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Differential Impact of Acute and
Chronic Stress on CA1 Spatial
Coding and Gamma Oscillations
Anupratap Tomar*†, Denis Polygalov and Thomas J. McHugh*

Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan

Chronic and acute stress differentially affect behavior as well as the structural integrity
of the hippocampus, a key brain region involved in cognition and memory. However,
it remains unclear if and how the facilitatory effects of acute stress on hippocampal
information coding are disrupted as the stress becomes chronic. To examine this, we
compared the impact of acute and chronic stress on neural activity in the CA1 subregion
of male mice subjected to a chronic immobilization stress (CIS) paradigm. We observed
that following first exposure to stress (acute stress), the spatial information encoded
in the hippocampus sharpened, and the neurons became increasingly tuned to the
underlying theta oscillations in the local field potential (LFP). However, following repeated
exposure to the same stress (chronic stress), spatial tuning was poorer and the power
of both the slow-gamma (30–50 Hz) and fast-gamma (55–90 Hz) oscillations, which
correlate with excitatory inputs into the region, decreased. These results support the
idea that acute and chronic stress differentially affect neural computations carried out by
hippocampal circuits and suggest that acute stress may improve cognitive processing.
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INTRODUCTION

It is generally accepted that while mild or acute stress can be beneficial for cognition and
learning, repeated exposure to stressors (chronic stress) disrupts these processes (Luksys and Sandi,
2011). This dichotomy in the impact of acute and chronic stress has also been observed in the
hippocampus, a brain region crucial for the acquisition and consolidation of declarative memory.
At the cellular level, chronic, but not acute stress, causes dendritic shrinkage and debranching
(Watanabe et al., 1992; Sousa et al., 2000) and decreases the number of synaptic contacts (spines)
on principal hippocampal pyramidal neurons (Magariños et al., 1997; Sandi et al., 2003). Further,
earlier studies employing both ex vivo electrophysiology and in vivo tetrode recordings report that
chronic stress also alters the functionality of hippocampal pyramidal cells. For example, chronic
stress disrupts synaptic plasticity in hippocampal slices (Alfarez et al., 2003). Similarly, the spatial
map or internal representation of the surroundings (O’Keefe and Nadel, 1978), evident in the
location-specific increase in average firing rate of hippocampal pyramidal ‘‘place’’ cells (O’Keefe
and Dostrovsky, 1971; O’Keefe, 1976) is altered in chronically stressed rodents (Kim et al., 2007;
Passecker et al., 2011; Tomar et al., 2015). However, the interpretation of acute stress effects
on hippocampal synaptic plasticity is more complex (Joëls and Krugers, 2007; MacDougall and
Howland, 2013) and consequently, the impact of acute stress on the neural computations carried
out by hippocampal circuits in the intact brain remains unclear.
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In addition to the rate code (i.e., location-specific spiking),
place cells also use temporal coding to signal spatial aspects of
the animal’s location or behavior (O’Keefe and Recce, 1993).
Temporal coding involves place cells spiking at a specific phase
of ongoing oscillations in the local field potential (LFP), such
as theta (6–12 Hz) and gamma (30–90 Hz), during exploratory
behavior. These oscillations, as well as the more transient
coupling of the theta-gamma oscillations themselves, are thought
to provide temporal precision to the activity of hippocampal
cell assemblies and to facilitate phenomena including synaptic
plasticity and retrospective and prospective coding (Harris et al.,
2003; Lisman, 2005; Buzsáki, 2010; Fries, 2015). Interestingly,
temporal coding, as well as theta and gamma coupling, have been
shown to be altered in neurodegenerative disorders (Goutagny
et al., 2013; Booth et al., 2016; Mably et al., 2017), for which stress
is a risk factor (Bisht et al., 2018). Thus, it is likely that both
acute and chronic stress may impact these oscillatory patterns in
unique ways.

To address these gaps in our knowledge we employed tetrode
recordings in the dorsal CA1 of male mice. Recordings were
made while mice explored a linear track before and after
experiencing chronic immobilization stress (CIS; Suvrathan
et al., 2010), a protocol that has been previously shown to reduce
hippocampal volume, spatial memory (Rahman et al., 2016),
and context discrimination (Tomar et al., 2015). Specifically,
we examined alterations in both rate and temporal coding of
CA1 pyramidal cells, as well as changes in the hippocampal
oscillatory activity, following acute and chronic stress.

MATERIALS AND METHODS

Animals
All experiments were performed using male C57BL/6J mice.
A total of five mice, aged between 3 and 6 months, were
used for this study. The data related to the physiology during
the stress exposure from these mice was previously reported
(Tomar et al., 2021). Mice were maintained on a 12-h light-dark
cycle with ad libitum access to food and water. All procedures
were approved by the RIKEN Institutional Animal Care and
Use Committee and complied with the National Institutes of
Health guide for the care and use of laboratory animals (NIH
Publications No. 8023, revised 1978). All efforts were made to
minimize animal suffering and to reduce the number of animals
used.

Experimental Design and Stress Protocol
Mice were habituated to the small sleep-box as well as a linear
track daily, and after surgery, mice were again habituated to
the sleep-box in which later all ‘‘rest’’ data was collected. Thus,
mice were completely habituated to the experimenter, room,
sleep box, etc., minimizing the contribution of other (non-
stress) repetitive factors/experiences to the changes we observed
in the physiology of the hippocampus. Mice underwent the
same CIS protocol as described previously (Tomar et al., 2015).
Briefly, mice experienced complete immobilization (2 h/day
for 10 consecutive days: Figure 1A) in rodent immobilization
bags, without access to either food or water. During the actual

experiment, all mice experienced a familiar track twice, the first
before (PRE) and second after the stress exposure (POST), on the
first day (Acute) and the last day (Chronic) of a CIS paradigm
thus providing us with four conditions: (i) PRE-Acute; (ii) POST-
Acute; (iii) PRE-Chronic; and (iv) POST-Chronic. Each track
(RUN) epoch was bracketed by Rest-state (REST) epochs and
each epoch was∼ 30 min.

Surgery, Recordings, and Histology
Mice were anesthetized using Avertin (2,2,2-tribromoethanol;
Sigma-Aldrich, 476 mg/kg, i.p.) and were surgically implanted
with a microdrive (manufactured with the assistance of the
Advanced Manufacturing Support Team, RIKEN Center for
Advanced Photonics, Japan). The microdrive housed eight
independently movable tetrodes (14 µm diameter, nichrome)
and was placed above the right dorsal hippocampus (coordinates
from Bregma: AP −1.8 mm; ML + (1.2 mm). Prior to surgery,
tetrodes were gold plated to lower impedance down to a range of
100–250 kΩ. Tetrodes were gradually lowered over the course
of several days, such that by the start of the experiment they
reached the CA1 stratum pyramidale. Data were acquired using
a 32-channel Digital Lynx 4S acquisition system (Neuralynx,
Bozeman, MT, USA). Signals were sampled at 32,556 Hz and
spike waveforms were filtered between 600 Hz and 6 kHz. Skull
screws located above the cerebellum served as a ground, and a
tetrode positioned in the superficial layers of the neocortex, and
devoid of spiking activity, was used for reference. Three to four
weeks after surgery, when all tetrodes reached the CA1 stratum
pyramidale, evident bymultiple large amplitude spikes and SPW-
Rs, the experiment was initiated. During REST epochs, the mice
were located in a small circular sleep box (15-cm diameter).
At the conclusion of the experiment, mice underwent terminal
anesthesia (Avertin), and electric current (30 µA, for 8 s) was
administered through each electrode to mark their locations.
Transcardial perfusion was carried out using saline followed by
4% paraformaldehyde (PFA) followed by a further 24-h fixation
in 4% PFA. Brains were sliced using a vibratome (Leica) to
prepare coronal slices (50 µm thick) and inspected by standard
light microscopy to confirm electrode placement.

