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Abstract
Background  To investigate how effectively clinical features and CT-based radiomic features predict the pathological 
grade of hepatocellular carcinoma (HCC).

Methods  We retrospectively analyzed 108 patients diagnosed with hepatocellular carcinoma who underwent 
pathological examination between May 2020 and May 2024 at the Second Hospital of Jilin University. All patients 
underwent laboratory tests and contrast-enhanced computed tomography (CECT) scanning of the liver within one 
month prior to pathological examination. First, we analyzed laboratory tests, such as alpha fetoprotein (AFP) and des-
γ-carboxy prothrombin (PIVKA-II), to identify risk factors associated with the pathological grading of HCC. Then, we 
built and evaluated the performance of the clinical model. Next, we imported the arterial-phase and venous-phase 
images of the CECT images into the uAI Research Portal research platform for ‘one-stop’ processing, which included 
semiautomatic ROI outlining, feature extraction, dimensionality reduction, model construction and evaluation. To 
evaluate the model’s diagnostic effectiveness, receiver operating characteristic (ROC) curves were produced, and the 
related accuracy, sensitivity, specificity, and area under the curve (AUC) were computed. The models were compared 
using the Delong test, and the clinical value of the predictive model was assessed via the use of calibration curves 
and decision curve analysis (DCA) to quantify the agreement between the model and the actual outcomes.

Results  Poorly differentiated hepatocellular carcinoma (pHCC) is associated with risk variables such as hepatitis 
C virus antibodies(HCVAb), PIVKA-II, and sex. In the training and validation cohorts, the AUC values of the clinical 
model were 0.719 and 0.692, respectively; those of the AP model were 0.843 and 0.773; those of the VP model were 
0.806 and 0.804; those of the AP + VP model were 0.953 and 0.844; and those of the AP + VP + clinical model were 
0.926 (95% CI: 0.88–0.995) and 0.863 (95% CI: 0.711–1). The DCA curves revealed that the overall net benefit of the 
AP + VP + clinical model was greater than that of the other models and that it had the best diagnostic results.

Conclusions  CT-based radiomic modeling combined with clinical features (sex) and laboratory tests (e.g., AFP and 
PIVKA-II) can reliably predict the pathological grade of HCC patients prior to surgery.

Application of CT-based radiomics combined 
with laboratory tests such as AFP and PIVKA-II 
in preoperative prediction of pathologic grade 
of hepatocellular carcinoma
Meng Wu1, Haijia Yu1, Siwen Pang1, Aie Liu2 and Jianhua Liu1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-025-01588-2&domain=pdf&date_stamp=2025-2-13


Page 2 of 10Wu et al. BMC Medical Imaging           (2025) 25:51 

Background
HCC is the sixth most common malignant tumor in the 
world, and it is also one of the leading causes of cancer-
related death; furthermore, it accounts for 75–85% of all 
primary liver malignancies [1]. The degree of differentia-
tion of HCC is an important predictor of postoperative 
recurrence and patient survival [2]. Furthermore, poorly 
differentiated HCC patients have a worse prognosis fol-
lowing surgical resection and a higher recurrence inci-
dence than highly and moderately differentiated HCC 
patients do [3]. Preoperative prediction of the degree 
of differentiation of HCC will play a decisive role in the 
development of a patient’s treatment plan, especially in 
patients with a high degree of differentiation; unneces-
sary chemotherapy can be avoided, the treatment plan 
of surgical resection is preferred, and good results can be 
achieved [4]. Although ultrasound-guided needle biopsy 
can identify the degree of differentiation of HCC before 
surgery, it is an invasive procedure with certain opera-
tional difficulties and risks and the possibility of needle 
metastasis [5]. Therefore, there is an urgency of need for 
a noninvasive test to clarify the degree of differentiation 
of HCC preoperatively.

