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Aging and obesity independently contribute toward an endothelial dysfunction that

results in an imbalanced VWF to ADAMTS13 ratio. In addition, plasma thrombin and

plasmin generation are elevated and reduced, respectively, with increasing age and also

with increasing body mass index (BMI). The severity risk of Corona Virus Disease 2019

(COVID-19) increases in adults older than 65 and in individuals with certain pre-existing

health conditions, including obesity (>30 kg/m2). The present cross-sectional study

focused on an analysis of the VWF/ADAMTS13 axis, including measurements of von

Willebrand factor (VWF) antigen (VWF:AG), VWF collagen binding activity (VWF:CBA),

Factor VIII antigen, ADAMTS13 antigen, and ADAMTS13 activity, in addition to thrombin

and plasmin generation potential, in a demographically diverse population of COVID-19

negative (−) (n = 288) and COVID-19 positive (+) (n = 543) patient plasmas collected

at the time of hospital presentation. Data were analyzed as a whole, and then

after dividing patients by age (<65 and ≥65) and independently by BMI [<18.5,

18.5–24.9, 25–29.9, >30 (kg/m2)]. These analyses suggest that VWF parameters (i.e.,

the VWF/ADAMTS13 activity ratio) and thrombin and plasmin generation differed in

COVID-19 (+), as compared to COVID-19 (−) patient plasma. Further, age (≥65) more

than BMI contributed to aberrant plasma indicators of endothelial coagulopathy. Based

on these findings, evaluating both the VWF/ADAMTS13 axis, along with thrombin and

plasmin generation, could provide insight into the extent of endothelial dysfunction as

well as the plasmatic imbalance in coagulation and fibrinolysis potential, particularly for

at-risk patient populations.
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INTRODUCTION

Coagulopathy is a sequela of COVID-19 that associates with
the severity of disease progression (1–4). Venous thrombosis
and thromboembolism, as well as arterial thrombosis were
reported at a relatively higher frequency in COVID-19 patients
(3, 5). Microvascular coagulation and endotheliopathy are
critical pathophysiological consequences of COVID-19 immune
activation that contribute to death (6, 7). Microthrombi are
most often observed in lung vessels at autopsy, particularly in
peripheral lung venules, arterioles, and alveolar capillaries (6, 8).
In survivors of severe disease, long term exertional impairments
may persist due to microvascular thrombosis and consequent
lung injury (8).

A focus on endothelial dysregulation has emerged based on
evidence of increased von Willebrand factor (VWF) antigen
(AG) levels (i.e., Ultra-large Von Willebrand Factor (ULVWF)
multimers), increased VWF collagen type I and III binding
activity (9), along withmild tomoderately decreasedADAMTS13
AG and ADAMTS13 activity in severely ill patients (10–13).
Physiologically, VWF and ADAMTS13 play important roles in
the maintenance of hemostasis in the microvasculature (14).
VWF is a large multimeric glycoprotein secreted as ultra-large
pro-thrombotic forms into the vascular lumen, primarily from
endothelial cells and platelets. Although endothelial cells show
both basal and stimulated secretion, platelets release VWF
only upon activation (15). Factor VIII circulates in plasma
as a complex with VWF and facilitates site-specific cleavage
of ULVWF multimers under shear stress (16). The release of
Factor VIII from VWF occurs in the presence of thrombin
leading to a 4-fold increase in its plasma clearance. ADAMTS13
is the enzyme that regulates VWF activity by digesting shear
stress elongated pro-thrombotic ULVWF multimers (17). Under
pathophysiological states, such as thrombotic thrombocytopenic
purpura (TTP), a severe deficiency in availability or activity of
ADAMTS13 (<10%) results in accumulation of pro-thrombotic
VWF multimer forms leading to the formation of microvascular
platelet-rich thrombi, thrombocytopenia, secondary micro-
hemorrhages, and peripheral blood schistocytes (14, 18). In
addition, thrombotic microangiopathies (TMA) are caused
by many different pathologies, with endothelial injury being
a common denominator. Interestingly, elevated VWF levels,
accompanied by increased Factor VIII levels (18) as well as
mildly decreased ADAMTS13 activity (∼ 50%) and normal
antigen levels (∼ 1 U/ml), are observed in severe COVID-
19 infection (19). However, a complete loss of ADAMTS13
activity (i.e., <10%), thrombocytopenia, schistocytes are not
common in COVID-19 infection. Nonetheless, COVID-19
disease progression is consistent with endothelial dysfunction
and increased plasma VWF levels and VWF:AG/ADAMTS13
activity ratios are associated with COVID-19 disease severity and
reported to be a predictor of morbidity and mortality (10–13).

In addition to VWF/ADAMTS13 axis dysregulation,
plasma predictors of thrombosis and fibrinolysis potential,
such as thrombin and plasmin generation, respectively, have
not been well-defined in COVID-19 patients. Similarly to
VWF/ADAMTS13 axis parameter evaluation, assays that

assess thrombin and plasmin could add relevant information
on coagulation risk. Thrombin is the primary mediator of
fibrinogen cleavage to fibrin, and thrombin generation is a useful
measure of both increased and reduced coagulation potential
when measured in plasma. Conversely, fibrinolysis is mediated
by the proteolytic action of plasmin, which accumulates
as a result of enzymatic cleavage of plasminogen by tissue
plasminogen activator. Plasmin generation offers insight into
the amount of available plasmin that could participate in fibrin
clot lysis. Both measurements, when evaluated simultaneously,
provide information on the potential for clot formation and the
impairment of clot lysis, respectively. These assessments can be
made prior to the onset, or during the processes of, coagulopathy,
and offer relevant insight into thrombin and plasmin function in
disease diagnosis, disease severity, and drug therapy assessments.

Independent of COVID-19, VWF:AG and the
VWF:AG/ADAMTS13 activity ratio increase with aging
(≥65 years of age) and body mass index (BMI; >25 kg/m2)
(20, 21). Additionally, an underlying endotheliopathy is
observed with aging and increasing BMI, potentially due to
accumulating co-morbidities and declining organ function
(22, 23). Understanding the impact of COVID-19 on endothelial
markers of coagulation and more broadly, on plasma thrombin
and plasmin generation, at early disease presentation may offer
better insights into anticoagulation needs and monitoring as well
as assessing early disease severity.

The current observational study is unique in that we evaluated
the VWF/ADAMTS13 axis, as well as a simultaneous thrombin
and plasmin generation assay that informs on amounts of
functional thrombin and plasmin in plasma. This study evaluated
individual plasmas of two large groups of demographically
diverse hospitalized patients in a large urban medical center,
to overcome the limitations of previous studies of endothelial
dysregulation in COVID-19, which included small numbers of
patients, which were then compared to healthy individuals. In
contrast, we grouped hospitalized patients based on COVID-19
(−) or COVID-19 (+) status and these groups were comprised
of 288 and 543 patients, respectively. Data was further evaluated
based on age (i.e., <65 or ≥ 65 years), BMI (i.e., <18.5, 18.5–
24.9, 25–29.9, >30 (kg/m2). Finally, these parameters analyzed
in the present study were evaluated in surviving and non-
surviving patients within the COVID-19 (−) and COVID-19
(+) groupings. The data generated were used in correlation and
association analysis with age and metabolic parameters (24).