Unit Isolation and Spike Analysis
Spike sorting was performed by an automatic spike sorting
program [KlustaKwik (Harris et al., 2000)], followed by manual
adjustments of the cluster boundaries using SpikeSort3D
software (Neuralynx). Candidate clusters with <0.5% of spikes
displaying an inter-spike-interval shorter than 2 ms, a total
number of spikes exceeding 50, having a cluster isolation
distance value (Schmitzer-Torbert et al., 2005) ≥10, spike
halfwidth (peak-to-trough >170 µs and complex spike index
(CSI; McHugh et al., 1996)>5 were considered as pyramidal cells
and were used for further analysis.

Place Cell Properties
Pyramidal cells that were active during the period of exploration
(RUN) with a speed >2 cm/s on the linear track, had field
size ≥6 bins and covered less than 50% of the track were
considered place cells. Peak firing rate was defined as the firing
rate in the spatial bin containing the maximal value within each
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FIGURE 1 | Impact of stress on CA1 place cell activity. (A) Schematic representation of the chronic immobilization stress (CIS) protocol and experimental design.
(B) Percentage of pyramidal cells active during exploration (RUN) compared to quiet wakefulness/sleep (REST) period, before stress administration (Pre-stress), on
day-1 (black) and day-10 (blue), [day-1: 95/180 (53%) vs. day-10: 101/166 (61%), p = 0.164, chi-square test]. Dotted line represents 50%. (C) Pre-stress mean firing
rates between REST and RUN on day-1 and day-10 [LMMs: main effect of day, F (1,538) = 3.988, p = 0.046; main effect of session, F (1,538) = 64.02,
p = 7.708 × 10−15; interaction, F (1,538) = 0.018, p = 0.892; post hoc Tukey’s test, day-1: REST (n = 180) vs. RUN (n = 95), p < 0.0001, day-10: REST (n = 166) vs.
RUN (n = 101), p < 0.0001]. (D) Pre-stress place field size density distribution differs between day-1 and day-10 (PRE-Acute (n = 95) vs. PRE-Chronic (n = 101),
p = 0.049, KS-test). However, place cells active during RUN, before and after stress exposure, display a decrease in field size on day-1 (PRE-Acute 13.89 ± 1.46 vs.
POST-Acute, 11.25 ± 0.96, V = 280, p = 0.009, Wilcoxon signed-rank test, n = 36) but not on day-10 (PRE-Chronic, 19.71 ± 2.39 vs. POST-Chronic,
17.81 ± 1.99, V = 186, p = 0.316, Wilcoxon signed-rank test, n = 34). (E) Pre-stress sparsity of place fields does not differ between

(Continued)
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FIGURE 1 | Continued
day-1 and day-10 (PRE-Acute (n = 95) vs. PRE-Chronic (n = 101), p > 0.05,
KS-test). However, place cells active during RUN, before and after stress
exposure, display a decrease in sparsity-index on day-1 (PRE-Acute,
0.22 ± 0.02 vs. POST-Acute, 0.18 ± 0.02, V = 307, p = 1.47 × 10−4,
Wilcoxon signed-rank test, n = 36) but not on day-10 (PRE-Chronic,
0.27 ± 0.03 vs. POST-Chronic, 0.28 ± 0.02, V = 145, p = 0.90, Wilcoxon
signed-rank test, n = 34). (F) Pre-stress information content (bits/spike) of
place fields does not differ between day-1 and day-10 [PRE-Acute (n = 95) vs.
PRE-Chronic (n = 101), p > 0.05, KS-test]. However, place cells active during
RUN, before and after stress exposure, display a significant increase on day-1
(PRE-Acute, 1.96 ± 0.16 vs. POST-Acute, 2.22 ± 0.14, V = 91, p = 0.002,
Wilcoxon signed-rank test, n = 36) but not on day-10 (PRE-Chronic,
1.68 ± 0.17 vs. POST-Chronic, 1.59 ± 0.15, V = 167 p = 0.643, Wilcoxon
signed-rank test, n = 34). All box plots represent interquartile range (IQR,
25th–75th percentiles), median is the thick line in the box and whiskers
extend to 1.5 times the IQR. The black and red dotted lines on density plots
display median values. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, N = 5 mice.

firing rate map. The place field size was defined as the number
of spatial bins where place cell field firing exceeded 20% of
the peak firing rate. The mean firing rate was calculated by
dividing the number of spikes which occurred within periods
when velocity exceeded 2 cm/s by that period’s duration and
then these values were averaged. CSI is defined as CSI = 100
∗(pos − neg), where ‘‘pos’’ is the number of inter-spike intervals
positively contributing to CSI, that is, preceding spikes with
larger amplitudes and following spikes with smaller amplitudes
(complex bursts) occurring within 3 ms (refractory period) and
15 ms (maximum inter-spike interval defining a burst); ‘‘neg’’
is the number of inter-spike intervals that contribute negatively
to CSI, i.e., violating either or both these rules. A ‘‘burst’’ was
defined as at least two spikes occurring within a 10 ms time
bin. The burst detection and analysis were performed using
MATLAB scripts previously described in Bakkum et al. (2014).
Place field ‘‘sparsity’’ was computed as previously described
in Resnik et al. (2012). Briefly, ‘‘sparsity’’ was defined as a
number ranging from 0 to 1, where 0 corresponds to a firing
rate map which consists of equal firing rate values in every
visited spatial bin. The firing rate map with sparsity value
1 corresponds to the case when all the spikes generated by any
given cell occurred in a single spatial bin. Spatial Information
(SI, bits/spike) was calculated as previously reported (Skaggs
et al., 1993); Briefly SI = sum{Pspk(i) * log2 [Pspk(i)/Pocc(i)]},
where Pspk(i) is the probability of spiking in bin ‘‘i’’ and
‘‘Pocc(i)’’ is the occupancy probability in bin ‘‘i’’. The ‘‘Pspk’’
and ‘‘Pocc’’ values were computed from the rate and occupancy
maps respectively.

Power Spectral Density
The Power Spectral Density (PSD) during exploratory behavior
was calculated by using Welch’s averaged modified periodogram
method with a 2,048-sample (1.26 s) window size, 50% overlap
and 4,096 FFT points (2.52 s) resulting in a time-varying
spectrogram. The PSD curves corresponding to time bins when
the animal’s velocity was above 6 cm/s were averaged yielding a
single PSD curve for each of the four experimental conditions.
In order to account for power fluctuations caused by differences
in position/impedance of the electrodes and make PSD values

comparable across mice, we normalized each PSD curve by its
own mean power within the 0–3 Hz band.