Radiomics is an artificial intelligence technology that 
enables quantitative analysis of medical images, which 
overcomes the limitations of visual observation of 
lesions. It is a method for extracting high-throughput 
text features and converting them into data that can be 
analyzed [6]. The development of radiomic models that 
apply machine learning techniques can improve diag-
nostic accuracy and facilitate the prediction of treat-
ment outcomes and patient prognosis. This will help to 
make more informed clinical decisions [7]. Radiomics 
has been employed in the context of HCC, including dif-
ferential diagnosis, the prediction of pathological results, 
the evaluation of treatment efficacy and the prediction of 
patient prognosis [8–10]. A recent CT-based radiomic 
study suggested that radiomics has the potential to iden-
tify early changes in the transition from cirrhosis to HCC 
[11]. Huang et al. demonstrated the ability to predict the 
pathological grade of HCC lesions on the basis of CECT 
radiomics features [12].

Recent studies have demonstrated that there are a vari-
ety of markers that can be used for screening for HCC, 
prediction of HCC malignancy and prognosis, and may 
even be relevant to therapeutic strategies for HCC.Yang 
et al. showed that for high-risk individuals, screening for 
liver cancer using AFP, US, CT, and MRI is more effec-
tive than no screening at all [13]. Ma et al. showed that 
cystathionine-gamma-lyase may be a potential prognos-
tic biomarker and new therapeutic target for HCC [14].

Peng et al. found a six-gene signature to be a dependable 
model with substantial therapeutic potential for estimat-
ing prognosis and overall survival in patients with HCC. 
This signature may also help doctors make decisions 
about the best course of treatment [15].

AFP is a commonly used clinical biomarker for the 
diagnosis of HCC, but it is not sensitive for the diagnosis 
of small HCC and early HCC. In addition, AFP is often 
elevated in certain benign liver diseases (e.g., chronic 
hepatitis and cirrhosis) [16]. The findings of several stud-
ies have indicated that serum PIVKA-II levels may rep-
resent a valuable and independent tumor marker for the 
diagnosis of HCC. PIVKA-II remains a valuable diagnos-
tic tool for HCC patients whose AFP levels are below the 
threshold for positivity and can be employed as a supple-
mentary diagnostic measure in conjunction with AFP 
[17]. PIVKA-II exhibits high sensitivity and specificity 
in liver tumor diagnosis, with its cutoff value remaining 
uninfluenced by age [18]. The combined use of these two 
markers significantly enhances the efficacy of diagnos-
ing HCC. Furthermore, PIVKA-II values are linked to a 
range of pathological characteristics that indicate tumor 
invasiveness and/or a poor prognosis [17]. However, sin-
gle serum biomarkers showed low sensitivity and speci-
ficity in the above studies [19].

The purpose of this study was to extract radiomic fea-
tures from the arterial and venous phases of liver CECT 
images of patients with HCC and combine them with 
clinical features (age, sex) and laboratory tests such as 
AFP and PIVKA-II to construct a model for predicting 
the differentiation grade of HCC.

Methods
Patient selection
The study protocol was approved by the Ethics Commit-
tee of the Second Hospital of Jilin University (Research 
Review No. 114 of 2023). Given that this study was con-
ducted in a retrospective manner, the informed consent 
of the enrolled patients was waived. The study recruited 
patients diagnosed with HCC through pathological 
examination at the Second Hospital of Jilin University 
between May 2020 and May 2024. The inclusion crite-
ria for all the studied patients were as follows: (1) ≥ 18 
years of age; (2) HCC diagnosis via pathological exami-
nation; and (3) CECT and related laboratory tests within 
one month prior to pathological examination. The 
exclusion criteria were as follows: (1) the coexistence 
of other malignant neoplasms; (2) the use of targeted 
therapy, immunotherapy or other antitumour therapy 
prior to pathological examination; (3) the absence of 
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comprehensive clinical and pathological data; and (4) 
suboptimal image quality and conspicuous artifacts.

