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Myocardial infarction is one of the most serious fatal diseases in the world, which is due to
acute occlusion of coronary arteries. Grape seed proanthocyanidin extract (GSPE) is an
active compound extracted from grape seeds that has anti-oxidative, anti-inflammatory
and anti-tumor pharmacological effects. Natural products are cheap, easy to obtain,
widely used and effective. It has been used to treat numerous diseases, such as cancer,
brain injury and diabetes complications. However, there are limited studies on its role and
associated mechanisms in myocardial infarction in mice. This study showed that GSPE
treatment in mice significantly reduced cardiac dysfunction and improved the pathological
changes due to MI injury. In vitro, GSPE inhibited the apoptosis of H9C2 cells after hypoxia
culture, resulting in the expression of Bax decreased and the expression of Bcl-2
increased. The high expression of p-PI3K and p-AKT was detected in MI model in vivo
and in vitro. The use of the specific PI3K/AKT pathway inhibitor LY294002 regressed the
cardio-protection of GSPE. Our results showed that GSPE could improve the cardiac
dysfunction and remodeling induced by MI and inhibit cardiomyocytes apoptosis in
hypoxic conditions through the PI3K/AKT signaling pathway.

Keywords: grape seed proanthocyanidin extract, myocardial infarction, pi3k/akt pathway, cardiac function,
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INTRODUCTION

Pathologically, Myocardial infarction (MI) is defined as myocardial cell death caused by long-term
ischemia (Jennings and Ganote, 1974). Currently, in medicine, the clinical definition of MI refers to
the detection of abnormal cardiac biomarkers in the presence of acute myocardial ischemia
(Thygesen et al., 2018). Previous studies have shown that myocardial injury, defined by an
elevated cardiac troponin value, is frequently encountered clinically and is associated with an
adverse prognosis (Sarkisian et al., 2016; Sarkisian et al., 2016). Acute MI is the most serious
manifestation of coronary artery disease, causing >4 million deaths in North Asia and Europe
(Nichols et al., 2014), and >1/3 of all deaths in developed countries every year (Yeh et al., 2010).
Recent years, evidence-based treatment and lifestyle changes have significantly reduced the mortality
of artery atherosclerosis and coronary heart disease. However, MI has a great impact on people’s
health all over the world, affecting >7 million people every year (Reed et al., 2017).
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Grape seed proanthocyanidin extract (GSPE) is an active
compound extracted from grape seeds (Tu et al., 2019). It is
the source of flavane-3-ol compounds, including catechin and
epicatechin monomers, and their respective oligomers (Bladé
et al., 2010). It exhibits variety of effects such as anti-
apoptotic, anti-inflammatory and improve cell metabolism
effects (Sanna et al., 2019). It has potential therapeutic
capacity in the treatment of obesity, metabolic syndrome,
cancer, diabetes complications and brain injury (Gonzalez-
Abuin et al., 2015; Sherif et al., 2017; Gao et al., 2018; Guo
et al., 2018). Furthermore, one study showed that GSPE has a
potential preventive effect on human colon dysfunction
(González-Quilen et al., 2020). The pharmacological effect of
GSPE in the heart is mostly associated with cardiac ischemia-
reperfusion disease. Some studies have shown that a low dose of
GSPE can reduce myocardial cell injury by scavenging ROS,
moderately increasing NO production and not inducing
cytotoxicity (Rice-Evans, 2004; Shao et al., 2006). In a model
of acute oxidative stress induced by ischemia-reperfusion, acute
GSPE could protect myocardial cells from I/R injury by activating
AKT and producing NO during reperfusion (Shao et al., 2009).
There are limited studies on the pharmacological effect of GSPE
on MI. Therefore, the aim of this study was to research the
pharmacological effect of GSPE on acute MI and its specific
signaling pathway.