Quantification of Modulation of Firing Rate
and Gamma Oscillations by Animal’s
Running Speed
Instantaneous running speed curves were obtained by
element-wise division of relative changes in the animal’s
position between video frames by correspondent inter-frame
timestamps. The resulting signal was then smoothed with
a 2.5-SD gaussian kernel. For every place cell, all the spikes
fired by the cell when the animal was running along the track
were binned, using the camera’s frame rate (1/30 s as the bin
size, yielding an instantaneous firing rate curve. Instantaneous
running speed values were then binned using logarithmically
distributed velocity values. The resulting index matrix (second
return value of the MATLAB histc() function) was then used
to calculate the mean firing rate of the cell within each running
speed bin. Modulation of LFP power in gamma frequency
bands by the animal’s running speed was assessed by first
down-sampling the LFP signal to 400 Hz and up-sampling
the previously calculated instantaneous velocity curve using
linear interpolation method to the same sampling frequency
value as the down-sampled LFP. The resulting LFP signal
was then filtered in the target frequency bands (slow and fast
gamma) and converted into instantaneous power values by
calculating the absolute value of the Hilbert transform of the
filtered LFP trace. The up-sampled running speed curve was
then binned using the same logarithmically distributed velocity
values, and corresponding mean fast and slow gamma power
was calculated by using the method described above for each
velocity bin.

Theta/Gamma Phase-Locking to Spikes
The phase relationship between spikes and theta LFP was
calculated as previously described (Siapas et al., 2005). Briefly,
the instantaneous theta phase was derived from the Hilbert-
transformed LFP trace filtered in the theta band (6–12 Hz). Peaks
and troughs were assigned 0- and 180◦ phases respectively, with
spike phase calculated using interpolation, amethod not sensitive
to theta wave asymmetry. The resultant phases were converted to
firing probability histograms (10◦ bin size) while limiting spikes
to time periods when the animal’s velocity exceeded 6 cm/s.
Significance of the phase locking, preferred firing phase, strength
of modulation, and statistical comparison of phase values were
calculated using functions from the Circular Statistics Toolbox
(Berens, 2009). Gamma/spikes modulation was computed in
a similar manner; the calculation was performed using LFP
traces filtered in slow gamma (30–50 Hz) and fast gamma
(55–90 Hz) frequency bands. Due to the transient nature of
gamma oscillations, additional gamma ‘‘bursts’’ detection was
performed by calculating time periods when instantaneous
power (absolute value of Hilbert transform) of gamma-band
filtered LFP trace exceeded various threshold values (in Standard
Deviations, 0.5 SD, 1 SD, 2 SD) above mean value of the trace.
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Cross-Frequency Coupling Between Theta
and Gamma Oscillations
Cross-Frequency Coupling (CFC) was calculated as described
previously (Tort et al., 2010). To reliably detect the phenomena,
relatively long chunks of LFP representing a consistent behavior
state are necessary, thus time periods when the mouse was
running along the track were used in this analysis. LFP data
of each lap was first down-sampled to 800 Hz, z-scored and
converted to time-varying power over multiple frequency bands
matrices by using wavelet transform (mother wavelet function:
Morlet, wavelet parameter: 5). Then modulation index (MI)
values were calculated for each pair of low (4–20 Hz) and high
(30–300 Hz) frequency bands. The significance of the MI values
was assessed by using the permutation method (Nperm = 200), for
details see Tort et al. (2010).

Statistical Analysis
All statistical analyses were performed in R software (3.3.2).
The normality of distributions was not assumed, so comparisons
were made using non-parametric statistics. For between-group
comparisons, Wilcoxon rank-sum tests were used, while for
cells matched between two epochs, Wilcoxon signed-rank
tests were used to test the equality of medians. Two-
way ANOVAs (aov function, stats package) followed by
Tukey’s honestly significant difference (HSD) test (TukeyHSD
function, stats package) was used to test for differences
between treatments. Overall differences in place cell properties
were assessed using linear mixed effects models (LMMs),
where mouse identity was specified as a random factor
and day and behavior state were specified as fixed factors.
The output of the lmer function was summarized as an
ANOVA table (anova function, stats package). Similarly,
comparisons for power distributions across various frequency
bands in LFP signals were assessed using LMMs, where mouse
identity was specified as a random factor and frequency
bands as categorical variables were specified as fixed factors.

Correlation between parameters was calculated using Pearson’s
correlation coefficient analysis (base package). The dependence
of a parameter on another was calculated by employing
standardized major axis (SMA) regression (sma function,
smatr package). Comparisons between regression lines were
made by likelihood ratio tests (sma function, smatr package).
For density curve analysis, the Kolmogorov-Smirnov test
was employed (ks.test, stats package). For phase-locking
analysis, statistical analyses were performed on 10◦ binned
data however for visualization purposes data is presented
in 30◦ bins. Boxplots represent Interquartile Range (IQR,
25th–75th percentiles), the median is the thick line housed
in the box and whiskers extend to 1.5 times the IQR.
No data points were removed as outliers either for making
boxplots or for statistical analysis, however for visualization
purposes, axes of graphs were readjusted. All statistical
tests used were two-sided, and unless otherwise stated, the
significance threshold for all tests was set at p < 0.05 and
p-values are shown as follows: ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001.

RESULTS

The main aim of this study was to examine the differential
impact of acute and chronic stress on CA1 spatial coding
and hippocampal physiology. To this end, we employed a
longitudinal design similar to that employed in previous studies
that contrasted neural activity from the same rodents before
and after they received exposure to stress (Kim et al., 2007;
Ghosh et al., 2013; Tomar et al., 2021). Specifically, we
monitored CA1 place cell activity and theta (6–12 Hz) and
gamma oscillations (30–90 Hz) during two track exploration
sessions: one occurring before (PRE) and second after (POST)
the stress exposure, on the first day (Acute) and the
last day (Chronic) of a CIS paradigm (Figure 1A; see
‘‘Materials and Methods’’ section), thus providing us with four

TABLE 1 | Pyramidal cell properties during baseline activity and exploratory states on day-1 and day-10.