Clinicopathological data
The clinical characteristics, laboratory test results and 
pathological data of all patients were obtained from the 
electronic medical records system. The demographic 
characteristics of the patients included age and sex, and 
laboratory test results included the levels of AFP, PIVKA-
II, alanine aminotransferase (ALT), total bilirubin (TB), 
hepatitis B virus surface antigen (HBsAg), and neutrophil 
(NE), among other relevant parameters. To this end, we 
calculated and added the albumin‒bilirubin (ALBI) score 
and inflammatory markers.

The pathological classification of HCC was based on 
differentiation criteria [20], and patients were divided 
into two groups, pHCC and nonpoorly differentiated 
HCC (npHCC), with the nonpoorly differentiated HCC 
group including moderately differentiated and highly 
differentiated cases. The χ2 test and Mann‒Whitney U 
test were used to determine whether there were sig-
nificant differences between the two groups of patients 
with respect to categorical and continuous variables, 
respectively.

Clinical model construction and evaluation
Clinical features and laboratory test results with P < 0.1 
were integrated with a logistic regression algorithm to 
construct a clinical model for predicting the grade of 
pathological differentiation of HCC. The model was 

subsequently evaluated via a fivefold cross-validation 
method.

CT protocol
The enrolled cases were subjected to CT scans using 
multiple detectors, including the GE Revolution, Phillips 
Brilliance, Siemen Satom FORCE, and Neusoft Prime, 
to obtain plain, arterial, portal and delayed images. The 
CT scanner parameters were set as follows: tube cur-
rent 250–400  mA; tube voltage 100 or 120 kVp; matrix 
512 × 512; rotation time 0.25–0.60  s; and slice thickness 
1.0–5.0  mm. After the acquisition of plain scan phase 
images, contrast medium was injected through the ante-
rior cubital vein at a rate of 3.0 ml/second. Arterial phase, 
portal phase and delay phase images were obtained 
25–30  s, 60  s and 150–180  s after contrast agent injec-
tion, respectively.

Image processing, feature extraction and feature selection
Figure 1 depicts our workflow through the uAI Research 
Portal (Shanghai United Imaging Intelligent Medical 
Technology Co., Ltd.) research platform for the “one-
stop” radiomics workflow. First, we imported the CECT 
images into the uAI Research Portal. Portal, and through 
human‒computer interaction, we performed semiauto-
matic layer-by-layer outlining of the ROIs on the arterial 
and venous phases of the CECT images to form a three-
dimensional region of interest. Subsequently, radiomic 
features were extracted within the region of interest, 
including seven types of radiomic features, such as 

Fig. 1  Detailed flowchart including ROI segmentation, feature extraction and selection, and radiomics model construction and evaluation
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first-order statistics, a gray-level covariance matrix and 
a gray-level dependency matrix. Next, feature extrac-
tion was performed using 25 imaging filters within the 
uAI research portal. Consequently, 2264 features were 
obtained. The platform first retains the 100 k-best fea-
tures, and then, each feature is selected via least absolute 
shrinkage and selection operation regression (LASSO). 
The lasso alpha parameters for the arterial and venous 
phase images are 0.06 and 0.05, respectively, retaining 7 
and 12 features, respectively. The features from the arte-
rial and venous phase images were combined into 19 
features, and then, through the comprehensive radiomic 
model of lasso (alpha = 0.05), 10 features were ultimately 
retained.

Radiomics models construction and evaluation
Models are constructed using machine learning classifi-
ers such as logistic regression, support vector machines, 
and random forests. The model with the best AUC value 
in the validation cohort was ultimately selected, and 
the corresponding accuracy, sensitivity and specificity 
were calculated. The clinical model uses logistic regres-
sion (LR) with several parameters (C = 0.01, penalty = l2, 
class weight = None, Tol = 1e-05). The AP model uses 
LR with several parameters (C = 4.0, penalty = l2, class 
weight = balanced, Tol = 1e-05). The VP model uses LR 
with several parameters (C = 0.05, penalty = l2, class 
weight = balanced, Tol = 1e-05). The AP + VP model uses 
a support vector machine (SVM) with several param-
eters (C = 5.0, Gamma = scale, Class Weight = None, 
Kernel = rbf ). The AP + VP + Clinical model uses LR 
with several parameters (C = 1.5, penalty = l2, class 
weight = None, Tol = 1e-05). The models were subse-
quently compared using the Delong test, and calibration 
curves and DCA were plotted to estimate the agreement 
between the predictive models and the actual results and 
to evaluate their clinical utility.