The PI3K/AKT signaling pathway is a conservative signaling
pathway. It can control the response of cells to external stimuli
mediated by receptor tyrosine kinases (Li et al., 2014). It
coordinates a variety of intracellular signals, and controls cell
survival, proliferation and metabolism (Miki et al., 2007; Song
et al., 2009). LY 294002 is an inhibitor of PI3K, which can reduce
the phosphorylation of downstream AKT, thus blocking the
PI3K/AKT signaling pathway (Mocanu et al., 2002; Breivik
et al., 2011). Bcl-2 and Bax proteins are two significant
members of the Bcl-2 multigene family. It has been found that
Bcl-2 has anti apoptotic effects and Bax has pro-apoptotic effects
(Adams and Cory, 1998). Numerous researches have shown that
AKT protein is a major regulator involved in the transcriptional
regulation of Bcl-2 (Ghosh et al., 2013; Chen et al., 2020; Zhang
et al., 2020). AKT activation increases the expression of the Bcl-2
through phosphorylation of cyclic AMP response binding protein
(Pugazhenthi et al., 2000).

We studied the effects of GSPE on cardiac function and
myocardial pathology in mice with MI, as well as the effects of
GSPE on the apoptosis of H9C2 cells in a hypoxic environment.
In addition, LY294002 was used to further test and verify the
activation of PI3K/AKT signaling pathway in MI mice treated
with GSPE.

MATERIALS AND METHODS

Animals
C57BL/6J male mice (aged 6 weeks and weighing 20–25 g) were
purchased from Beijing Weitong Lihua Experimental Animal
Technology Co., Ltd. All mice were placed in a light cycle (half
day light and dark) and a temperature of 25 ± 1°C and a humidity

of 55 ± 5%, and were allowed free access to water and food. The
animals used in the present study were treated in accordance with
the Animal Center Guide for the Care and Use of Laboratory
Animals. The experimental protocols were approved by the
Animal Ethics Committee of the Laboratory Animal Center of
Wenzhou Medical University (approval no. wydw2014-0058).

Drugs and Reagents
GSPE (purity, 95%) was purchased from Tianjin Jianfeng Natural
Product R&D Co., Ltd. GAPDH (5174) was purchased from Cell
Signaling Technology, Inc. Primary antibodies against
phosphorylated PI3K(C73F8), AKT(C67E7), p-AKT (Ser473),
Bcl-2 (D17C4), Bax (2772) and a goat anti-rabbit secondary
antibody (4412) were purchased from Cell Signaling
Technology, Inc. Primary antibody against p-PI3K (ab182651)
and collagen type Ⅲ polyclonal antibody (ab6310) and collagen
type Ⅰ antibody (ab34710) were purchased from Abcam (United
Kingdom). Anti-α-SMA (13548-1-AP) antibody were purchased
from ProteinTech Group, Inc. Cell Counting Kit-8 (CCK-8),
SOD and MDA detection kit were purchased from Nanjing
Jiancheng Bioengineering Institute. Annexin V-FITC/PI
apoptosis detection kit was purchased from Beyotime Institute
of Biotechnology.

Mouse Model of Myocardial Infarction
Mice were anesthetized with 1.5% isoflurane. Mice were intubated
and connected to a ventilator to maintain normal breathing.
Their heart was then exposed through a lateral incision along the
upper edge of the third or fourth rib. The coronary artery of LAD
was ligated with a 7-0 polypropylene suture, ∼2–3 mm from the
lower edge of the left auricle. The chest was sutured with surgical
suture. The sham operation method was the same, except for the
LAD coronary artery, which was not ligated.

The mice were randomly divided into five groups, including 1)
a sham-operated group (daily oral gavage by 0.2 ml 0.9% normal
saline); 2) a GSPE group (daily oral gavage by 0.2 ml GSPE
(200 mg/kg) from sham operation to 14 days after operation) (Shi
et al., 2019); 3) an MI group (daily oral gavage by 0.2 ml 0.9%
normal saline from operation to 14 days after operation); 4) an
MI + GSPE-treated group (daily oral gavage by 0.2 ml GSPE
(200 mg/kg) from operation to 14 days after operation); and 5) an
MI + GSPE + LY group (daily oral gavage by 0.2 ml GSPE
(200 mg/kg) and LY294002 (0.2 mg/mouse) from operation to
14 days after operation).