PATIENTS, MATERIALS, AND METHODS

Patients and Sample Collection
Patients
This study was approved by the Institutional Review Board of
Columbia University Irving Medical Center (CUIMC) (Protocol
Number AAAT0680). Data were obtained from patients who
were either admitted to the hospital or seen in the Emergency
Department from April 14, 2020 through May 31, 2020 (i.e.,
before the identification of and routine testing for novel variants
in the USA), and were evaluated for SARS-CoV-2 by RT-PCR
and/or serology. COVID-19 (−) patients were identified and
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selected based on a negative SARS-CoV-2 RT-PCR test and/or
serology testing in the ED or within the initial 72 h after
admission. To our knowledge, patients included in the COVID-
19 (−) had no reported history of COVID-19 infection.

Patient Comparisons
First, patients were divided into COVID-19 (−) (n = 288) and
COVID-19 (+) (n= 543) groups based on a positive SARS-CoV-
2 RT-PCR test or positive serology. VWF, ADAMTS13, Factor
VIII, and thrombin and plasmin generation parameters were
compared between the groups.

Second, within the COVID-19 (−) and COVID-19 (+)
groups, patients were split based on age <65 or age ≥ 65. Within
the COVID-19 (−) group, age-dependent splitting resulted in
n = 156 (<65 years of age) and n = 132 (≥65 years of age);
within the COVID-19 (+) group, there were n = 278 patients
<65 years of age and n = 265 patients ≥65 years of age.
Comparisons for VWF, ADAMTS13, Factor VIII, and thrombin
and plasmin generation parameters were made between COVID-
19 (+) and (−) patients within the <65 and in the ≥65 years
of age groupings. Further, parameters were compared within the
COVID-19 (−) patient group based on age<65 and≥ 65; similar
comparisons were made for COVID-19 (+) patients.

Third, within COVID-19 (−) and COVID-19 (+) groups,
patients were split based on CDC guidelines into four BMI
categories: <18.5, 18.5–24.9, 25–29.9, >30 (kg/m2). Within the
COVID-19 (−) group this led to the following BMI category
distribution: <18.5 (n = 14), 18.5–24.9 (n = 53), 25–29.9 (n
= 47), >30 (n = 92) (kg/m2). The COVID-19 (+) group had
the following BMI category distribution: <18.5 (n = 15), 18.5–
24.9 (n = 112), 25–29.9 (n = 98), >30 (n = 253) (kg/m2).
Further, within the COVID-19 (−) and COVID-19 (+) groups,
parameters were compared across BMI categorizations. All
statistical analyses and graphing of data were performed using
Graphpad Prism software (version 9.2.0). Data are presented as
Group median values and interquartile range [25–75 percentile].
Data between COVID-19 (−) and COVID-19 (+) groups
were compared using a non-parametric Mann-Whitney U test.
Comparisons across several groups within BMI categorizations
were analyzed with a non-parametric One-way-ANOVA with
multiple comparisons using a Kruskal-Wallis test.

Sample Collection and Handling
All initial blood samples were collected within 72 h of admission
in sodium citrate and analyzed for routine clinical laboratory
values at CUIMC and processed to platelet poor plasma for
research based assays (24). To maintain continuity and quality
of specimens, samples arrived at the University of Maryland
Baltimore under dry ice as a single shipment. Samples were
analyzed in blocks (n = 50) to allow for a single freeze thaw
followed by evaluation of enzymatic and activity assays. Plasma
samples were then aliquoted into multiple tubes containing 100–
200 ul and refrozen for antigen-based assays.

VWF, ADAMTS13 and FVIII Measurements
The antigen and activity measurement of VWF and ADAMTS13
was performed by using commercial ELISA kits. VWF:AG

and collagen type III binding activity (VWF:CBA) levels were
measured by using Human von Willebrand Factor ELISA
Kit (ab168548, Abcam, Cambridge, UK) and TECHNOZYM R©

vWF:CBA ELISA Kit (5450301, Technoclone, Vienna, Austria)
to measure the quantity of VWF and its binding to collagen
type III (therefore, an increase in VWF binding indicates
more circulating ultra-large molecular weight multimers),
respectively. ADAMTS13 antigen and activity levels were
measured by using Human ADAMTS13 ELISA Kit (ab234559,
Abcam) and TECHNOZYM R© ADAMTS13 Activity ELISA
(5450701, Technoclone), respectively. FVIII antigen levels were
measured by using Human Factor VIII total antigen assay
ELISA kit (HFVIIIKT-TOT, Molecular Innovations, Novi, MI,
USA). All assays were performed following manufacturer’s
recommendations with additional dilution of plasma samples
as required.

Simultaneous Thrombin and Plasmin
Generation Assay (STPGA)
Simultaneous measurement of thrombin and plasmin generation
potential of plasma samples were performed with modifications
to previous methods (25, 26). Briefly, plasma samples were
mixed with 512µM of either thrombin specific substrate, Z-Gly-
Gly-Arg-AMC (Bachem, Bubendorf, Switzerland) or plasmin
specific substrate, Boc-Glu-Lys-Lys-AMC (Bachem) and 16 nM
of thrombomodulin (PeproTech, Rocky Hill, NJ, USA) similar to
a previous method designed to measure thrombin and plasmin in
parallel (26).

The reaction was initiated by adding an activator solution that
yielded a final concentration of 1 pM tissue factor (Diagnostica
Stago, Parsippany, NJ, USA), 0.7µg/mL of tissue plasminogen
activator (Sigma-Aldrich, St. Louis, MO, USA) and 16mM
CaCl2. Sample wells were supplemented with buffer (150mM
NaCl, 20mM HEPES and pH 7.5) and AMC fluorophore
instead of activator solution for background and calibrator
measurements respectively. Calculation of thrombin and plasmin
concentration was performed as described previously (25).

Clinical Laboratory Data
Laboratory tests were performed based on clinical necessity
and not as directed by this study; the resulting values were
obtained by request from the patients’ charts. Therefore, not
all patients had all of the tests ordered. As part of routine care,
hemostasis was evaluated on STAR Evolution and STAR Max
analyzers (Diagnostica Stago, Parsippany, NJ), hematology
testing by Sysmex XN900 (Lincolnshire, IL), and chemistry
testing by Roche Cobas c502 (Indianapolis, IN). Laboratory
values, including antithrombin (AT), prothrombin time
(PT)/international normalized ratio (INR), activated partial
thromboplastin time (aPTT), fibrinogen, D-dimer, white blood
cell count (WBC), absolute neutrophil count (ANC), absolute
lymphocyte count (ALC), absolute monocyte count (AMC),
hemoglobin, red blood cell count (RBC), RBC distribution
width (RDW), reticulocyte count, platelet count, IL-6, lactate
dehydrogenase (LDH), lactic acid, procalcitonin, troponin,
blood urea nitrogen (BUN), creatinine, glucose, bilirubin
(total, direct, and indirect), aspartate amino transferase (27),
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alanine amino transferase (ALT), albumin, total protein, ferritin,
C-reactive protein (CRP), erythrocyte sedimentation rate
(ESR), creatine kinase (CK), triglycerides, and blood type, were
collected. Laboratory data were obtained from the Clinical
Data Warehouse at CUIMC after approval from the Tripartite
Request Assessment Committee. Samples were obtained in
the Emergency Department, at admission, and throughout
the hospital stay, and were analyzed by the CUIMC Clinical
Laboratories; residual samples that were no longer required
for clinical purposes, were retrieved from the CUIMC Clinical
Laboratories and banked for research studies. Clinical and
demographic data, including name, medical record number
(MRN), sex, date of birth, age, race, ethnicity, weight, body
mass index, comorbidities (hypertension, diabetes mellitus,
coronary artery disease, renal disease, hyperlipidemia, liver
disease, lung disease), intubation/ventilator requirement,
continuous veno-venous hemofiltration (CVVH) requirement,
radiographically-confirmed thrombotic complications (deep
vein thrombosis, pulmonary embolism, stroke), clotting
of CVVH, hospitalization course (admission date, date of
Emergency Department presentation, discharge date), mortality,
and date of death were collected manually by reviewing the
electronic medical record.

