adhesion molecules, including integrins, at the surface of human
tumour cells, and this was linked to the reduction of adhesion to
extracellular matrix components, which in turn led to cell detach-
ment. The extent and rate of loss and recovery of adhesion/integrin
expression was dependent on the growth phase of the cells. The
reason for the variation in the response of exponential and
confluent cells to hypoxic stress is not known and is currently
under investigation. Preliminary data indicate that it is dependent
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Figure 5 Effect of hypoxia on the expression of cell surface adhesion molecules. Confluent HMB-2 cells were detached by hypoxia (5 h) and labelled with
different antibodies against cell-surface adhesion molecules. All expressed integrins assayed were reduced (50-70% of mean value), whereas there was no
change in the P2 integrins included as negative control. The data shown were obtained from one of three similar, independent experiments

on both cell density and factors in the medium. Differences in the
capacity of exponential and confluent cells to adhere to extra-
cellular matrices is also under investigation.
The finding that hypoxic cells can lose and regain attachment to

extracellular matrices accompanied by loss and recovery of inte-
grin expression has implications for the potential behaviour of
hypoxic cells in solid tumours in vivo. Cells that detach from
hypoxic regions of tumours could have the opportunity to migrate

to distant sites in normal tissue to provide foci for new tumour
growth. It has been shown recently that relatively small changes in
integrin expression or affinity can lead to substantial changes in
migration spread (Palacek et al, 1997). This suggests that hypoxic
conditions could have a significant impact on the invasive and
migratory behaviour of malignant cells.

It is interesting to note (Figure 2) that the effects of loss of PI
integrin expression could be offset by the application of the
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Figure 6 Kinetics of reduction/recovery in integrin expression after
hypoxia/reoxygenation of HMB cells. This figure shows the reduction and
recovery after 4 h (confluent) or 6 h (exponential) of hypoxia of 31 integrin
subunit. This is one of three independent experiments

PIl-activating antibody TS2/16. It is too early to say whether such an
application could be used to prevent or attenuate loss of adhesion in
case this was to be found therapeutically beneficial. Thus, at this
time, we cannot rule out the possibility that the hypoxia-induced
down-regulation of integrin expression is exacerbated by inactiva-
tion of integrin function.
Our data are consistent with the findings of Young et al (1988)

and Young and Hill (1990), who reported that successive treatment
of mouse tumour cells (KHT and B 16) in vitro with hypoxia and
reoxygenation greatly enhanced their ability to form lung tumours
in recipient mice. However, in these studies, the authors reported
no such hypoxic detachment of viable cells, but it was reported
that prolonged exposure to extreme hypoxia resulted in loss of cell
viability and caused detachment of cells, which were found to be
non-proliferating. The detachment of viable cells is an interesting
finding as it is commonly perceived that detachment of cells by
stress-inducing agents is indicative of cell death by apoptosis.
Hypoxia is known to be toxic to cells in culture (Shrieve et al,
1983; Spiro et al, 1984) and is also reported to induce DNA

damage-independent apoptosis in cells, including those of the
HT29 line (Yao et al, 1995). This might help to explain our finding
that HT29 only partly recovered after detachment by hypoxia.
However, this is not a straightforward issue, as Graeber et al
(1996) have reported that p53 mutant cells are more resistant than
cells with a p53 wild-type phenotype to hypoxia-induced
apoptosis; this therefore seems contrary to our observations as
HT29 is known to be mutant (e.g. Lawrence et al, 1996). Both
HMB-2 and DX3 have been reported as wild-type p53 (Montano
et al, 1994), however our own assessment of these cell lines using
the FASAY method (Lomax et al, 1997) indicates that HMB-2
expresses mutant p53 (JF Marshall, personal communication).

In summary, we have shown that hypoxia reduces adhesion to
extracellular matrix molecules and down-regulates integrin
expression, among other cell adhesion molecules, in human
melanoma cells. The hypoxic response appears not to be specific
for a particular extracellular substrate or integrin but represents a
general phenomenon. Hypoxia appears to induce detachment of
cells via these mechanisms and the hypoxia-detached cells are
viable and will form new foci of growth if reoxygenated.
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