Parameters First-day (REST; n = 180 cells) Last-day (REST; n = 166 cell) Statistics

Peak firing (Hz) 4.60 ± 0.69 5.68 ± 0.59 W = 12,556, ∗p = 0.01
Mean firing (Hz) 0.49 ± 0.07 0.53 ± 0.06 W = 13,316, p = 0.08
Complex Spike Index 22.21 ± 0.95 23.48 ± 1.11 W = 14,384, p = 0.55
Burst duration 7.72 ± 0.19 7.96 ± 0.22 W = 12,189, ∗p = 0.0108
Burst ratio 0.32 ± 0.01 0.36 ± 0.01 W = 13,306, p = 0.08
Spikes per burst (n) 2.25 ± 0.01 2.32 ± 0.02 W = 12,267, ∗∗p = 0.0051

Place cell properties

First-day (RUN; n = 95 cells) Last-day (RUN; n = 101 cell) Statistics

Peak firing (Hz) 4.33 ± 0.30 4.94 ± 0.39 W = 4,339, p = 0.248
Mean firing (Hz) 0.56 ± 0.06 0.76 ± 0.09 W = 4,289, p = 0.201
Complex Spike Index 20.31 ± 1.16 21.39 ± 1.11 W = 4,505, p = 0.463
Burst duration 7.40 ± 0.10 7.23 ± 0.16 W = 6,824, p = 0.128
Burst ratio 0.34 ± 0.01 0.36 ± 0.01 W = 5,870, p = 0.477
Spikes per burst (n) 2.26 ± 0.02 2.27 ± 0.02 W = 5,869, p = 0.546

Impact of stress on CA1 pyramidal cells during baseline activity (REST) and exploration (RUN). Top: comparisons of spiking and bursting properties of pyramidal cells during quiet
wakefulness/sleep (REST) between day-1 and day-10. Bottom: comparisons of spiking and bursting properties of pyramidal “place” cells during pre-stress track exploration (RUN)
between day-1 and day-10. Data is presented as Mean ± SEM, Wilcoxon rank-sum test, ∗p < 0.05, ∗∗p < 0.01, N = 5 mice.
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conditions: (i) PRE-Acute; (ii) POST-Acute; (iii) PRE-Chronic;
and (iv) POST-Chronic.

Differential Impact of Acute and Chronic
Stress on Spatial Tuning of CA1 Place Cells
Our recordings from the dorsal CA1 region of the hippocampus
(Supplementary Figure 1A) during baseline activity state
(REST) yielded a total of 180 pyramidal cells on day-1 (Acute)
and 166 pyramidal cells on day-10 (Chronic). No major
differences in firing rates was observed, although bursting
activity showed a small, but significant, increase at the chronic
time point (Table 1). Next, we assessed the impact of stress on
mouse behavior during track exploration (RUN) by employing
ANOVA statistics where the ‘‘main effect of day’’ signifies the
comparisons made between day-1 and day-10 (i.e., after a single
exposure and repeated stress) while the ‘‘main effect of session’’
means comparisons made before and after exposure to stress. We
observed no discernible change in behavior as the total number
of laps traveled by mice did not differ between sessions across
days (2-way repeated measures ANOVA: main effect of day,
F(1,4) = 0.564, p = 0.467; main effect of session, F(1,4) = 1.459,
p = 0.250; interaction, F(1,4) = 0.001, p = 0.974, N = 5 mice).
Similarly, distance traveled on the track did not differ between
days and sessions (2-way repeated measures ANOVA: main
effect of day, F(1,4) = 1.873, p = 0.243; main effect of session,
F(1,4) = 6.699, p = 0.061; interaction, F(1,4) = 0.465, p = 0.533,
N = 5 mice). These data demonstrated that neither acute nor
chronic stress strongly affected mouse locomotor behavior.

Next, we examined the impact of stress on the location-
specific activation of CA1 pyramidal ‘‘place’’ cells during linear
track exploration (O’Keefe and Dostrovsky, 1971). The fraction
of neurons that passed place cell criteria during RUN (see
‘‘Materials and Methods’’ section) was similar on the first and
the last day of CIS (Figure 1B; day-1: 95/180 (53%) vs. day-10:
101/166 (61%), p = 0.164, χ2 test, N = 5 mice), indicating that
chronic stress did not alter activation of place cell ensembles.
As expected, the mean firing of cells was significantly higher
during RUN compared to the baseline REST session (Figure 1C),
with no discernible effect of repeated stress exposure (averaged
firing; LMMs: main effect of day, F(1,538) = 3.988, p = 0.046;
main effect of session, F(1,538) = 64.02, p = 7.708 × 10−15;
interaction, F(1,538) = 0.018, p = 0.892, n = 542 cells, N = 5 mice).
Thus, pyramidal cells increased their discharge rate during spatial
coding and neither acute nor chronic stress affected this property
of pyramidal cells.

We then performed detailed analysis of place cell properties.
Place field size, defined as the proportion of the track that a place
cell was active on, showed a main effect of day (Figure 1D; size;
LMMs: main effect of day, F(1,369) = 8.660, p = 0.0035; main effect
of session, F(1,369) = 1.201, p = 0.274; interaction, F(1,369) = 0.019,
p = 0.890, n = 373 cells,N = 5mice). Further, density distribution
of field size during PRE-stress sessions changed after repeated
stress such that compared to day-1, on day-10, a greater fraction
of cells had larger place fields [day-1 (n = 95 cells) vs. day-10,
(n = 101 cells); KS-test, p = 0.049, N = 5 mice]. Moreover,
neurons, that were active during both PRE and POST stress
sessions, displayed a decrease in field size after stress exposure on

day-1 (PRE-Acute, 13.89 ± 1.46 vs. POST-Acute, 11.25 ± 0.96,
p = 0.009,Wilcoxon signed-rank test, n = 36 cells,N = 5mice) but
not on day-10 (PRE-Chronic, 19.71 ± 2.39 vs. POST-Chronic,
17.81 ± 1.99, p = 0.316, Wilcoxon signed-rank test, n = 34 cells,
N = 5 mice). Thus, place fields decreased in size after the acute
stress, but expanded after repeated exposure to stress.

Altered place field size alone fails to capture all changes in
spatial coding, as previous studies have reported that bigger
place fields can be suggestive of both improved spatial coding
(Hussaini et al., 2011) and a loss of spatial specificity (McHugh
et al., 1996). Thus, we next assessed the impact of stress on
spatial tuning by measuring the sparsity-index, a metric of spatial
selectivity (Jung et al., 1994). The sparsity-index of individual
place cells was also impacted by stress (Figure 1E; sparsity;
LMMs: main effect of day, F(1,369) = 8.931, p = 0.003; main effect
of session, F(1,369) = 1.929, p = 0.166; interaction, F(1,369) = 2.017,
p = 0.156, n = 373 cells, N = 5 mice). A further analysis
of cells that were active before and after exposure to stress
confirmed this result, as significantly lower sparsity-index was
noticed after acute stress (PRE-Acute, 0.22 ± 0.02 vs. POST-
Acute, 0.18 ± 0.02, p = 1.47 × 10−4, Wilcoxon signed-rank
test, n = 36 cells, N = 5 mice), but not after repeated stress
(PRE-Chronic, 0.27 ± 0.03 vs. POST-Chronic, 0.28 ± 0.02,
p = 0.90, Wilcoxon signed-rank test, n = 34 cells, N = 5 mice).
Further, spatial information content (bits/spike), a parameter
which quantifies how much information about the mouse’s
location is contained within the activity of a place cell (Skaggs
et al., 1993), was also impacted by stress (Figure 1F; information;
LMMs: main effect of day, F(1,369) = 10.969, p = 0.001; main effect
of session, F(1,369) = 2.586, p = 0.109; interaction, F(1,369) = 5.414,
p = 0.0205, n = 373 cells,N = 5mice). This was further confirmed
as place cells active on the track before and after the exposure to
stress also showed a significant increase in information content
on day-1 (PRE-Acute, 1.96 ± 0.16 vs. POST-Acute, 2.22 ± 0.14,
p = 0.002, Wilcoxon signed-rank test, n = 36 cells, N = 5 mice)
but not on day-10 (PRE-Chronic, 1.68± 0.17 vs. POST-Chronic,
1.59 ± 0.15, p = 0.643, Wilcoxon signed-rank test, n = 34 cells,
N = 5 mice) of the CIS protocol.