RESULTS

General and Clinical Characteristics of
Study Subjects
Patient demographic data are shown in Table 1. Briefly,
COVID-19 (−) and COVID-19 (+) groups were similarly split
across age, sex and racial/ethnic background. COVID-19 (−)
and COVID-19 (+) patients presented with a similar prevalence
of chronic conditions (hypertension, diabetes mellitus, chronic
kidney disease) and both COVID-19 (−) and COVID-19 (+)
patients demonstrated high median BMIs. The COVID-19 (+)
patient median values for pro-inflammatory markers (C-reactive
protein, ferritin, fibrinogen, and IL-6) were all increased by 1.5–
2.0-fold greater than that observed in COVID-19 (−) patients.
Inflammatory markers tracked with increased D-dimer levels.
All clinical laboratory data that were obtained by request from
patient charts are shown in Supplementary Table 1. An illness
severity scoring system was not applied to patients included in
this study. Nonetheless, comparisons between COVID-19 (−)
and COVID (+) patients suggest a greater state of inflammation
in COVID-19 (+) patients based on increased CRP (570%
increase, p < 0.00010), IL-6 (179% increase, p < 0.014), ferritin
(287% increase, p < 0.00010), fibrinogen (130%, p < 0.00010),
and erythrocyte sedimentation rate (157%, p < 0.00010).

VWF/ADAMTS13 Axis Changes in Acutely
Ill COVID-19 (−) and COVID-19 (+) Patients
Increased VWF:AG and activity were observed in both COVID-
19 (+) and COVID-19 (−) patients (Figures 1A,B, VWF:AG
reference range: ∼ 0.5–2.0 U/mL). However, COVID-19 (+)
patients demonstrated significantly higher VWF:AG and CBA
levels compared to COVID-19 (−) patients (p < 0.0001).

TABLE 1 | Patient demographics and clinical characteristics.

Patient

characteristics

COVID-19 (−) (n = 288) COVID-19 (+) (n = 543)

Age, median

(range)

62 (1.0–101) 63 (3.0–99)

Sex

Female

Male

n = 119 (43 %)

n = 159 (57 %)

n = 203 (44 %)

n = 264 (56 %)

Race/Ethnicity

Asian

African

American/Black

Caucasian/White

Other

Multi–racial

Hispanic/Latino

n = 4

n = 56

n = 56

n = 13

n = 3

n = 104 (Black:7,

White:21, other:18,

n = 3

n = 83

n = 49

n = 30

n = 1

n = 211 (Black:10,

White: 35, other:32,

Asian: 1, American

Ind/Alaskan:1,

Multiracial:1)

Declined n = 52 n = 166

Body mass index

(kg/m2), median

(range)

25.5 (13.7–53.2) 28.0 (14.1–63)

Ventilator n = 31 (11 %) n = 67 (12 %)

New thrombosis

New–DVT/PE

New– Stroke

n = 22 (8.0 %)

n = 7 (2.4 %)

n = 28 (5.0 %)

n = 21 (4.0 %)

Chronic

conditions*

HTN

DM

CAD

ESRD/CKD

Cancer

Stroke

Hyperlipidemia

Heart Failure

Liver Disease

Lung Disease

n = 134 (47 %)

n = 81 (28 %)

n = 48 (17 %)

n = 35 (13 %)

n = 22 (8.0 %)

n = 21 (7.0 %)

n = 34 (12 %)

n = 39 (14 %)

n = 13 (5.0 %)

n = 50 (17 %)

n = 262 (48%)

n = 184 (34 %)

n = 54 (10 %)

n = 69 (13 %)

n = 38 (7.0%)

n = 32 (6.0 %)

n = 94 (17 %)

n = 23 (4.0 %)

n = 11 (2.0 %)

n = 41 (8.0 %)

Survivors

Non–survivors

n = 255 (88.5 %)

n = 33 (11.5 %)

n = 433 (80 %)

n = 110 (20 %)

*History of chronic conditions: HTN, Hypertension, DM, Diabetes Mellitus; CAD,

Coronary heart disease; ESRD/CKD, End-stage renal failure/chronic kidney disease. The

percentage of patients per group for binary variables are indicated.

Respective median antigen and activity levels of VWF in
the COVID-19 (+) group were 2.736 (IQR:1.822–4.060) and
3.745 (IQR:2.506–5.262) U/mL compared to 1.868 (IQR:1.257–
2.770) and 2.989 (IQR:1.958–4.252) U/mL in the COVID-
19 (−) group. A similar elevation of FVIII was observed
in both COVID-19 (+) (Median:1.769 and IQR:1.031–3.366
U/mL) and COVID-19 (−) (Median:1.79 and IQR:0.898–3.283
U/mL) patients (Figure 1C, FVIII reference range: ∼0.5–1.5
U/mL) with no significant differences between the groups.
ADAMTS13 activity levels on the other hand were found to be
lower in both COVID-19 (+) and COVID (−) patient groups
when compared to the normal reference range (Figures 1D,E,
normal ADAMTS13 activity levels: ≥ 0.5 U/mL). Specifically,
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FIGURE 1 | VWF/ADAMTS13 axis changes and coagulation in acutely ill COVID-19 (−) and (+) patients: (A) VWF antigen, 1.868 (IQR, 1.257–2.770) (−), 2.736 (IQR,

1.822–4.060) (+), p < 0.0001; (B) VWF collagen binding activity (9) 2.989 (IQR, 1.958–4.252) (−), 3.745 (IQR, 2.506–5.262) (+), p < 0.0001; (C) FVIII antigen 1.79

(IQR, 0.898–3.283) (−), 1.769 (IQR, 1.031–3.366) (+), p = 0.4154; (D) ADAMTS13 antigen 0.806 (IQR, 0.592–1.023) (−), 0.813 (IQR, 0.614–1.069) (+), p = 0.539;

(E) ADAMTS13 activity 0.540 (IQR, 0.420–0.689) (−), 0.597 (IQR, 0.427–0.767) (+), p = 0.027; (F) VWF:AG/ADAMTS13 activity 5.567 (IQR, 3.352–8.245) (−), 6.051

(IQR, 3.824–10.17) (+), p < 0.0044. Datapoints indicate individual measurements, and p-values are from the Mann-Whitney analysis for comparison within groups.

