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Summary

  Traditionally, erythropoietin (EPO) is described as a hematopoietic cytokine, regulating prolifera-
tion and differentiation and survival of the erythroid progenitors. The recent finding of new sites 
of EPO production and the wide spread distribution of EPO receptors (EPO-R) on endothelial 
cells, cardiomyocytes, renal cells as well as the central and peripheral nervous system raised the 
possibility that EPO may exert pleiotropic actions on several targets. Indeed studies (mainly pre-
clinical) have documented protective, non-hematopoietic, abilities of EPO in a variety of tissue. 
However, the data obtained from clinical studies are more skeptical about these properties. This 
article provides a comprehensive overview of EPO and its derivatives.
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Background

Erythropoietin (EPO) is widely used for treatment of ane-
mia in patients with chronic kidney disease (CKD) and in 
cancer patients receiving chemotherapy [1,2]. The biggest 
advantage of EPO administration is increased quality of life 
(QoL). In many studies EPO has been shown to posses prop-
erties beyond its traditional role as a hematopoietic cytokine 
(Table 1) [1–3]. EPO may directly and indirectly affect dif-
ferent cells, enhance antioxidant enzyme production, an-
tagonize the cytotoxic action of glutamate, metabolize free 
radicals, normalize cerebral blood flow, affect neurotrans-
mitter release, stimulate neoangiogenesis, modify inflam-
mation and promote endothelial progenitor cell prolifera-
tion and differentiation [1,4,5]. On the other hand over the 
last decade several studies have reported increased mortal-
ity and cardiovascular events when erythropoiesis-stimulat-
ing agents (ESAs) were administered to CKD patients [4]. 
Moreover, a number of promising outcomes mediated by 
EPO, in preclinical studies (in vitro and in vivo), were not 
confirmed in clinical studies [5,6].

This article provides an overview of EPO and its derivatives 
as a cardiovascular, neuroprotective or renoprotective agent. 
We also consider the relationship of EPO with malignancy 
and inflammation and discuss the common side effects as-
sociated with its administration.

EPo and EPo-rEcEPtors

EPO was purified in 1977, the gene was cloned in 1985 and 
the EPO receptor was cloned in 1989 [5]. Recombinant hu-
man EPO (rHuEPO) has become a successful clinical ap-
plication of recombinant DNA technology [7]. There are 
a few forms of rHuEPO: EPOetin-a, EPOetin-b, EPOetin-d, 
a long-acting analogue darbepoetin a (the second genera-
tion) and a continuous EPO receptor activator (CERA, the 
third generation). In humans, EPO is produced by peritu-
bular fibroblast-like type 1 interstitial cells located in the 
renal cortex and outer medulla [7]. The kidney is a major 
producer of EPO in adults but not the only one; 10% of 
the circulating EPO originates from non-renal tissue [8]. 
EPO is expressed in the liver, brain, spleen, lung and testis. 
During fetal development, the main producer of EPO is the 
liver. A comprehensive study indicated that a liver to kidney 
shift in EPO production occurs in late gestation; the mo-
lecular mechanisms underlying this shift are still obscure. 
Moreover hepatocytes remain the primary cells responsible 
for extrarenal EPO synthesis [9,10].

EPO is a 34,000-da, 165 amino acid glycoprotein that is syn-
thesized mainly under hypoxic condition [9]. In fact, EPO 
is the only hematopoietic growth factor whose production is 
regulated by hypoxia. The induction of EPO synthesis by low 
oxygen levels lead to discovery a widespread system of hypox-
ia-inducible factors (HIFs). HIF-1 and HIF-2 are transcrip-
tional activators each composed of an a and b subunit [11]. 
The a subunit is a cytoplasmic protein containing an oxygen 
degradation domain (ODDD) and a transactivation domain 
(TAD) [11]. The b subunit is located in the nucleus. HIF-3 is 
a likely inhibitor of EPO gene transcription. The primary ef-
fect of EPO on the red blood cell (RBC) line, especially the 
colony forming units-erythroid (CFU-E), is the promotion of 
RBC survival by protecting these cells from apoptosis [11].

EPO receptors belong to the super-family of cytokine recep-
tors and can be located on the plasma membrane of bone 
marrow erythroid progenitor cells, cardiomyocytes, cardiac 
fibroblasts, endothelial and vascular smooth muscle cells, 
gastric cells, retinal and prostate cells, human hair follicles 
[8] and auditory hair cells in the inner ear [12–15]. EPO-R 
binding triggers at least 3 intracellular signaling cascades: 
(1) Janus tyrosine kinase 2 (JAK2) a cytoplasmic tyrosine 
kinase that phosphorylates tyrosine residues itself and pro-
vides docking sites for signal transducer and activator of 
transcription 5 (STAT5), (2) phosphatidylinositol-3 kinase 
(PI3K), and, (3) RAS/mitogen-activated protein kinase 
(MAPK) [16]. STAT5 and MAPK induce transcription of 
target genes involved, mainly with inhibition of apoptosis 
with cell proliferation. PI3K inhibits apoptosis by activat-
ing its downstream effector Akt, and the activation of Akt 
by EPO also induces activation by phosphorylation of en-
dothelial nitric oxide synthase (eNOS) and prevents neo-
intimal hyperplasia [16].