Sharpening of place coding after acute stress was not caused
by altered firing rate. However, a main effect of day on firing
rate was observed (mean firing; LMMs: main effect of day,
F(1,369) = 13.014, p = 3.518 × 10−4; main effect of session,
F(1,369) = 0.381, p = 0.537; interaction, F(1,369) = 1.362, p = 0.244,
n = 373 cells, N = 5 mice, Tukey’s post hoc, POST-Acute vs.
POST-Chronic, p = 0.005). In view of reports that firing rate
increases along with running speed of freely behaving rodents
(McNaughton et al., 1983), we next asked if differential impact
of acute and chronic stress on place coding was result of
difference in exploration speed across days or session but found
no significant difference (2-way repeated measures ANOVA:
main effect of day, F(1,4) = 3.106, p = 0.103; main effect of session,
F(1,4) = 1.318, p = 0.273; interaction, F(1,4) = 0.08, p = 0.782,
N = 5 mice). Further, when we compared firing rate of each place
cell across different speed bins (Supplementary Figure 1B) by
using speed as a repeated variable and each recording session
as non-repeated variable, we noticed a clear pattern of increase
in firing rate as the speed increased [2-way mixed ANOVA:
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FIGURE 2 | Impact of stress on CA1 oscillatory activity. (A) Representative examples of unfiltered (top) and filtered (bottom) local field potentials (LFPs) during track
exploration for theta, slow-gamma, and fast-gamma. (B) Power spectral density (PSD) curves of CA1 LFPs during linear track exploration (RUN) show no significant
differences for theta (6–12 Hz; Theta, 2-way repeated measure ANOVA: day, main effect of day F (1,19) = 2.7018, p = 0.1262; main effect of session, F (1,19) = 0.0427,
p = 0.8398; interaction, F (1,19) = 0.4823, p = 0.501). Fast-gamma (55–90 Hz) showed an effect of day but not of session (FG, right inset; 2-way repeated measure
ANOVA: main effect of day, F (1,19) = 6.7062, p = 0.0237; main effect of session, F (1,19) = 0.1047, p = 0.752 interaction, F (1,19) = 0.2074, p = 0.657). Slow-gamma
(30–50 Hz) showed an effect of day but not of session (SG, left inset, 2-way repeated measure ANOVA: main effect of day, F (1,19) = 8.3668, p = 0.0135; main effect
of session, F (1,19) = 0.0634, p = 0.805; interaction, F (1,19) = 0.3754, p = 0.551). (C) Relationship between FG power and running speed on the track (FG; 2-way
repeated measure ANOVA : main effect of speed, F (1,36) = 471.385, p < 2.22 × 10−16, main effect of group, F (3,36) = 5.306,

(Continued)
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FIGURE 2 | Continued
p = 0.015; interaction, F (3,36) = 10.033, p = 2.261 × 10−6, N = 5 mice). (D)
Representative examples of modulation of gamma amplitude by theta phase
in dorsal CA1 pyramidal cell layer before (top) and after (bottom) stress
exposure on day-1 (left) and day-10 (right). The colorbar represents the
z-scored gamma power in arbitrary units (a.u.) for both left and right-side
graphs. (E) Theta-FG phase-amplitude coupling (top) did not differ across
days and sessions (2-way repeated measures ANOVA: day, main effect of
day, F (1,4) = 0.839, p = 0.411; main effect of session, F (1,4) = 3.399,
p = 0.139; interaction, F (1,4) = 4.953, p = 0.09). Similarly, theta-SG coupling
(bottom) was not affected by either acute or chronic stress (2-way repeated
measures ANOVA: day, main effect of day, F (1,4) = 0.592, p = 0.484; main
effect of session, F (1,4) = 1.756, p = 0.256; interaction, F (1,4) = 1.02,
p = 0.370). N = 5 mice.

main effect of speed, F(1,369) = 1,424.752, p < 2.22 × 10−16,
main effect of group, F(3,369) = 16.666, p = 3.546 × 10−10;
interaction, F(3,369) = 37.866, p < 2.22 × 10−16, N = 5 mice;
PRE-Acute (n = 95) cells vs. POST-Acute (n = 89 cells),
p = 0.012, PRE-Chronic (n = 101 cells) vs. POST-Chronic
(n = 88 cells), p < 0.0001, PRE-Acute (n = 95 cells) vs.
PRE-Chronic (n = 101 cells), p = 0.003, Tukey’s post hoc test].
Overall, the above data indicate that smaller place fields and
enhanced spatial tuning, following acute stress, was not caused
by altered speed or relationship between firing rate and speed.
However, same was not true for chronic stress.

Differential Impact of Acute and Chronic
Stress on Exploration-Associated Theta
and Gamma Oscillations
Having established the differential impact of acute and chronic
stress on place cell activity, next we asked if the same was true
for hippocampal LFPs (Figure 2A) which provides a measure
of average synaptic input to a local region (Buzsáki et al., 2012)
and to some extent also reflects slow dynamics of spiking in a
local region (Rasch et al., 2008). During exploratory behavior, the
hippocampal LFP is dominated by prominent large-amplitude
theta (6–12 Hz) oscillations (Vanderwolf, 1969; O’Keefe and
Dostrovsky, 1971), which play a crucial role in the temporal
organization of hippocampal activity (Buzsáki and Moser, 2013).
Thus, we examined the impact of acute and chronic stress on
theta oscillations. A comparison of the PSD of the LFPs, across
sessions (Figure 2B) revealed that theta oscillations were robustly
present and power in the theta band was not affected by either
acute or chronic stress, as no effect of day or session was observed
(theta; 2-way repeated measures ANOVA: day, main effect of day
F(1,19) = 2.7018, p = 0.1262; main effect of session, F(1,19) = 0.0427,
p = 0.8398; interaction, F(1,19) = 0.4823, p = 0.501, N = 5 mice).