Values are presented as median and interquartile range (IQR, 25th−75th percentile) for continuous variables. ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001;

****P ≤ 0.0001.

ADAMTS13 activities in both groups were minimally decreased,
but not lower than normal reference activity (50–160%).
Respective median ADAMTS13 antigen and activity levels
were 0.806 (IQR:0.592–1.023) and 0.597 (IQR:0.427–0.767)
U/mL in COVID-19 (+) and 0.813 (IQR:0.614–1.069) and
0.54 (IQR:0.420–0.689) U/mL in COVID-19 (−) patients. The
difference in ADAMTS13 activity levels between COVID-19
(+) and COVID-19 (−) patients was minimal, but statistically
significant (p= 0.027). Subsequently, the VWF:AG/ADAMTS13
activity ratios in COVID-19 (+) patients (Median:6.051 and
IQR:3.824–10.17) were significantly higher (p < 0.0001) than
COVID-19 (−) patients (Median:5.567 and IQR:3.352–8.245)
(Figure 1F). The data suggests that increased VWF:AG levels

and VWF:CBA in plasmas of COVID-19 (+) patients occurred
despite normal ADAMTS13 function. However, unlike in TTP
the present data did not reveal thrombocytopenia in conjunction
with increased VWF:AG levels and CBA in COVID-19 (+)
patients (Supplementary Figure 1).

Plasma Coagulation in Acutely Ill
COVID-19 (−) and COVID-19 (+) Patients
Thrombin generation increased, while plasmin generation
decreased in the plasmas of COVID-19 (+) compared to
COVID-19 (−) patients. An increased thrombin peak height and
generation rate was observed with a simultaneously decreased
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plasmin peak height and generation rate in COVID-19 (+)
patients (Figure 2). The median peak heights and thrombin
generation rates in COVID-19 (+) patients were significantly
increased by 25% [230.0 (IQR:123.0–326.2) nM] and 21% [40.38
(IQR:20.39–67.33) nM/min], respectively, compared to COVID-
19 (−) patients (p < 0.01), (Figures 2A,B). The area under
curve (AUC) values, however, were similar between COVID-
19 (+) (2,957 nM/min) and COVID-19 (−) (2,902 nM/min)
patients (Figure 2C). Representative thrombin generation curves
from COVID-19 (+) and COVID-19 (−) patient plasmas are
shown in Figure 2D. Plasmin peak height and generation rate
were decreased by 9 and 18%, respectively, in COVID-19 (+)
compared to COVID-19 (−) patients (p< 0.0001, Figures 2E,F).
The median peak height and plasmin generation rate in COVID-
19 (+) patients were 535.2 (IQR: 458.5–624.3) nM and 20.97
(IQR: 15.31–28.57) nM/min compared to 585.5 (IQR: 497.5–
665.5) nM and 25.2 (IQR: 19.26–33.69) nM/min in COVID-
19 (−) patients. Relative to healthy donor PPP, run under the
same conditions (25), the median plasmin generation rates in
COVID-19 (+) patients were∼40% lower. The AUC values were
also significantly lower (p = 0.0002) in COVID-19 (+) patients
(11,783 nM/min) compared to COVID-19 (−) patients (12,239
nM/min) (Figure 2G). Representative plasmin generation curves
from COVID-19 (+) and COVID-19 (−) patient plasmas are
shown in Figure 2H. These data demonstrate an increase in
thrombin generation, suggesting a higher risk for thrombosis
in COVID-19 (+) patients. Further, the observation of lower
plasmin generation rates suggests an impaired fibrinolytic system
in COVID-19 (+) patients. A similar distribution of platelet
counts was observed in both COVID-19 (+) and COVID-19 (−)
patients (Supplemental Figure 1).

Age Dependent Differences in
VWF/ADAMTS13 Axis and Plasma
Coagulation Parameters
Increasing age is a contributing factor to illness severity and death
fromCOVID-19 infection. The differences in VWF, ADAMTS13,
thrombin generation, and plasmin generation parameters were
evaluated in plasmas from COVID-19 (+) and COVID-19 (−)
patients that were <65 and ≥65 years of age (Table 2).

In patients <65 years of age, significant increases in median
VWF:AG and VWF:CBA levels in COVID-19 (+) patients were
observed. Specifically, the median VWF:AG, and VWF:CBA
levels in the COVID-19 (+) group were increased by 28.8%
and 17%, respectively, compared to the COVID-19 (−) group
(p < 0.0001; p = 0.002) (Table 2). The increase in VWF levels
and binding activity are consistent with endothelial dysfunction
in patients <65 years of age. Despite the changes in VWF, no
changes in VWF/ADAMTS13 activity were observed. Among
patients <65 years of age, median plasmin generation rates
reached statistical significance (p < 0.05). The median plasmin
generation rates in COVID-19 (+) patients decreased by 9%
compared to COVID-19 (−) patients (p = 0.041). Despite
the changes in plasmin generation, no differences in thrombin
generation were observed.

Among patients≥65 years of age, no significant differences in
ADAMTS13, ADAMTS13 activity or FVIII levels were observed
between COVID-19 (+) or COVID-19 (−) groupings. On the
other hand, significantly elevated VWF:AG, VWF:CBA and
VWF:AG/ADAMTS13 activity ratios were observed in COVID-
19 (+) patients (Table 2). Specifically, in the COVID-19 (+)
group, median VWF:AG, VWF: CBA and VWF:AG/ADAMTS13
activity ratios increased (by 43, 23, and 21.5%, respectively)
compared to the COVID-19 (−) group (Table 2). Among
thrombin and plasmin parameters, elevated coagulation and
decreased fibrinolysis was observed in COVID-19 (+) patients.
Within this group, median thrombin peak heights and generation
rates increased by 32.6% (p = 0.0007) and 21% (p = 0.02),
respectively. Conversely, median plasmin peak heights and
generation rates decreased by 11% (p = 0.0006) and 26% (p
< 0.0001), respectively, compared to COVID-19 (−) patients
(Table 2). Comparisons between the two age groups within
the COVID-19 (+) patients (Table 2) indicates that patients
≥65 years of age have a reduced plasma ADAMTS13 activity
(remaining in the reference range), as well as increased
VWF:AG, VWF:CBA, and VWF/ADAMTS13 activity ratio.
Further, thrombin and plasmin generation parameters were
increased and decreased, respectively. Comparisons between <

65 and ≥ 65-year-old individuals are also provided for the
COVID-19 (−) patient group (Table 2). A similar distribution of
platelet count was observed in both COVID-19 (+) and COVID-
19 (−) across patients grouped as <65 and ≥65 years of age
(Supplementary Figure 1).

This data indicates that a main difference between younger
and older COVID-19 (+) patients evaluated in the present study
was increased VWF:AG levels and activities in older patients.
More importantly the age of COVID-19 (+) patients defined a
risk factor for promoting hemostasis and impairing fibrinolysis
based on enhanced thrombin generation and impaired plasmin
generation, respectively.