Doppler Echocardiography Study
Echocardiography was performed in the laboratory by a single
experienced echocardiologist. Mice were anesthetized with 1.5%
isoflurane and connected to a ventilator to maintain normal
breathing. Then, an M-mode transducer (Acuson Sequoia 512;
Sonos) was used to performed the transthoracic
echocardiography. At the papillary level, the Simpson method
was used to measure several main cardiac function indexes (Johri
et al., 2011), including the left ventricular ejection fraction
(LVEF), the ejection fraction (FS), the left ventricular end
diastolic diameter (LVIDd, mm) and the left ventricular end
systolic diameter (LVIDs, mm).
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Determination of Myocardial Infarct Size
The 2,3,5-triphenyltetrazolium chloride solution (TTC) staining
method was used to determine the myocardial infarct size.
14 days after modeling, euthanasia was done on the mice by
intraperitoneal injection of excessive pentobarbital sodium. The
hearts of mice were removed quickly and separated from extra
connective tissue. The heart was washed with normal saline and
frozen at −80°C for 4 h. Five 1–2 mm-thick heart sections were
prepared and incubated at 37°C in 2% TTC for 15 min. Next,
according to the computer plane measurement, the area of the
infarcted tissue was photographed with a digital camera. The
infarct area was expressed as the percentage of infarcted area to
the risk area x 100%.

Myocardial Histopathology
In order to evaluate the morphological changes and degree of
myocardial fibrosis 14 days after MI, the heart tissues of each
group were washed with PBS and fixed with 4%
paraformaldehyde solution overnight at 4°C. After the heart
tissue was paraffin embedded, the heart was sliced to 5 μm-
thick sections. After dehydration and dewaxing of slices, HE
staining as well as Masson’s trichrome stain was performed
according to the staining kit instructions, followed by
observation under a fluorescence microscope (Leica
Microsystems GmbH).

Immunofluorescence Staining
Frozen tissue sections were placed at room temperature for
>30 min. After washing three times with PBS, the antigen was
blocked with 2% BSA. The tissues were then incubated with anti-
α-SMA antibody (1:200) at 4°C for 24 h. The next day, the tissues
were incubated at 37°C for 60 min in the dark with a goat
secondary antibody (1,500). After three washes with PBS, the
tissues were re-stained with DAPI by incubation in the dark for
5 min. Images were obtained with a fluorescence microscope
(Leica Microsystems GmbH) and analyzed with Image Proplus
6.0 software (Media Control Silver Spring).

Oxidative Stress Index
After 14 days of MI, 400 µl blood was collected from the
abdominal aorta of mice. The blood was centrifuged at
3,000 rpm at 4°C for 20 min, and then the supernatant was
carefully collected. The SOD and MDA test kits pursed from
Nanjing Jiancheng Bioengineering Institute were wsed to
determine the SOD activity and MDA levels.

Cell Viability
H9C2 cells were cultured in glucose- and serum-free DMEM
without penicillin/streptomycin in a hypoxic atmosphere (95%
N2, 5% CO2) at 37°C (An et al., 2019). The cells were then
inoculated into 96-well plates, at a density of 5,000 cells per well.
The activity of the cells under different periods of hypoxia and
GSPE concentration were measured. The cell activity was
measured with a CCK-8 detection kit.

Apoptosis Detection
H9C2 cells in a 6-well plate (1 × 105 cells/well) were treated as
described before and collected with 0.25% trypsin. The H9C2 cells
(about 100 μl)) were incubated with 5 μl Annexin V-fluorescein
isothiocyanate for 5 min, followed by addition of 3 μl disodium
propionate iodide and incubation at room temperature in the
dark for 15 min. Finally, the apoptosis rate was measured with a
flow cytometer (BD AriaIII; BD Biosciences).

Western Blotting
The animal proteins extracted from the left ventricular
myocardium and the proteins in the cells were cleaved and
quantified, and then quantified using the Bradford protein
assay (Bio-Rad Laboratories). Proteins were separated by SDS-
PAGE and transferred to a PVDFmembrane. After blocking with
5% fat-free milk at room temperature for 2 h, the membranes
were incubated overnight with the corresponding primary
antibody at 4°C, including anti-p-PI3K (1, 1,000 dilution),
anti-AKT (1, 2,000 dilution), anti-p-AKT (1, 1,000 dilution),
anti-Bcl-2 (1, 1,000 dilution), anti-Bax (1, 2,000 dilution), anti-
Col-1 (1, 1,000 dilution), anti-Col-3 (1, 1,000 dilution), anti-PI3K
(1, 1,000 dilution), anti-α-SMA (1, 3,000 dilution), anti-tubulin
(1:5,000 dilution) and anti-GAPDH (1:10,000 dilution). After
being washed with TBST, the membranes were incubated with
secondary antibodies (1:5,000) for 2 h at room temperature and
washed again. ChemiDoc

™
XRS + System with Image Lab

™Software purchased from Bio-Rad was used to visualize the
signals.