Results
Clinical characteristics
A total of 108 eligible HCC patients were enrolled in this 
study, 35 (32.41%) of whom were diagnosed with pHCC 
and 73 (67.59%) with npHCC. A comparison of the clini-
cal characteristics of the two groups of patients revealed 
that factors significantly associated with the degree of 
differentiation of HCC included sex, PIVKA-II, and 
HCVAb (P < 0.05). Among them, the number of men in 
the npHCC group was significantly greater than that in 
the pHCC group; the PIVKA-II value in the pHCC group 
was significantly greater than that in the npHCC group; 
and the number of HCVAb-positive patients in the 
npHCC group was significantly greater than that in the 
pHCC group. (Table 1).

Clinical model
We used six variables (sex, surface antigen, HCVAb, AFP, 
PIVKA-II, and FN) with p values less than 0.1, as shown 
in Table  1, to construct a clinical model for predicting 
the degree of pathological differentiation of hepatocel-
lular carcinoma. The areas under the curve of the model 
were 0.719 (95% CI: 0.619–0.842) and 0.692 (95% CI: 
0.455–0.93) for the training cohort and validation cohort, 
respectively, with accuracies of 0.683 and 0.629, sensi-
tivities of 0.848 and 0.809, and specificities of 0.324 and 
0.238, respectively. The clinical model clearly has some 
diagnostic efficacy for the pathologic differentiation of 
HCC, but its accuracy and specificity are poor, as shown 
in Table 2; Fig. 2.

Radiomics models
We selected 7 and 12 features from 4528 radiomic fea-
tures (including 2264 AP features and 2264 VP features) 
to construct the AP model and the VP model, respec-
tively, and then screened 10 features from 19 AP and VP 
features to construct the AP + VP model. The diagnostic 
efficacy results of all the models are presented in Table 2. 
Figure 2 shows the ROC curves of all the models. Among 
the three radiomics models, the AP + VP model has the 
best diagnostic performance, with AUC values of 0.953 
and 0.844 in the training and validation cohorts, respec-
tively, which are significantly greater than those of the AP 
model (with AUC values of 0.843 and 0.773, respectively) 
and the VP model (with AUC values of 0.806 and 0.804, 
respectively) and have the highest sensitivities (with AUC 
values of 0.806 and 0.804, respectively) in the training 
cohort and validation cohort (with AUC values of 0.969 
and 0.862, respectively). In addition, the VP model had 
greater diagnostic efficacy in the venous phase than in 
the arterial phase, and the accuracy of the VP model was 
greater than that of the AP model in both the training 
cohort and the validation cohort, whereas the sensitivity 
of the AP model was greater than that of the VP model in 
both the training cohort and the validation cohort.

Combined model
Finally, we constructed an AP + VP + clinical model by 
combining the clinical model with the AP + VP model 
and obtained a model with greater diagnostic perfor-
mance. The AUC values of the model in the training 
and validation cohorts were 0.926 (95% CI: 0.88–0.995) 
and 0.863 (95% CI: 0.711–1), respectively. Although the 
area under the curve of the AP + VP model was greater 
than that of the AP + VP + clinical model in the training 
cohort, with an area under the curve of 0.953 (95% CI: 
0.917–1), the AP + VP + clinical model showed superior 
predictive performance in the validation cohort and was 
more accurate and sensitive than the AP + VP model. The 
specific diagnostic efficacy results for all the models are 
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shown in Table  2; Fig.  2. According to the DCA curves 
of all the models of the training cohort shown in Fig. 3A, 
the AP + VP + clinical model achieved better net gains 
in predicting the grade of HCC pathology over a larger 

range of thresholds, whereas the DCA curves of all the 
models of the validation cohort shown in Fig.  3B indi-
cated that the AP + VP model achieved better net gains 
in predicting the pathological grade of HCC over a larger 