BMI Dependent Differences in
VWF/ADAMTS13 Axis and Plasma
Coagulation Parameters
A BMI greater than normal (> 25 kg/m2) represents an
important risk for COVID-19 illness severity. To assess the
effect of BMI on VWF/ADAMTS13 axis changes, we grouped
patients based on CDC guidelines into four BMI categories:
<18.5, 18.5–24.9, 25–29.9, >30 (kg/m2). Within underweight
and normal healthy BMI grouping, VWF:AG, VWF: CBA,
ADAMTS13 antigen, and ADAMTS13 activity levels did not
differ based on COVID-19 (−) or COVID-19 (+) status.
VWF:AG, VWF:CBA and VWF:AG/ADAMTS13 activity were
significantly increased in COVID-19 (+) patients within the
overweight (25–29.9 kg/m2) and obese (>30 kg/m2) BMI
groupings (Table 3). However, ADAMTS13 levels and activities
were unchanged within the overweight (25–29.9 kg/m2) and
obese (>30 kg/m2) BMI groupings regardless of COVID-19
status (Table 3). Plasma coagulation and fibrinolysis parameters
measured by simultaneous thrombin and plasmin generation
showed a significant inhibition of fibrinolysis in the plasmas
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FIGURE 2 | Plasma coagulation in acutely ill COVID-19 (−) and (+) patients: (A) Thrombin generation (TG) peak height 177.5 (IQR, 94.24–297.6) (−), 230.0 (IQR,

23.0–326.2) (+), p < 0.0005; (B) TG rate 32.66 (IQR, 15.78–57.69) (−), 40.38 (IQR, 20.39–67.33) (+), p = 0.0063; (C) TG AUC 2902 (IQR, 2442–3503) (−), 2,957

(IQR, 2,486–3,502) (+), p = 0.9187; (D) Representative TG curves from patient plasma; (E) Plasmin generation (PG) peak height 585.5 (IQR, 497.5–665.5) (−), 535.2

(IQR, 458.5–624.3) (+), p < 0.0001; (F) PG rate 25.20 (IQR, 19.26–33.69) (−), 20.97 (IQR, 15.31–28.57) (+), p < 0.0001; (G) PG AUC 12,239 (IQR, 11,277–13,369),

11,783 (IQR, 10,884–26,994), p = 0.0002; (H) Representative PG curves from patient plasma. Data points indicate individual measurements, and p-value comes

from the Mann-Whitney analysis for comparison within groups. Values are presented as median and interquartile range (IQR, 25th–75th percentile) for continuous

variables. TG, thrombin generation; PG, Plasmin generation. ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.

of obese (>30 kg/m2, BMI) COVID-19 (+) patients. Median
plasmin generation rates decreased by ∼25% in the plasma
of COVID-19 (+) obese patients. Comparisons between BMI
categorization in the COVID-19 (+) group demonstrated no
significant differences in assayed parameters from plasmas
collected at hospital presentation or admission. A similar
distribution of platelet counts was observed in both COVID-
19 (+) and COVID-19 (−) across patient BMI groupings
(Supplementary Figure 1).

VWF/ADAMTS13 Axis Changes and Plasma
Coagulation Parameters in Survivors and
Non-survivors
The VWF/ADAMTS13 axis as well as plasma hemostasis
and fibrinolysis were compared within the COVID-19 (−)
and COVID-19 (+) groups to understand the differences
in VWF/ADAMTS13 axis and plasma coagulopathy between
surviving and non-surviving patients (Table 4). At the time of
the initial blood draw, hospitalized COVID-19 (−) patients who
ultimately did not survive their illness demonstrated significantly
(p< 0.05) higher VWF levels and collagen binding activity as well
as higher FVIII levels compared to COVID-19 (−) patients who
survived their illness. The same parameters were also significantly
(p < 0.05) increased in non-surviving COVID-19 (+) patients;
however, survival was increased by 3.5-fold (p < 0.0001) in the
COVID-19 (+) group compared to the COVID-19 (−) group.

DISCUSSION

COVID-19 infected patients are at greater risk for venous
and arterial thrombosis, particularly once the severity of
disease requires intensive care (5, 28–30). Several studies
identify important links between metabolic and protein changes
that indicate up-regulated coagulation linked to inflammation
and complement and offer unique insight into the relevant
changes in COVID-19 coagulation omics (31–33). However,
to our knowledge, no study has specifically focused on
VWF/ADAMTS13 axis changes of coagulation combined with
thrombin and plasmin generation in COVID-19 (−) or COVID-
19 (+) patient cohorts at the time of hospital presentation
and admission. Further, the present analysis focuses on plasma
coagulation parameters in these two cohorts and then, more
specifically, based on aging or BMI categorization and finally on
changes in the VWF/ADAMTS13 axis and plasma coagulation
in survival. Here we evaluate VWF/ADAMTS13 axis changes
that suggest an early endothelial-based coagulopathy along with
imbalanced plasma thrombin and plasmin generation.

Microvascular thrombosis caused by endothelial
dysregulation is tied to immune activation and is an important
pathophysiological response to COVID-19 infection (34). A
review of autopsy findings identified that ∼60% of deceased
COVID-19 patients evaluated demonstrate microvascular
thrombosis (35). Microthrombi are primarily observed in
the lungs (∼75% of cases), but also in the kidneys, liver,
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TABLE 2 | VWF, ADAMTS13, thrombin generation, and plasmin generation characteristics by age grouping.

Parameters < 65 years ≥ 65 years < 65 vs. ≥ 65

years

< 65 vs. ≥ 65

years

COVID-19 (−) COVID-19 (+) P-value COVID-19 (−) COVID-19 (+) P-value COVID-19 (−) COVID-19 (+)

P-value P-value

ADAMTS13 Antigen (U/mL) 0.8805 (IQR,

0.6203–1.121)

0.8340 (IQR,

0.5950–1.084)

0.44 0.78 (IQR,

0.60–1.01)

0.7760 (IQR,

0.6033–1.013)

0.87 0.064 0.21

ADAMTS13 Activity (U/mL) 0.56 (IQR,

0.4483–0.7310)

0.6405 (IQR,

0.4743–0.8293)

0.0080 0.5085 (IQR,

0.3835–0.6673)

0.5460 (IQR,

0.4008–0.7203)

0.31 0.048 <0.00010

VWF: AG (U/mL) 1.690 (IQR,

1.236–2.395)

2.259 (IQR,

1.621–3.296)

<0.00010 2.019 (IQR,

1.303–3.119)

3.128 (IQR,

2.118–4.630)

<0.00010 0.050 <0.00010

VWF: CBA (U/mL) 2.875 (IQR,

1.591–4.115)

3.433 (IQR,

2.235–4.576)

0.0020 3.281 (IQR,

2.028–4.631)

4.147 (IQR,

2.742–5.597)

0.00010 0.021 <0.00010

VWF:AG/ADAMTS13 activity 4.827 (IQR,

2.857–7.709)

4.984 (IQR,

3.316–7.988)

0.27 5.923 (IQR,

4.108–8.843)

7.349 (IQR,

4.509–12.12)