In addition to theta, the hippocampus displays occasional
low-amplitude, high frequency gamma (30–90 Hz) oscillations
(Bragin et al., 1995; Buzsáki et al., 2003; Colgin, 2016). Gamma
oscillations consist of distinct subtypes with non-overlapping
frequency ranges, slow (SG: 30–50 Hz) and fast (FG: 55–90 Hz)
gamma (Schomburg et al., 2014; Colgin, 2016; Middleton and
McHugh, 2016; Alexander et al., 2018), and enhanced gamma
oscillatory activity has been suggested to reflect dynamic changes
in excitatory input into CA1 (Buzsáki and Moser, 2013; Fries,
2015). Thus, we next assessed the impact of stress on these

individual gamma bands. Significant decreases in fast-gamma
power were evident on day-10 (Figure 2B; FG; 2-way repeated
measures ANOVA:main effect of day, F(1,19) = 6.7062, p= 0.0237;
main effect of session, F(1,19) = 0.1047, p = 0.752; interaction,
F(1,19) = 0.2074, p = 0.657, N = 5 mice). Similarly, chronic stress
also led to similar decreases in slow-gamma power (Figure 2B;
SG; 2-way repeated measures ANOVA: main effect of day,
F(1,19) = 8.3668, p = 0.0135; main effect of session, F(1,19) = 0.0634,
p = 0.805; interaction, F(1,19) = 0.3754, p = 0.551, N = 5 mice). In
agreement with a previous report (Chen et al., 2011), the power
of gamma oscillations consistently increased across the range of
speeds for FG (Figure 2C; 2-way repeated measure ANOVA:
main effect of speed, F(1,36) = 471.385, p < 2.22 × 10−16,
main effect of group, F(3,36) = 5.306, p = 0.015; interaction,
F(3,36) = 10.033, p = 2.261 × 10−6, N = 5 mice). However,
the increase in slow gamma power as the speed increased was
subtler (SG; 2-way repeated measure ANOVA: main effect of
speed, F(1,36) = 42.562, p = 1.485 × 10−9, main effect of group,
F(3,36) = 5.774, p = 0.011; interaction, F(3,36) = 5.124, p = 0.002,
N = 5 mice).

The amplitude of gamma oscillations has also been shown
to be modulated by the phase of slower underlying theta
rhythm (Bragin et al., 1995; Chrobak and Buzsáki, 1998; Canolty
et al., 2006) and this theta-phase gamma-amplitude coupling
has been suggested to reflect local information processing in
hippocampal circuits (Tort et al., 2009; Buzsáki andWang, 2012).
Thus, we next determined the impact of stress on theta-gamma
coupling during periods when mice ran along the linear track
linear (i.e., when prominent theta oscillations are known to
be present) by calculating modulation index (MI), a measure
of the strength of coupling between gamma-amplitude and
theta phase (Tort et al., 2010). We found no changes in the
strength of theta-gamma coupling (Figures 2D,E; theta-gamma;
2-way repeated measures ANOVA: day, main effect of day,
F(1,4) = 0.839, p = 0.411; main effect of session, F(1,4) = 3.399,
p = 0.139; interaction, F(1,4) = 4.953, p = 0.09, N = 5 mice).
Further no significant difference was observed either between
theta-fast gamma coupling (theta-FG; 2-way repeated measures
ANOVA: day, main effect of day, F(1,4) = 0.839, p = 0.411;
main effect of session, F(1,4) = 3.399, p = 0.139; interaction,
F(1,4) = 4.953, p = 0.09, N = 5 mice) or theta-slow gamma
coupling (theta-SG; 2-way repeated measures ANOVA: day,
main effect of day, F(1,4) = 0.592, p = 0.484; main effect of session,
F(1,4) = 1.756, p = 0.256; interaction, F(1,4) = 1.02, p = 0.370,
N = 5 mice).

Thus, LFP power analysis indicated that while the first
exposure to stress did not alter theta and gamma oscillatory
activity, repeated stress led to suppression of SG and FG power,
but had no impact on CFC between theta and gamma.

Impact of Acute and Chronic Stress on
Temporal Coding (LFP-Spike Interactions)
In addition to rate coding (location-specific spiking), place
cells also display temporal coding, reflecting their preference
for spiking at specific phases of the concurrent oscillations
(O’Keefe, 1976; Fox et al., 1986; Csicsvari et al., 1999). It
has been hypothesized that temporal coding supports transient
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TABLE 2 | Distribution of place cells phase-locked to theta and gamma oscillations on day-1 and day-10.

Rhythm PRE-Acute POST-Acute PRE-Chronic POST-Chronic Statistics

Theta 35/48 (73%) 26/38 (68%) 53/73 (73%) 45/68 (66%) p = 0.814, χ2 test
Fast-gamma 30/66 (45%) 26/63 (41%) 34/78 (44%) 30/74 (40%) p = 0.935, χ2 test
Slow-gamma 27/74 (36%) 30/87 (34%) 29/91 (32%) 31/87 (36%) p = 0.928, χ2 test

activation of place cell ensembles, a phenomenon central to
spatial information processing (Harris et al., 2003; O’Keefe and
Burgess, 2005; Buzsáki, 2010; Lever et al., 2014). Knowing that
acute and chronic stress differentially alter the place cell rate
code, we next asked if they differentially impact temporal coding
by assessing the strength and phase preference of CA1 place cell
spiking to theta and gamma oscillations. Similar to a previous
report (Jones and Wilson, 2005), the majority (66–73%) of
CA1 place cells demonstrated significant modulation by theta
(Rayleigh test of uniformity p < 0.05) and neither acute nor
chronic stress affected this distribution (Table 2; p = 0.814, χ2

test). Further, as expected based on earlier studies (Csicsvari et al.,
1999; Jones and Wilson, 2005; Jadhav et al., 2016), the majority
of neurons displayed a preference to spike near the trough of the
theta oscillation (Figure 3A) and this mean preferred phase for
theta-modulated cells was not affected by stress (Supplementary
Figure 1C; phase; Circular ANOVA, F(3,155) = 1.305, p = 0.274,
n = 159 cells, N = 5 mice). Interestingly, however, the strength
of theta-phase locking (Figure 3B) was significantly increased
specifically after acute stress (MI; LMMs: main effect of day,
F(1,155) = 1.892, p = 0.171; main effect of session, F(1,155) = 5.425,
p = 0.022; interaction, F(1,155) = 5.702, p = 0.018, n = 159 cells,
N = 5 mice); post hoc Tukey’s test, PRE-Acute (n = 35 cells) vs.
POST-Acute (n = 26 cells), p = 0.006, POST-Acute (n = 26 cells)
vs. POST-Chronic (n = 45 cells), p = 0.038.

Similar to the modulation of spiking by theta, the precise
timing of pyramidal cell firing can also be entrained by gamma
oscillations (Csicsvari et al., 2003). Thus, we next performed
the spike phase-locking analysis of gamma oscillations during
high velocity periods (speed > 6 cm/s) on the track. A
large fraction (40–45%; Rayleigh test of uniformity p < 0.05)
of CA1 place cell population displayed a significant phase
preference during FG and neither acute nor chronic stress
affected this distribution (Table 2; p = 0.935, χ2 test). Moreover,
stress did not alter the preferred phase (phase; Circular ANOVA,
F(3,108) = 1.932, p = 0.129, n = 112 cells, N = 5 mice,
Supplementary Figure 1D) or strength (MI; LMMs: main
effect of day, F(1,108) = 1.499, p = 0.224; main effect of
session, F(1,108) = 1.292, p = 0.258; interaction, F(1,108) = 0.055,
p = 0.815, n = 112 cells, N = 5 mice) of the phase-locking of
CA1 pyramidal cells. As gamma oscillations are more transient
than theta during locomotion, we next focused on periods
of strong FG on the track regardless of animal’s speed or
position on the track (see ‘‘Materials and Methods’’ section),
and again observed that stress did not alter either the preferred
phase (Figure 3C; phase: Circular ANOVA, F(3,62) = 0.919,
p = 0.437, n = 66 cells, N = 5 mice) or the strength of
FG phase-locking (Figure 3D; MI: LMMs: main effect of day,
F(1,62) = 0.986, p = 0.325; main effect of session, F(1,62) = 0.801,

p = 0.374; interaction, F(1,62) = 1.936, p = 0.169, n = 66 cells,
N = 5 mice).