Table 1  Baseline characteristics of HCC patients with different degrees of pathological differentiation
Variables pHCC(n = 35) npHCC(n = 73) P
Age, years 60.0 (54.0–66.0) 59.0 (54.0–64.0) 0.758
Sex, n(%) 0.029
  Male 24 (68.6) 63 (86.3)
  Female 11 (31.4) 10 (13.7)
HBsAg, n(%) 0.056
  Positive 30 (85.7) 50 (68.5)
  Negative 5 (14.3) 23 (31.5)
HCVAb, n(%) 0.042
  Positive 1 (2.9) 12 (16.4)
  Negative 34 (97.1) 61 (83.6)
AFP, ng/mL 308.5 (6.0-2000.0) 10.3 (3.7-342.4) 0.068
PIVKA-II, mAU/mL 759.0 (53.2-6051.5) 173.7 (32.5-1145.4) 0.041
ALT, U/L 31.0 (25.5–42.1) 28.0 (21.0–40.0) 0.401
AST, U/L 34.0 (22.5–44.5) 30.0 (22.0–44.0) 0.434
TB, µmol/L 17.0 (10.8–22.1) 16.0 (11.8–21.4) 0.979
DB, µmol/L 5.9 (4.0–8.0) 4.7 (3.8–7.6) 0.66
ALB, g/L 39.4 (35.9–42.9) 40.2 (38.1–43.1) 0.442
GGT, U/L 56.0 (35.0-93.2) 50.0 (34.0-110.0) 0.634
LYM, ×109/L 1.3 (0.9–1.6) 1.3 (1.0-1.6) 0.549
NE, ×109/L 3.5 (2.7–6.6) 3.6 (3.0-4.5) 0.609
M, ×109/L 0.4 (0.3–0.7) 0.4 (0.3–0.5) 0.224
RDW, % 12.8 (12.3–13.5) 12.9 (12.2–13.5) 0.893
PLT, ×109/L 140.0 (107.0-193.5) 141.0 (108.0-190.0) 0.961
ALBI score -32.8 (-35.6–29.6) -33.5 (-35.9–31.7) 0.439
PLR 115.4 (87.7-160.1) 102.1 (75.5-158.3) 0.37
NLR 3.4 (2.0-5.1) 2.5 (1.7–3.7) 0.125
SII, ×109 469.8 (254.2-860.2) 368.5 (247.2,580.8) 0.176
ANRI 9.0 (5.0-14.7) 9.2 (5.6–13.6) 0.636
ALRI 29.4 (19.9–39.0) 24.3 (13.0-41.3) 0.199
GLR 48.0 (29.1–70.5) 37.8 (25.3–80.0) 0.374
Fn 321.0 (268.0-341.5) 329.0 (298.0-389.0) 0.059
AFU 33.2 (26.8–33.2) 32.9 (27.7–33.2) 0.481
Data are reported as the medians and IQR. Clinical data with P < 0.1 are expressed in bold

Table 2  Predictive performance of different models
Model name Number of

features
Cohort Accuracy AUC (95% CI) Sensitivity Specificity

Clinical 6 Training 0.683 0.719(0.619–0.842) 0.324 0.848
Validation 0.629 0.692(0.455–0.93) 0.238 0.809

AP 12 Training 0.778 0.843(0.769–0.939) 0.772 0.781
Validation 0.703 0.773(0.584–0.973) 0.547 0.77

VP 7 Training 0.9 0.806(0.723–0.911) 0.839 0.662
Validation 0.899 0.804(0.643–0.964) 0.795 0.674

AP + VP 10 Training 0.938 0.953(0.917-1) 0.868 0.969
Validation 0.804 0.844(0.681–0.995) 0.676 0.862