0.0075 0.0065 <0.00010

FVIII (U/mL) 1.48

(0.77–3.32)

1.61 (0.84–2.88) 0.716 2.34

(1.30–3.87)

1.87

(1.17–3.61)

0.275 0.0021 0.0016

TG Peak Height (nM) 167.1 (IQR,

87.56–292.0)

211.4 (IQR,

101.1–306.0)

0.055 178.0 (IQR,

103.1–292.0)

247.4 IQR,

(144.7–340.1)

0.00070 0.34 0.016

TG Rate (nM/min) 29.06 (IQR,

14.37–55.25)

35.63 (IQR,

17.15–63.08)

0.070 36.22 (IQR,

16.60–56.54)

44.76 (IQR,

21.42–69.19)

0.020 0.24 0.087

PG Peak Height (nM) 570.8 (IQR,

492.6–679.2)

562.6 (IQR,

464.8–643.6)

0.18 581.0 (IQR,

487.9–638.5)

519.8 (IQR,

446.6–602.2)

0.00060 0.75 0.0067

PG Rate (nM/min) 24.59 (IQR,

18.84–33.37)

22.29 (IQR,

16.18–29.65)

0.041 25.11 (IQR,

18.67– 32.48)

19.25 (IQR,

14.78– 25.99)

<0.00010 0.81 0.015

AG, antigen; CBA, Collagen binding activity.

and heart (35). Within lung tissue, histopathology and
immunohistochemistry analyses provide evidence of widespread
primary pathology across alveolar sites and the peripheral lung
vasculature, including pre- and post-capillary pulmonary vessels
(34, 36). The microthrombi described in small pulmonary
arteries and veins demonstrate immunoreactivity for platelets
and megakaryocytes (i.e., CD61), fibrin, VWF, and lymphocytes
(i.e., CD4, CD8) (36). Interestingly, the localized pulmonary
coagulopathy in COVID-19 pneumonia is more pronounced
than that in influenza or bacterial pneumonia, and demonstrates
an upregulated gene signature consistent with hypoxia-induced
intussusceptive “splitting” angiogenesis (34). Platelet- and VWF-
rich thrombi demonstrate greater resistance to thrombolytic
therapies (37, 38) suggesting that treatment options are
limited after established microvascular thrombosis in severe
COVID-19 infection.

These observations of increased microvascular thrombosis
caused by endothelial dysregulation influenced studies on the
contributions of VWF and ADAMTS13 across a range of
pro-thrombotic processes and COVID-19 disease severities (9,
39, 40). VWF is an acute-phase reactant and its secretion
from endothelial cells increases in response to various stimuli,
including shear stress and inflammation (41). During the
inflammatory activation associated with COVID-19, the vascular
imbalance of VWF and ADAMTS13 favors an elevated
VWF:AG/ADAMTS13 activity ratio; this shift is implicated
in localized endothelial dysfunction of COVID-19 infection
(10–13). A close relationship with the VWF/ADAMTS13 axis

and hospitalized COVID-19 (+) patients disease severity (low,
intermediate, and high) is identified (11). This study also reports
on VWF multimer accumulation in the plasmas of COVID-
19 (+) patients suggesting a relationship between endothelial
coagulation and COVID-19 disease severity. Two additional
studies specifically identify the upper limits of VWF:AG levels
(4.23-fold greater than normal) (12) and collagen binding activity
(4.46-fold greater than normal) as predictors of mortality (13).

Our observations suggest that VWF:AG is increased in the
plasma of both COVID-19 (−) and COVID-19 (+) patients at
hospital presentation and admission. However, VWF:AG levels
exceed the reference range (0.5–2 U/mL) and VWF collagen
binding activity is significantly increased in COVID-19 (+)
patients. Factor VIII levels were not found to be changed
at the time of hospital presentation in the COVID-19 (+)
patient plasmas analyzed in this study. Despite elevated VWF
function in COVID-19 (+) patients’ plasma, only mild changes
in ADAMTS13 levels or activity are observed. Our rationale to
measure ADAMTS13 levels was based on reports of ADAMTS13
antigen and activity decreases in other infections, including
bacterial sepsis (42), and in viral infection-induced secondary
TTP due to ADAMTS13 specific IgG inhibitor production
(43). Nonetheless, the ratio of VWF:AG to ADAMTS13 activity
does increase because of the higher VWF:AG levels. These
observations differ from those observed in diseases of endothelial
micro-thrombotic origin. For example, TTP is characterized
by loss of ADAMTS13 function, thrombocytopenia, and
schistocytosis (44). In the present study, COVID-19 (+) patient
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TABLE 3 | VWF, ADAMTS13, thrombin generation, and plasmin generation characteristics by BMI groupings.

Parameters BMI <18.5 BMI 18.5–24.9 BMI 25–29.9 BMI >30

COVID-19 (−) COVID-19 (+) P-value COVID-19 (−) COVID-19 (+) P-value COVID-19 (−) COVID-19 (+) P-value COVID-19 (−) COVID-19 (+) P-value

ADAMTS13 Antigen

(U/mL)

0.6540 (IQR,

0.5328–0.9453)

0.8530 (IQR,

0.4920–1.479)

0.43 0.7660 (IQR,

0.5750–0.9800)

0.7350 (IQR,

0.5030–0.9335)

0.30 0.9330 (IQR,

0.6360–1.148)

0.7950

(IQR,0.5883–

1.002)

0.11 0.8510 (IQR,

0.6425–1.125)

0.8210 (IQR,

0.5660–1.027)

0.16

ADAMTS13 Activity

(U/mL)

0.4785 (IQR,

0.4195–0.5963)

0.7580 (IQR,

0.5818–1.006)

0.054 0.5030 (IQR,

0.3950–0.6000)

0.6000 (IQR,

0.4298–0.7278)

0.032 0.6100 (IQR,

0.5090–0.7940)

0.6070 (IQR,

0.4190–0.7860)

0.27 0.5600 (IQR,

0.4250–0.7955)

0.5645 (IQR,

0.4030–0.7683)

0.40

VWF: AG (U/mL) 2.073 (IQR,

2.587–1.319)

3.443 (IQR,

4.877–1.819)

0.60 2.069 (IQR,

3.066–1.389)

2.725 (IQR,

4.414–1.843)

0.0029 1.661 (IQR,

2.944–1.252)

3.012 (IQR,

3.888–2.157)

<0.00010 1.855 (IQR,

2.943–1.268)

3.023 (IQR,

4.337–2.186)

<0.00010

VWF: CBA (U/mL) 2.821 (IQR,

2.501–4.313)

3.445 (IQR,

1.541–5.838)

0.60 3.355 (IQR,

4.378–2.092)

3.519 (IQR,

5.074–2.423)

0.17 2.945 (IQR,

4.161–2.097)

4.182 (IQR,

5.151–3.277)

0.00020 3.044 (IQR,

4.228–2.137)

4.292 (IQR,

5.688–2.884)

<0.00010

VWF:AG/ADAMTS13

activity

6.120 (IQR,

7.799–4.586)

3.315

(IQR−8.694–

2.592)

0.18 6.138 (IQR,

9.228–3.680)

5.815 (IQR,

9.805–4.258)