Unlike FG, the preferred phase of the cells modulated by SG
was more variable across the population during high velocity
periods on the track. The proportion of CA1 place cells with
a significant SG phase preference was ∼32–36%; (Rayleigh test
of uniformity p < 0.05) and showed no differences across four
sessions (Table 2; p = 0.928, χ2 test). Nonetheless, following
chronic stress we did observe a small, yet significant change in
the mean preferred phase (Supplementary Figure 1E; phase:
Circular ANOVA, F(3,113) = 6.862, p = 2.74× 10−4, n = 117 cells,
N = 5mice), but noticed no change in the strength of modulation
(MI: LMMs: main effect of day, F(1,113) = 0.182, p = 0.671; main
effect of session, 0.035, p = 0.852; interaction, F(1,113) = 2.358,
p = 0.127, n = 117 cells, N = 5 mice). Finally, when we focused
on the phase-locking of place cells specifically during periods of
strong SG regardless of the animal’s speed or position on the
track, we found that chronic stress led place cells to fire at the later
phase of SG (Figure 3E-phase; Circular ANOVA, F(3,37) = 5.057,
p = 0.005, n = 41 cells, N = 5 mice; post hoc Watson-Wheeler
test, PRE-Acute (n = 13 cells) vs. PRE-Chronic (n = 11 cells),
p = 0.036). Chronic stress showed a trend that it affected
the strength of SG-phase locking but it was not significant
(Figure 3F; MI: LMMs: main effect of day, F(1,37) = 3.747,
p = 0.063; main effect of session, F(1,37) = 1.063, p = 0.309;
interaction, F(1,37) = 0.115, p = 0.737, n = 41 cells, N = 5 mice).

Thus, while first exposure to stress increased the strength of
theta phase-locking demonstrating the facilitatory effects of acute
stress on temporal coding, chronic stress disrupted temporal
coding as the mean phase and the strength of phase-locking of
place cells to slow-gamma oscillations was altered on day-10.

DISCUSSION

Despite reports that acute stress positively impacts cognition,
including hippocampal information processing (Henckens et al.,
2009; Yuen et al., 2009; Kirby et al., 2013), it is not yet clear how
this is reflected in hippocampal place cell activity and LFP-spike
interactions, two neural processes involved in spatial coding
(O’Keefe and Dostrovsky, 1971; Buzsáki, 2010; Lever et al., 2014).
Here, we show that while after the first exposure to stress (Acute
stress) or the last exposure to stress (Chronic stress) the averaged
speed and distance covered on the track were not affected.
However, after acute stress, CA1 place cells displayed refined
spatial coding (Figure 1D), increased information content
(Figure 1F) and decreased sparsity-index (Figure 1E). Further,
chronic, but not acute stress, led to decreased LFP power in the
slow-gamma (SG; 30–50 Hz) and fast-gamma (FG 55–90 Hz)
bands (Figure 2B) along with an increase in place field size.
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FIGURE 3 | Impact of stress on phase-locking properties of CA1 place cells to theta and gamma oscillations. (A) The spiking probability plotted as a function of the
phase of theta for significantly theta-modulated place cell populations (Rayleigh p < 0.05). Population spiking probability is elevated around the trough and
ascending phase of theta (0/360◦ set for theta peak, 180◦ for theta trough). (B) The strength of theta-phase locking (Modulation index, MI) is altered by stress
[LMMs: main effect of day, F (1,155) = 1.892, p = 0.171; main effect of session, F (1,155) = 5.425, p = 0.022; interaction, F (1,155) = 5.702, p = 0.018); post hoc Tukey’s
test, PRE-Acute (n = 35) vs. POST-Acute (n = 26), p = 0.006, POST-Acute (n = 26) vs. POST-Chronic (n = 45), p = 0.038]. (C) The spiking probability plotted as a
function of the phase of fast-gamma (FG) for significantly FG-modulated place cell populations (Rayleigh p < 0.05) is elevated around the trough and descending
phase of FG (0/360◦ set for FG peak, 180◦ for FG trough) but stress did not affect this phase relationship: (FG, Circular ANOVA, F (3,62) = 0.919, p = 0.437). (D) The

(Continued)
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FIGURE 3 | Continued
strength of FG phase-locking (MI) remains unaltered by stress (FG; LMMs:
main effect of day, F (1,62) = 0.986, p = 0.325; main effect of session,
F (1,62) = 0.801, p = 0.374; interaction, F (1,62) = 1.936, p = 0.169). (E) The
spiking probability plotted as a function of the phase of slow-gamma (SG) for
significantly SG-modulated place cell populations (Rayleigh p < 0.05).
Population spiking probability is elevated around the descending phase of SG
(0/360◦ set for SG peak, 180◦ for SG trough). (F) The strength of SG-phase
locking (MI) was not significantly altered by stress (SG; LMMs: main effect of
day, F (1,37) = 3.747, p = 0.063; main effect of session, F (1,37) = 1.063,
p = 0.309; interaction, F (1,37) = 0.115, p = 0.737). Boxplots represent
interquartile range (IQR, 25th–75th percentiles), median is the thick line in the
box and whiskers extend to 1.5 times the IQR., ∗p < 0.05, ∗∗p < 0.01,
N = 5 mice.

Furthermore, the strength of theta phase-locking to CA1 place
cells increased after acute stress (Figures 3A,B), however, the
mean phase of slow-gamma phase-locking was altered as stress
became chronic (Figure 3E). Together, these results indicate that
acute stress has a facilitatory impact on hippocampal information
coding, while chronic stress impairs it.

Stress impacts on hippocampal functionality have been
hypothesized to follow a U-shaped curve, where exposure to
acute stress facilitates, while chronic stress disrupts, hippocampal
function (Salehi et al., 2010; McEwen et al., 2016). Our results
of enhanced spatial information content and increased strength
of phase-locking after acute stress, as well as broader place fields
and suppressed gamma power after repeated stress are consistent
with stress exerting a U-shaped impact on hippocampal function
in the intact brain. Rate and temporal coding of CA1 pyramidal
cells aid spatial information processing (O’Keefe, 1976; O’Keefe
and Recce, 1993; O’Keefe and Burgess, 2005). Since acute stress
facilitated both types of coding (i.e., improved spatial tuning
and strength of theta phase-locking), the idea that acute stress
effects on hippocampal spatial coding are indeed facilitatory in
nature is not far-fetched. Mechanistically, the facilitatory effects
of acute stress on hippocampal coding are likely brought about by
the combined action of a cocktail of neuromodulators released
by stress-induced activation of sympatho-adrenal medullary
(SAM)-pathways (Cadle and Zoladz, 2015; Gunn and Baram,
2017). Future studies are needed to further investigate the role
of SAM-activated neuromodulation on CA1 spatial coding.