Statistical Analysis
All statistical data were analyzed using GraphPad Prism 5
(GraphPad Software, Inc.). Values were expressed as the
mean ± SEM. Differences between two groups were analyzed
using Student’s t-test. The significance of the difference between
groups were analyzed by one-way analysis of variance (ANOVA)
and followed by LSD post hoc least significant difference test. A
value of p <0.05 was considered statistically significant difference
for all analyses.

RESULTS

Grape Seed Proanthocyanidin Extract
Improves the Survival Rate and Cardiac
Function of MI Mice
At 14 days post-MI, all mice in the sham group survived, while
the survival rate was 61% in the MI group and 74% in the GSPE
group (Figure 1A). Compared with that of the MI group, the
heart weight/body weight ratio of the GSPE treatment group was
significantly lower (Figure 1B). Echocardiography showed that,
compared with those in the MI group, the LVEF and FS of the
GSPE treatment group were significantly increased, while LVIDd
and LVIDs were significantly decreased (Figure 1C).
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Grape Seed Proanthocyanidin Extract
Improves Fibrosis in Myocardial Tissue and
Myocardial Pathological Changes of MI
Mice
TTC staining showed that the infarct size of the GSPE group was
significantly smaller than that of the MI group (Figure 2A). The
MDA level in the MI group increased, while GSPE treatment
could significantly reduce the increase in MDA. On the contrary,
the serum SOD level in the MI group decreased, and GSPE
treatment could significantly increase the SOD value (Figure 2B).
Masson’s trichrome stain showed that the collagen deposition
area of myocardial fibrosis of the MI group was significantly
higher than that of MI + GSPE group (Figure 2C). H&E staining

showed that myocardial necrosis, inflammatory infiltration and
interstitial edema were decreased in the MI + GSPE group
compared with those in the MI group (Figure 2C).

Grape Seed Proanthocyanidin Extract
Attenuates MI-Induced Apoptosis and
Myocardial Fibrosis
The Bcl-2 protein family is associated with the regulation of cell
apoptosis. In this family, Bcl-2 plays an anti-apoptotic role, while
Bax plays a pro-apoptotic role (Bogner et al., 2020). GSPE
significantly increased the expression of Bcl-2 and decreased
the expression of Bax in myocardial tissue after MI
(Figure 3A). In addition, GSPE reduced the expression of

FIGURE 1 |GSPE improved the survival rate and cardiac function of MI mice. (A) The survival rate of mice in the GEPE-treated group compared with the MI group
(log-rank: p < 0.01). (n � 3 per group) (B) The heart/body weight ration of mice in different groups. (C) Representative M-mode echocardiographic images in short axis
from each group, the relative indicators included are LVEF(%), FS(%), LVIDd(mm). Data analyzed aremean ± SD. *Significant difference compared with the control group,
p < 0.05; #significance compared with the MI group, p < 0.05. n � 3 per group.
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collagen Ⅰ, collagen Ⅲ and a-SMA (Figure 3B). Furthermore,
immunofluorescence showed that the integral optical density of
a-SMA in the GSPE treatment group was significantly lower than
that in the MI group (Figure 3C).

Grape Seed Proanthocyanidin Extract
Exerts a Protective Effect on Mouse Heart
by Activating the PI3K/AKT Pathway
The PI3K/AKT pathway is one of the important signaling
pathways in cells, which participates in the regulation of
multiple signaling molecules (Fajgenbaum et al., 2019).
Western blotting revealed that p-PI3K and p-AKT expression
increasing was detected in the MI group, and GSPE treatment
enhanced this activation (Figure 3D).

Inhibition of the PI3K/AKT Pathway
Reverses the Cardiac Protective Effect of
GSPE In Vivo
Echocardiography showed that, compared with those in the
MI + GSPE group, the LVEF and FS of the LY294002 treatment
group were significantly decreased, while LVIDd and LVIDs
were significantly increased (Figure 4A). Masson’s trichrome
stain also showed that the collagen deposition area of
myocardial fibrosis of the MI + GSPE + LY294002 group was
significantly higher than that of MI + GSPE group (Figure 4B).
H&E staining showed that myocardial necrosis, inflammatory
infiltration and interstitial edema were increased in the MI +
GSPE + LY294002 group compared with those in the MI +
GSPE group (Figure 4B).