0.79 4.752 (IQR,

6.759–3.386)

7.328 (IQR,

10.06–4.954)

<0.00010 5.131 (IQR,

7.025–3.172)

7.157 (IQR,

12.83–4.223)

0.0015

FVIII (U/mL) 3.444 (IQR,

2.025–5.537)

1.192 (IQR,

0.7350–4.455)

0.0674 2.172 (IQR,

1.262–4.063)

1.862 (IQR,

1.192–3.599

0.7619 1.927 (IQR,

0.7975–3.333

1.754 (IQR,

1.087–3.203

0.9008 1.829 (IQR,

0.7015–3.739

1.717 (IQR,

0.9930–3.231

0.7590

TG Peak Height (nM) 232.2 (IQR,

68.22–339.2

213.7 (IQR,

63.73–470.4

0.76 193.4 (IQR,

88.40–287.9)

226.9 (IQR,

127.3) 297.8

0.14 177.9 (IQR,

122.0–339.6

246.9 (IQR,

101.1–337.4

0.52 202.6 (IQR,

111.0–323.5

255.4 (IQR,

153.4–354.8

0.071

TG Rate (nM/min) 36.73 (IQR,

14.66–66.79)

46.58 (IQR,

12.75–107.5)

0.56 33.15 (IQR,

14.11–54.96)

37.48 (IQR,

18.50–59.06)

0.36 35.22 (IQR,

18.19–66.09)

46.16 (IQR,

17.30–71.33)

0.61 38.11 (IQR,

18.23–66.03

45.99 (IQR,

25.04–78.96

0.097

PG Peak Height (nM) 612.2 (IQR,

479.1–877.0)

505.0 (IQR,

459.8–624.6)

0.21 578.7(IQR,

498.6–636.6)

520.8 (IQR,

426.2–604.6)

0.013 593.2 (IQR,

504.8–641.9)

545.0 (IQR,

487.7–647.7)

0.40 585.0 (IQR,

527.7–682.0)

537.0 (IQR,

458.7–638.1)

0.026

PG Rate (nM/min) 32.48 (IQR,

19.32–42.19)

24.24 (IQR,

15.06–30.71)

0.12 22.75 (IQR,

16.68–28.41)

19.68 (IQR,

14.27–27.63)

0.11 23.87 (IQR,

18.15–30.68)

22.65 (IQR,

17.64–28.63)

0.31 26.36 (IQR,

18.49–32.43)

20.77 (IQR,

14.88–26.62)

0.0058

AG, antigen; CBA, Collagen binding activity.
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TABLE 4 | VWF, ADAMTS13, thrombin generation, and plasmin generation characteristics by survivors and non–survivors in COVID-19 positive and negative groups.

Parameters COVID-19 (−) COVID-19 (+)

Survivors Non–survivors P-value Survivors Non–survivors P-value

ADAMTS13 Antigen (U/mL) 0.8320 (IQR, 0.6285–1.081) 0.6670 (IQR,

0.4230–1.019)

0.067 0.8140 (IQR,

0.5688–1.014)

0.6990 (IQR,

0.5310–0.8870)

0.013

ADAMTS13 Activity (U/mL) 0.5560 (IQR, 0.4445–0.7070) 0.4000 (IQR,

0.3010–0.5720)

0.00020 0.5930 (IQR,

0.4150–0.7620)

0.4870 (IQR,

0.3563–0.6778)

0.0095

VWF: AG (U/mL) 2.937 (IQR, 1.920–4.191) 3.972 (IQR,

2.409–5.012)

0.0010 2.561 (IQR,

1.782–3.877)

3.327 (IQR,

2.366–5.838)

<0.00010

VWF: CBA (U/mL) 1.681 (IQR, 1.241–2.554) 2.268 (IQR,

1.799–4.649)

0.026 3.640 (IQR,

2.523–5.108)

4.506 (IQR,

3.286–5.900)

0.00040

VWF:AG/ADAMTS13 activity 5.185 (IQR, 3.212–7.886) 7.558 (IQR,

5.027–13.73)

0.00050 6.275 (IQR,

3.817–10.08)

8.105 (IQR,

5.043–13.44)

0.00010

FVIII (U/mL) 1.711 (IQR, 0.8755–3.392 2.740 (IQR,

2.028–4.888)

0.0101 1.678 (IQR,

0.9620–2.949)

2.706 (IQR,

1.561–5.594)

<0.0001

TG Peak Height (nM) 174.8 (IQR, 96.79–295.3) 176.9 (IQR,

83.24–252.7)

0.52 227.2 (IQR,

118.5–315.2)

227.7 (IQR,

119.5–334.8)

0.81

TG Rate (nM/min) 31.14 (IQR, 16.01–57.06) 39.31 (IQR,

10.26–56.15)

0.97 40.26 (IQR,

20.24–69.04)

39.55 (IQR,

19.63–64.72)

0.72

PG Peak Height (nM) 575.7 (IQR, 495.2–656.1) 568.0 (IQR,

443.3–546.4)

0.26 537.9 (IQR,

458.1–624.3)

506.1 (IQR,

406.5–576.9)

0.0064

PG Rate (nM/min) 24.78 (IQR, 19.30–33.50) 23.92 (IQR,

13.07–31.78)

0.12 21.53 (IQR,

14.78–28.85)

17.99 (IQR,

13.34–24.15)

0.0040

AG, antigen; CBA, Collagen binding activity.

plasma showed normal ADAMTS13 functional activity (≥50%)
and normal platelet levels (∼250 × 109/L), consistent with prior
studies of COVID-19 disease progression and severity (10, 13).
Although not widespread across the spectrum of COVID-19-
induced coagulopathy, some reports include case descriptions
of TTP during ongoing infection; that is, microangiopathic
hemolytic anemia with schistocytes and thrombocytopenia (19,
45).

COVID-19 disease outcome is widely reported to be affected
by age and underlying comorbidities. For example, patients
of increasing age and, independently, of increasing BMI are
reported to be at greater risk for thrombosis based on
underlying systemic organ functional decline and the likelihood
of comorbidities (46, 47). In addition, comorbid states consistent
with increasing age and increased BMI track with COVID-19
disease progression (48–50). Specifically, the median age in the
present study was 62 and 63 years of age in the COVID-19 (−)
and COVID-19 (+) cohorts, respectively, and, within the two
groups, the patients were almost equally split between individuals
younger and older than 65. Based on our current data with
COVID-19 (−) and COVID-19 (+) patients, there was a clear
age-dependent effect (i.e., ≥65) on VFW:AG, VWF collagen
binding activity, and the VWF:AG/ADAMTS13 activity ratio,
suggesting an enhanced potential for endothelial coagulopathy.
A shift toward increased thrombin generation and decreased
plasmin generation was observed in COVID-19 (+) patients>65
years of age in the present study, suggesting an increased risk for
hemostasis and impaired fibrinolysis.