AP + VP+
Clinical

16 Training 0.877 0.926(0.88–0.995) 0.78 0.922
Validation 0.814 0.863(0.711-1) 0.676 0.876

AP, arterial phase; VP, portal venous phase; AUC, area under the curve; CI, confidence interval. The highest value of each result in the training cohort and the 
validation cohort is bolded
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Fig. 3  Decision curves of the various models. (A) Training cohort; (B) validation cohort

 

Fig. 2  ROCs of the various models. (A) Training cohort; (B) validation cohort
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range of thresholds. There was a high degree of agree-
ment between the predicted probabilities generated by 
all the radiomic models and the AP + VP + clinical model 
and the actual results, whereas the agreement for the 
clinical model was relatively poor. As shown in Fig. 4.

Discussion
Guidelines published in the journal Liver Cancer in 2020 
suggest that although survival rates for patients with 
HCC treated with radical therapy have improved signifi-
cantly, the overall 5-year survival for patients with HCC 
remains dismal and may be related to the fact that the 
majority of patients with HCC are able to receive only 
localized or systemic antitumor therapy after their initial 
diagnosis [21]. The presence of pathological differentia-
tion is an important prognostic indicator in patients with 
HCC [22]. The clinical treatment options for HCC dif-
fer across stages and degrees of differentiation [23]. It is 
therefore imperative that an accurate prediction of the 
pathological grade of HCC be made prior to surgery, as 
this will inform clinical decisions and the prescription of 
the most appropriate individualized treatment.

This study developed and validated a noninvasive 
method for predicting the pathologic differentiation of 
HCC. We combined clinical characteristics (sex), labora-
tory test results (including AFP, PIVKA-II, and HBsAg), 
and CECT data to construct an AP + VP + clinical model 
for predicting the pathological grade of HCC. The results 
of the present study demonstrated that the fusion model 

had the best predictive performance, with an AUC value 
of 0.863 (95% CI: 0.711–1) in the validation cohort, and 
achieved greater net benefits. The results of the calibra-
tion and decision curve analyses further confirmed the 
robustness and clinical applicability of the model.

The application of machine learning algorithms and sta-
tistical analysis to radiomic features allows the develop-
ment of predictive models capable of extracting radiomic 
features at the microscopic level. Radiomics models are 
able to distinguish HCC from other liver lesions, assess 
tumor status, predict treatment efficacy, and even pre-
dict patient prognosis [24]. In a study by Liu et al., an 
MRI-based radiomic model was constructed. The AUCs 
of eight classifiers for diagnosing pHCC were between 
0.85 and 1.00 in the training cohort and between 0.73 
and 0.88 in the validation cohort [25]. Han et al. included 
137 patients to construct an MRI-based radiomic model. 
The hepatobiliary phase model demonstrated the most 
promising results, with an AUC of 0.80 ± 0.09 in the 
internal validation phase and 0.70 ± 0.09 in the external 
validation phase [26]. A CT-based radiomics model was 
constructed by Huang et al. to predict the pathological 
grade of hepatocellular carcinoma. The radiomics model 
derived from both the arterial and venous phases showed 
the best diagnostic performance, with an AUC of 0.842 
in the validation cohort. However, the AUC value for a 
clinical model developed using AFP, NEU, and HBsAg 
was less than optimal. The researchers therefore chose to 
abandon the model [12].

Fig. 4  Calibration curves for the various models are presented in two groups: (A) the training cohort and (B) the validation cohort
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In our study, the CT-based radiomic model demon-
strated a superior AUC and accuracy compared with 
those of previous studies, indicating its efficacy in pre-
dicting HCC differentiation. The aforementioned findings 
may be attributed to the considerable number of quanti-
tative radiomic features extracted from the CECT images 
(n = 4528). A number of techniques, including LASSO, 
were subsequently employed to identify the most robust 
features, which were then used to develop the radiomic 
model. This process may have contributed to the higher 
AUC. The ROC curve of the AP + VP model also revealed 
excellent diagnostic efficacy in our radiomics models, 
with AUC values of 0.953 (95% CI: 0.917–1) and 0.844 
(95% CI: 0.681–0.995) for the training cohort and valida-
tion cohort, respectively.