FIGURE 2 |GSPE improved the fibrosis in myocardial tissue and myocardial pathological changes of MI mice. (A) Representative image and analysis of infarct size
by TTC staining, normal area is red, infarct area is white. (B) The contents of SOD and MDA the mice serum in different froup. (C) Pathological changes in HE-staining anf
Masson staining of cardiac section. The inflammatory cells in HE staining have been marked with arrows. Data analyzed are mean ± SD. *Significant difference compared
with the control group, p < 0.05; #significant difference compared with the MI group, p < 0.05. n � 3 per group.
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Inhibition of PI3K/AKT Pathway Reverses
the Anti-Apoptosis and Anti-Fibrosis Effects
of GSPE
After administration of the PI3K inhibitor LY294002, the
p-PI3K and p-AKT levels in the LY294002-treated group
were lower than those in the GSPE group after MI
(Figure 5A). Compared with those in the GSPE group,
LY294002 increased the level of Bax protein, decreased Bcl-
2 levels (Figure 5B), and increased collagen Ⅰ, collagen Ⅲ and
α-SMA levels (Figure 5C). In other words, LY294002
significantly increased apoptosis and fibrosis compared with

the results of the MI + GSPE group. Furthermore,
immunofluorescence showed that the integral optical
density of α-SMA in the LY294002 treatment group was
higher than that of the MI + GSPE group (Figure 5D).

Grape Seed Proanthocyanidin Extract
Reduces Apoptosis in H9C2 Cells Under
Oxygen-Glucose Deprivation
The time-cell activity experiment showed that the most suitable
hypoxia time for H9C2 cell apoptosis was ∼24 h (Figure 6A). The
dose response experiment showed that the optimal concentration

FIGURE 3 | GSPE attenuated MI induced apoptosis and myocardial fibrosis by activating PI#K/AKT pathway. (A) Effects of GSPE on the levels of Bax and Bcl-2
evaluated by Western blot analysis. (B) Effects of GSPE on the levels of Col-1, Col-3 and a-SMA evaluated by Western blot analysis. (C) Immunofluorescense staining of
a-SMA. (D) Effects of GSPE treatment on cardiac levels of p-PI3K, PI3K, p-AKT and AKT evaluated by Western blot analysis. *Significant difference compared with the
control group. p < 0.05; #significant difference compared with the MI group, p < 0.05, n � 3 per group.

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 5859846

Ruan et al. Pharmacological Effects of GSPE

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


of GSPE was 40 μg/ml (Figure 5A). Western blotting showed that
the increasing of Bax under hypoxia, and GSPE treatment
significantly decreased the level of Bax (Figure 6B).
Furthermore, GSPE treatment increased the expression of Bcl-
2 (Figure 6B). In addition, flow cytometry also showed that GSPE
could reduce the apoptosis of H9C2 cells under glucose and
oxygen deprivation (Figure 6C).

GSPE Attenuates Cell Apoptosis in H9C2
Cells Under Glucose and Oxygen
Deprivation Through the PI3K/AKT Pathway
In vitro, western blotting showed that the levels of p-PI3K and
p-AKT in the MI + GSPE group were higher than those in the
hypoxia group, indicating that GSPE can enhance the activation

of the PI3K/AKT pathway in H9c2 cells under hypoxia
(Figure 6D).

Inhibition of the PI3K/AKT Pathway
Reverses the Protective Effect of GSPE on
H9C2 Cells
After administration of the PI3K inhibitor LY294002, the p-PI3K
and p-AKT levels in the LY294002 treatment group were lower than
those in the GSPE group under OGD (Figure 7A). Compared with
those in the GSPE treatment group, the level of Bax increased and
the level of Bcl-2 decreased in the LY294002 group (Figure 7B). In
addition, flow cytometry showed the same results (Figure 7C). This
suggests that GSPE plays an anti-apoptotic role via the PI3K/AKT
pathway in vitro, which was corroborated by flow cytometry.