Instantaneous coupling between theta and gamma oscillations
in hippocampal networks is thought to represent dynamic
processing in hippocampal circuits (Buzsáki and Wang, 2012).
A previous study using evoked auditory potentials also noted
a decrease in gamma power following CIS and concluded
that chronic stress disrupts functional connectivity within
the hippocampal circuitry (Ghosh et al., 2013). The same
conclusion was also reached by Passecker et al. (2011) who
studied the impact of repeated exposure to photic stress
on hippocampal spatial coding. Gamma oscillations route
information flow in hippocampal circuits including slow
CA1 gamma which reflects interactions between CA3-CA1
neuronal networks (Montgomery and Buzsáki, 2007), while
fast CA1 gamma indicates CA1-MEC interactions (Colgin
et al., 2009; Colgin, 2016). Our observation of decreased
slow and fast gamma power following chronic, but not acute

stress reflects the poor functional connectivity in hippocampal-
entorhinal circuits in chronically stressed subjects. Importantly,
functional connectivity was not altered after acute stress,
as place maps were more informative of animal’s location
in space.

What factors may lead to weakened functional connectivity
in hippocampal circuits in response to repeated stress?
Earlier studies have reported that chronic, but not acute
stress, causes dendritic shortening and debranching and
synaptic loss on apical branches of pyramidal cells in areas
CA3 and CA1 (Magariños and McEwen, 1995; Conrad et al.,
1999; Sousa et al., 2000; Sandi et al., 2003). Hitherto, the
functional consequences of these structural changes have
not been well understood. Since apical dendritic branches
of CA1 pyramidal cells are the loci of Schaffer collateral
inputs (from CA3) and temporoammonic pathways (from
the medial entorhinal cortex; MEC), chronic stress-induced
CA1 dendritic shrinkage likely reflects poor information
flow into CA1 circuits (Colgin et al., 2009). Knowing that
CA1 SG oscillations reflect interactions between CA1 and
CA3/CA2 circuitry (Colgin et al., 2009; Middleton and
McHugh, 2016; Alexander et al., 2018), while FG represents
the interactions between area CA1 and medial entorhinal
cortical circuits (Colgin et al., 2009; Kemere et al., 2013), it
is not surprising that chronic (but not acute stress) causes a
decrease in SG and FG power. In addition, AMPA-dependent
synaptic plasticity is implicated in modulating gamma phase-
locking of pyramidal cells by altering inhibitory-excitatory
balance in area CA1 (Kitanishi et al., 2015). Knowing that
chronic stress alters hippocampal synaptic plasticity (Alfarez
et al., 2003) and AMPA-dependent synaptic transmission
in the temporoammonic-CA1 pathway (Kallarackal et al.,
2013), it is likely that chronic stress-induced altered synaptic
plasticity is another potential candidate underlying chronic
stress phenotypes noticed in this study. Further, inhibitory
neuronal activity plays a key role in the generation of gamma
oscillations, as well as the phase-locking of pyramidal cells to
gamma oscillations (Bartos et al., 2002; Buzsáki andWang, 2012).
Reports that chronic stress causes decreases in hippocampal
PV+ inhibitory neuronal density by ∼20–25% (Zaletel et al.,
2016; Csabai et al., 2017) suggests that decreased gamma power
and altered gamma phase-locking of CA1 place cells, observed
in this study, are contributed by CIS-induced weakening of
inhibition. Future studies will have to assess the differential
contributions of chronic stress-induced altered inhibition,
synaptic plasticity and dendritic atrophy to altered place cell
activity, gamma oscillations and phase-locking phenotypes
observed in this study.

Inescapability along with repeatability are two key
components of modern-day life stress. Therefore, the majority
of animal models of chronic stress have inescapability and
repeatability built into them (Chattarji et al., 2015). The
immobilization stress (and the closely related restraint
stress) models are particularly popular in experimental stress
neurobiology research as in addition to psychological stress
(involving inescapability and repeatability aspects), these stress
models also exert physical stress on the subject (McEwen, 1999).
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Since this study only employed immobilization stress, it is
not yet clear if the changes observed in this study would be
elicited by other models of stress. Thus, future studies employing
two or more different animal models of chronic stress are
needed to clarify if only the immobilization-related physical
model of stress or any stress could differentially alter spatial
coding and gamma oscillations when applied either once or
repeatedly.

A decrease in gamma (30–90 Hz) power and broadening
of place field size after repeated stress exposure indicates that
acute and chronic stress differentially alter information coding
in the CA1 subregion. In view of reports that hippocampal
phase-locking is altered in neurodegenerative disease models
(Booth et al., 2016; Mably et al., 2017), for which stress is a risk
factor (Bisht et al., 2018), it is not surprising that we observed
altered phase-locking in response to CIS. These data further
add to accumulating evidence that repeated stress negatively
impacts spatial coding (Kim et al., 2007; Chattarji et al., 2015;
Tomar et al., 2015). Spike-LFP interactions are responsible for
not only local computations within a circuit but also coordinate
activity across distant but connected circuits (Buzsáki and
Freeman, 2015; Harris and Gordon, 2015; Colgin, 2016; Shin and
Jadhav, 2016; Makino et al., 2019). Thus, our results of altered
oscillatory and place cell activity have implications for neural
computations across various memory-related circuits connected
to the hippocampus.

In conclusion, our results of acute stress-induced increased
information content of place cells and strengthening of
phase-locking to theta oscillations further support the idea
that acute stress facilitates hippocampal neural computations.
Based on these findings, we propose that acute and chronic
stress differentially, likely opposingly, influence hippocampal
information processing.
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SUPPLEMENTARY FIGURE 1 | The impact of stress on the relationship
between CA1 place cell spiking vs. running speed and LFP oscillatory phase. (A)
Coronal section of the hippocampus showing the tetrode locations (black arrows)
at the CA1 pyramidal layer. (B) Dependence of firing rate on the speed was
affected by stress (2-way mixed ANOVA: main effect of speed,
F (1,370) = 1,424.752, p < 2.22 × 10−16, main effect of group, F (3,370) = 16.666,
p = 3.546 × 10−10 ; interaction, F (3,370) = 37.866, p < 2.22 × 10−16,
N = 5 mice). On day-1, after acute stress, place cells displayed lower firing over
the range of speed bins examined (PRE-Acute (n = 95) cells vs. POST-Acute
(n = 89 cells), p < 0.012, post hoc Tukey’s test). However, after repeated stress,
the firing rate of place cells increased over the range of speed bins examined
(PRE-Acute (n = 95 cells) vs. PRE-Chronic (n = 101 cells) p < 0.003, post hoc
Tukey’s test) and this relationship further increased after experiencing the stress
on day-10 (PRE-Chronic (n = 101 cells). vs. POST-Chronic (n = 88 cells),
p < 0.0001, post hoc Tukey’s test). Circular histograms display the preferred
phase of all place cells during theta (C), FG (D), and SG (E). The thick line in each
circular histogram depicts averaged phase across all cells.
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