Viral hepatitis (viral hepatitis B and viral hepatitis C) 
is the main cause of hepatocellular carcinoma in China, 
and whether this is related to the degree of differentiation 
of hepatocellular carcinoma needs to be investigated. 
AFP is a conventional biomarker for the surveillance 
of HCC. However, its sensitivity is insufficient for this 
purpose [27]. Zhou et al. demonstrated that the posi-
tivity rate of PIVKA-II prior to resectable HCC surgery 
was markedly higher than that of AFP [28]. In recent 
years, PIVKA-II has become a routine clinical test. To 
more accurately predict the pathologic differentiation of 
HCC, scholars have developed many nomogram models 
to identify more accurate biomarkers. A study by Zhou 
et al. demonstrated that preoperative laboratory tests, 
including ALRI, AFP, PIVKA-II, HBsAg, and HCVAb, 
were associated with poor tumor differentiation. Among 
these factors, AFP, PIVKA-II and HCVAb were identified 
as independent predictors of the degree of pathologi-
cal differentiation of HCC [29]. The results of our study 
revealed that PIVKA-II and HCVAb were significantly 
correlated with the degree of pathological differentiation 
of HCC (P < 0.05). However, the conclusion that HBsAg 
(P = 0.056) and AFP (P = 0.068) were significantly corre-
lated was not supported by the results of this study.

Inflammation is widely accepted as one of the most 
significant characteristics of cancer [30], and it has been 
demonstrated that HCC is an inflammatory cancer [31]. 
Luo et al. proposed that the NLR is an independent prog-
nostic factor for HCC and a reliable biomarker for pre-
dicting the overall survival rate of patients with HCC 
[22]. Wang et al. demonstrated the independent predic-
tive capacity of inflammatory biomarkers, including the 
NLR and ALRI, with respect to the pathological grade of 
HCC [32]. Nevertheless, our study, which involved seven 
inflammatory markers (NLR, PLR, and ALRI), revealed 
that all the inflammatory indicators were not significantly 
different. This outcome may be attributable to the rela-
tively limited sample size employed.

Our study has several limitations. First, all the CT 
image data were obtained from a single center, and this 
was a retrospective study. The CT images used in our 
study were from different scanning instruments, and 
imaging from different instruments may have had some 
impact on the results of feature extraction; therefore, 
whether the model can work prospectively is still an 
open question. Therefore, in our next research plan, we 
will conduct a multicenter prospective study using the 
same CT scanning instrument to further explore the 
diagnostic potential of radiomics-based modeling. Sec-
ond, our study focused on the relationship between high-
throughput imaging features extracted from tumor ROIs 
and pathologic stage. To quantify tumor heterogeneity 
more comprehensively, more attention needs to be given 
to peritumor information, combined with more clinico-
pathological information, to build more accurate indi-
vidualized disease assessment models. Therefore, in the 
future, we need to optimize our model on the basis of the 
above limitations and conduct prospective studies, which 
may help improve the diagnostic performance of imaging 
histology models for the degree of pathological differen-
tiation of HCC.Third, it has been shown that tumor-asso-
ciated lymphatic vessel density is a reliable biomarker of 
tumor prognosis after radical tumor resection [33], and 
this marker may be considered for inclusion in our future 
studies related to postoperative prognosis of hepatocellu-
lar carcinoma.

Conclusion
In conclusion, our radiomics analysis of HCC patients 
by CECT images suggests that extraction of arterial and 
venous phase features may be a method for preoperative 
prediction of HCC pathologic differentiation. In addi-
tion, the combination of clinical features and labora-
tory findings (e.g., alpha-fetoprotein and PIVKA-II) may 
improve the diagnostic efficacy of the radiomics model 
and provide a new noninvasive method for predicting the 
degree of differentiation of HCC and for clinical decision 
making.
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