FIGURE 4 | Inhibition of the PI3K/AKT pathway reversed the protective effect of GSPE on cardiac function in vivo. (A) Representative M-mode echocardiographic
images in short axis from each group, the relative indicatiors included are LVEF(%), FS(%), LVIDd(mm) and LVIDs(mm). (B) Pathological changes in HE-staining and
Masson staining of cardiac section. The inflammatory cells in HE staining have been marked with arrows. Data analyzed are mean SD. *Significant difference compared
with the MI group, p < 0.05; #significant difference compared with the MI + GSPE group, p < 0.05. n � 3 per group.
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CONCLUSION

The present study demonstrated that GSPE could improve the
cardiac dysfunction and remodeling in mice induced by MI and
inhibit cardiomyocytes apoptosis in hypoxic conditions through
the PI3K/AKT signaling pathway.

DISCUSSION

The objective of this research was to find out the pharmacological
effects of GSPE on MI in mice. An in vivo model of AMI was
established by ligating the left anterior descending coronary
artery (LAD) of the mouse heart for 14 days (Selvaraju et al.,
2020). According to pathological sections and TTC staining of
ultrasonic memory heart, the model was successful. In the
experiment in vitro, the method of glucose and oxygen

deprivation was employed to simulate the ischemia and
hypoxia of myocardial cells in the infarcted and marginal
areas in mice with MI (Abbruzzese et al., 2020). The
experimental results showed that intragastric administration of
GSPE in mice could reduce heart damage in mice with coronary
artery ligation, and the cell experiment produced the same results.
Furthermore, the activation of PI3K/AKT signaling pathway was
found in the MI mice treated with GSPE. Moreover, by using
LY294002, the therapeutic effect of GSPE was reversed, which
confirmed the hypothesis. In vivo and in vitro experiments found
that GSPE has a protective effect on short-term MI in mice, and
this effect is partly mediated through the activation of the p-PI3K
and p-AKT levels.

In a previous study, the PI3K/AKT signaling pathway was
one of the main ways to prevent myocardial hypertrophy and
apoptosis (Cao et al., 2011). Another study on I/R injury and
PI3K signaling showed that activation of the PI3K signaling

FIGURE 5 | Inhibition of PI3K/AKT pathway can reverse the anti-apoptosis and anti-fibrosis effects of GSPE. (A) Effects of GSPE treatment on cardiac levels of
p-PI3K, PI3K, p-AKT evaluated by Western blot analysis. (B) Effects of GSPE on the levels of Bax and Bcl-2 evaluated by Western blot analysis. (C) Effects of GSPE
on the levels of Col-1, Col-3 and a-SMA evaluated by Western blot analysis. (D) Immunofluorescence staining of a SMS. *Significant difference comapred with the MI
froup, p < 0.05; #significant difference compared with the MI + GSPE group, p < 0.05. n � 3 per group.
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pathway can reduce the size of MI and significantly improve
left ventricular function (Nagaoka et al., 2015). The PI3K/AKT
signaling pathway can inhibit the expression of endoplasmic
reticulum stress-related proteins after myocardial ischemia-
reperfusion, thereby reducing cardiomyocyte apoptosis (Shen
et al., 2019). In addition, a study showed that the protective
effect of the PI3K/AKT signaling pathway may be associated
with the upregulation of Cx43 (Bian et al., 2015). AKT
regulates the activity of a variety of downstream molecules,

including mammalian target of rapamycin, glycogen synthase
kinase 3β and p70S6 kinase, and these proteins can regulate
cellular metabolism after combined and phosphorylated (Xu
et al., 2016). Several studies have shown that AKT
phosphorylation at Ser473 in the PI3K/AKT pathway can
partially regulate the expression of Nrf-2, and ultimately
increase the activity of SOD and decrease the levels of MDA
and ROS (Ma et al., 2014; Liu et al., 2019). In another study of rats
MI model, silencing Annexin3 gene and activating of PI3K/AKT