Assessment of coagulation in COVID-19 using viscoelastic
coagulation tests (e.g., TEG and ROTEM) offers an important

insight into the potential for hemostasis and the likelihood
for effective fibrin clot lysis in whole blood and platelet rich
plasma (51). These assays can be performed at bedside, and are
potentially useful in the diagnosis and treatment of COVID-
19-induced coagulopathy (27, 52). Several studies that utilize
viscoelastic coagulation tests demonstrate elevated clot strength
in COVID-19 infection (34, 53, 54). However, viscoelastic
tests do not specifically determine the amount of thrombin or
plasmin produced in the patient’s sample, and the sensitivity
of viscoelastic tests to detect fibrinolysis remains controversial
(55). For example, in several cases of COVID-19 coagulopathy,
analysis by ROTEM suggested that fibrinolysis is completely
inhibited (56). However, we do not observe complete inhibition
of plasmin generation in the plasma samples evaluated in the
study described here. Our study employed a research-based
simultaneous thrombin and plasmin generation enzymatic assay
to assess the potential for hemostasis and fibrinolysis in PPP
(26, 57–59). An important feature of this approach allows for
an improved understanding of the rate of thrombin generation,
but also an accurate assessment of plasmin generation rates and
functional fibrinolysis within a sample. Analysis of 288 COVID-
19 (−) and 543 COVID-19 (+) plasma samples obtained at the
time of hospital presentation and admission suggested increased
thrombogenic potential/ dysregulated hemostasis based on
significantly greater thrombin peak heights and generation rates
in COVID-19 (+) patients. In addition, impaired fibrinolysis
was suggested by identifying significantly lower plasmin peak
heights and generation rates in COVID-19 (+) patient samples
(60). Interestingly, patients ≥65 years of age, which comprised
∼50% of the patient population studied, accounted for the
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FIGURE 3 | Immune-thrombosis in COVID-19: endothelial and plasma coagulation: (1) Viral infection leading to endothelial damage and inflammation. (2) this leads to

increased expression of cytokines, and procoagulant factors like VWF, activation of platelets and neutrophil extracellular traps (NETs) release; VWF is cleaved by

ADAMTS13. (3) increased thrombin and plasmin generation potential in presence of thrombomodulin leading to increase in fibrin degradation products and D-dimer.

(4) thrombus formation and (5) subsequent fibrin degradation that results in increased D-dimer in Covid-19. TM, thrombomodulin; tPA, tissue plasminogen activator;

TF, tissue factor; VWF, von Willebrand factor; NETs, neutrophil extracellular traps (Figure created with Biorender.com).

highest thrombin generation rates and the lowest plasmin
generation rates. Unexpectedly, neither overweight nor obese
patients demonstrated increased thrombin generation, and only
obese patients (i.e.,≥30 kg/m2) demonstrated significantly lower
plasmin generation. Collectively, this may indicate that age is
one of the most important additive risk factors for dysregulated
hemostasis in COVID-19 infection. This is not to say that all
patients of increasing age develop thrombosis during COVID-
19 infection, and these observations are likely due to existing
comorbidities; for example, an aging endothelium and lower
organ function naturally occurs over time. Finally, median D-
dimer levels were increased in both COVID-19 (−) and (+)
patients, but to a greater extent in the latter. However, active
thrombosis was not ubiquitous in the patient cohorts described
in our study, suggesting that ongoing fibrinolysis, unrelated to
clot degradation, is relevant in COVID-19 (61).

The VWF/ADAMTS13 axis is significantly imbalanced in
favor of higher VWF levels and activity and lower ADAMTS13
levels and activity in both acutely ill COVID-19 (−) and COVID-
19 (+) non-survivors at the time of hospital admission. The
VWF:AG/ADAMTS13 activity ratio was increased by 32 vs. 23%
in COVID-19 (−) and COVID-19 (+) non-surviving patients,
respectively. The samples in this study were analyzed in plasma
from blood drawn at the time of hospital presentation or early
after hospitalization and did not focus on temporal changes
involved in disease progression. The most distinct difference
between COVID-19 (+) and COVID-19 (−) non-survivors was
a decrease in plasmin generation in COVID-19 (+) patients. This
observation may suggest a COVID-19-induced impairment in
fibrinolysis mediated by plasminogen activator inhibitor 1 (PAI-
1) (62, 63), consistent with greater expression of the inhibitor in
adipose tissue (64) and endothelium (65).

The present study defines VWF/ADAMTS13 axis parameters
as markers of endothelial dysfunction, along with thrombin and
plasmin generation as predictors of thrombosis and fibrinolysis,

based on two important risk factors known to predict poor
outcome in COVID-19 infection: increased age (66) and obesity
(48). However, this study does have several acknowledged
limitations. First, although most patients were admitted to
inpatient care in both the COVID-19 (−) and COVID-19
(+) groups, some patients had blood draws in the Emergency
Department and were discharged to home; therefore, only the
sickest COVID-19 (−) patients are represented in this study.
Second, hospitalized COVID-19 (−) and COVID-19 (+) patients
demonstrate considerable differences in pathophysiology and
not all co-morbidities could be captured based on the number
of patients in need of care. Notably, COVID-19 (+) patients
evaluated in this study demonstrated increased markers of
inflammation as compared to COVID-19 (−) patients. Third,
BMI values were not available for all patients. In the COVID-
19 (−) group, 206 of 288 (72%) patient BMIs were available; in
the COVID-19 (+) group 478 of 543 (88%) of patient BMIs were
available. Fourth, the simultaneous measurement of thrombin
and plasmin is a research-based methodological approach
to assess thrombin and plasmin function and standardized
reference values across laboratories are not available. Therefore,
data can only be compared when evaluated across study groups.
Nonetheless, this does not diminish the potential relevance of
VWF/ADAMTS13 axis parameters, and of plasma thrombin and
plasmin generation parameters, regarding the COVID-19 (+)
patients evaluated in this study.

In conclusion, these data are consistent with early signs of
endothelial damage that may reflect the pulmonary immune-
thrombosis seen with COVID-19 (Schematic Figure 3). The
median VWF:AG level, VWF: CBA, and VWF:AG/ADAMTS13
activity ratio were all increased in COVID-19 (+) patients, as
compared to the acutely ill COVID-19 (−) cohort. However,
changes in median ADAMTS13 levels and activity were not
observed. Similarly, median platelet levels were unchanged, and
thrombocytopenia was not a consistently seen clinical finding,
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ruling out typical, and likely atypical, TMA. Furthermore,
increased plasma coagulation, as determined by thrombin and
plasmin generation, suggests the potential for dysregulated
hemostasis in COVID-19 infection. This latter observation
was almost exclusively weighted toward patients ≥65 years
of age and surprisingly less relevant in overweight and
obese COVID-19 (+) patients. Surprisingly, no differences in
VWF/ADAMTS13 axis parameters were observed in critically
ill COVID-19 (−) versus COVID-19 (+) non-survivors, while
a significant imbalance, favoring endothelial coagulopathy was
observed between surviving and non-surviving patients in each
cohort. This retrospective analysis of acutely ill COVID-19 (−)
and COVID-19 (+) patients suggests VWF/ADAMTS13 axis
parameters, along with thrombin and plasmin generation, are
relevant coagulation parameters to measure in early COVID-
19 infection. The assessment of thrombin generation, but
more specifically plasmin generation offers critical insight into
impaired fibrinolysis not easily obtained by viscoelastic tests.
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