FIGURE 6 | GSPE reduced apoptosis in H9C2 cells under oxygen-glucose deprivation through PI3K/AKT pathway. (A) H9C2 cells were culture under hypoxia
condition for different time, CCK8 assay was used to assess the cell viability. The appropriate GSPE concentration eas evaluated by CCK8 assay after the cells were
cultured under glucose oxygen deptrivation for 24 hours. *Significant difference compared with the DMSO group, P < 0.05. (B) Effects of GSPE on the expression of Bax
and Bcl-2 evaluated by Western blot analysis. (C) H9C2 cells in different treatment were stained by Annexin V-FITC/PI staining and then distinguished by flow
cytometer. The cell apoptosis rate was quantified. (D) Effects of GSPE treatment on the H9C2 cells of p-PI#K, PI#K, p-AKT and AKT evaluated byWestern blot analysis.
Data analyzed are mean ± SD. *Significant difference compared with the DMSO group, p < 0.05; #significant difference compared with the OGD group, p < 0.05. n � 3
per group.
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signaling pathway can promote the repair and healing of
myocardial tissue, which indicates that PI3K/ AKT signaling
pathway can accelerate the repair of heart injury (Meng et al.,
2019). In a previous study, LY294002 was used to study the
myocardial protective role of PI3K/AKT signal in septicemia,
and it can induce the expression of Bcl-2 and decrease the
expression of Bax, suggesting that it has an inhibitory effect on
apoptosis (An et al., 2016). These researches indicate that PI3K/
AKT pathway plays an essential role in cardiac injury and affects
the changes of many intracellular substances.

Previous studies have shown that GSPsmainly have antioxidant
effects, which can act as antioxidants in vivo and directly scavenge
ROS, and have been found to have cardioprotective capacity (Sato
et al., 1999). One study has shown that GSPE has antioxidant
activity in model of myocardial ischemia-reperfusion of mice, and
its cardioprotective effect is partly due to its blocking of anti-
apoptotic signals by inhibiting JNK-1, c-Jun and other pro-
apoptotic transcription factors and genes (Sato et al., 2001).

Under the stimulation of GSPE, AKT was activated, and it
could activate eNOS and increase the level of NO in primary
myocardial cells of chicks in an ischemia/reperfusion model (Shao
et al., 2009). These results suggest that the cardioprotective effect of
GSPE may be associated with the activation of the PI3K/AKT
signaling pathway. The mechanism of GSPE onMI in mice has not
been elucidated in previous studies. Therefore, we speculate that
the cardio-protective effect of GSPE in MI may be associated with
the activation of the PI3K/AKT signaling pathway. In our
experiment, the PI3K/AKT signal pathway was activated in MI.
GSPE could enhance the activation, and reduce myocardial injury
and fibrosis. LY294002, a PI3K inhibitor, partially attenuated the
protective effect of GSPE on cardiomyocytes. Therefore, GSPE
protects against MI-induced cardiac injury through the PI3K/AKT
signal pathway.

There were several limitations in this study. Firstly, whether
GSPE could reduce myocardial injury through other signal
transduction pathways has not been fully elucidated in this

FIGURE 7 | Inhibition of PI3K/AKT pathway reversed the protective effect of GSPE on H9C2 cells. (A) Effects of GSPE treatment on the H9C2 cells of p-PI3K, PI3K,
p-AKT and AKT evaluated by Western blot analysis. (B) Effects of GSPE on the expression of Bax and Bcl-2 evaluated by Western blot analysis. (C) H9C2 cells in
different treatment were stained by Annexin V-FITC/PI staining and then distinguished by flow cytometer. Then cell apoptosis rate was quantified. *Significant difference
compared with the OGD group, p < 0.05; #significant difference compared with the OGD + GSPE group, p < 0.05. p � 3 per group.
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study. We have detected ERK signaling pathway before, and
their protein expression has no obvious change before and after
GSPE intervention. Secondly, The purity of grape seed
cyanidin extract purchased by different pharmaceutical
companies is different, and the experimental effect may be
varied. Besides, The H9C2 cells are not cardiomyocytes, to
validate our findings in vitro, primary cardiomyocytes was
need. The morphology of neonatal mouse cardiomyocytes was
demonstrated in MP4. As presented in the Supplementary
Material, we have done some experiments on neonatal mouse
cardiomyocytes. GSPE can inhibit neonatal cardiomyocyte
apoptosis and affect the expression of apoptotic proteins in
the model of glucose and oxygen deprivation. In the future, we
will go further in the pharmacological of GSPE on neonatal
Cardiomyocyte. We may explore the cell migration,
proliferation and chemotaxis effects of GSPE. We will go
further into this research in the future.

For the current clinical situation of MI heart disease that
cannot be effectively treated, it is necessary to find new and
additional drug targets. This research may provide some new
ideas for the treatment of myocardial infarction.
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