EPo and cardiovascular ProtEction

The prevalence of anemia among patients with chronic heart 
failure (CHF) is estimated over 20% and has a multifactori-
al etiology [17–19]. Anemia has been identified as a strong 
prognostic factor associated with poor outcomes (with wors-
ening symptoms and increased mortality) among patients 
with CHF [20–22]. In a systematic review and meta-analysis 
of randomized trials, the authors evaluated the efficacy and 
safety associated with the use of ESAs for correcting anemia 
in patients with CHF [23]. In patients with CHF and anemia 
ESAs compared with control, were associated with a signif-
icant reduction in CHF-related hospitalizations (OR=0.41; 
95% Confidence Intervals [CI] 0.24–0.69) [23]. Moreover, 
ESA treatment was associated with improved quality of life 
and left ventricular ejection fraction, lower brain-natriuretic 
peptide (BNP) levels and improved exercise tolerance test 
performance. However, the effect of ESAs on mortality was 
inconclusive (OR=0.60; 95%CI 0.51–1.42), but available 
date could suggest that ESAs have a favorable effect on all-
cause mortality [23]. The impact of ESAs on morbidity and 
mortality in patients with HF has been evaluated in the post-
TREAT meta-analysis [24]. The use of ESAs to treat anemia 
in patients with HF was associated with neutral effect on both 
mortality (RR=1.03; 95%CI 0.89–1.12; p=0.68) and non-fa-
tal HF events (RR=0.95; 95%CI: 0.82–1.10; p=0.46) [24].

Patients with CKD are more at risk of cardiovascular events, 
particularly young dialysis patient, whose mortality is up to 
100 times greater than for the general population [25–27]. 
In dialysis patient, cardiomyopathy predisposes to HF and 
death [27]. In contrast, a reduction in left ventricular mass 
index (LVMi) is associated with the increase in both all-
cause and cardiovascular survival rate [28]. The changes in 
the LVMi among anemic CKD and end-stage renal disease 
patients treated with recombinant human erythropoietin 
were evaluated in a systematic review of papers published 
between 1990 and 2007 [28]. This meta-analysis revealed, 
that in patients with severe anemia, defined as mean base-
line hemoglobin (Hb) <10 g/dl, a significant decrease in 
LVMi was observed. There was no such significant beneficial 
impact on LVMi in the moderate anemia group with target 
Hb above 12 g/dl. This study despite its limitations (e.g. po-
tential for development of EPO-induced hypertension and 
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lack of control group) supports EPO treatment of severe 
anemia in CKD patients [28].

In a Pilot Evaluation of the Long-term Effect of Combined 
Therapy With Intravenous Iron Sucrose and Erythropoietin 
in Elderly Patients With Advanced Chronic Heart Failure 
and Cardio-Renal Anemia Syndrome study, combined ther-
apy with intravenous (IV) iron and rHuEPO showed an in-
crease Hb level, reduction of N-terminal pro-B-type natri-
uretic peptide (NT-proBNP), improvement of functional 
capacity and cardiovascular hospitalization in elderly pa-
tients with advanced CHF and cardio-renal anemia syndrome 
with mild to moderate renal dysfunction [29].

Esas in Malignancy

Anemia is a frequent complication in cancer patients and it 
is one of the main causes of cancer-related fatigue [30,31]. 
According to some authors up to 40% of cancer patients 
are anemic at diagnosis and this frequency is increased fol-
lowing chemotherapy [32]. Before the era of ESAs, oncolo-
gists relied on transfusions to correct anemia and to improve 
QoL [32]. Furthermore, tumor responsiveness to chemo-
therapy and radiotherapy seems to be weakened in anemic 
patients [32]. The introduction ESAs offered an alternative 
method to transfusion. Clinical trials with ESAs have report-
ed an improved QoL and decreased treatment-related ane-
mia (including numbers of blood transfusions) [33]. Other 
studies suggested an improvement in survival outcome of 
cancer patients that received rHuEPO for anemia [33].

However, rHuEPO as treatment for cancer-related anemia 
could also be harmful. In cystic renal disease increased en-
dogenous production of EPO is associated with a higher in-
cidence of cancer [34]. Von Hippel-Lindau (VHL) disease 
is another example when loss of ability to degrade HIF that 
regulates EPO synthesis is responsible for a high incidence 
of spontaneous renal cell cancer [34–36]. Based on clinical 
trials rHuEPO was suspected to trigger tumor progression 
leading to decrease survival [37,38]. In the ENHANCE trial, 
patients with advanced head and neck cancer treated with 
radiotherapy had a higher risk for loco-regional progression 

when also receiving EPOetin b [38]. The BEST trial with 
metastatic breast cancer patients, who were receiving che-
motherapy, was terminated prematurely because of a signif-
icant reduction of survival in women receiving ESAs [39]. 
A study of ESAs in non-small-cell lung cancer patients re-
ceiving palliative treatment was also terminated, because of 
unexpected worse survival in the ESAs arm [40]. Another 
problem was an increased risk of venous thromboembo-
lism (VTE) in cancer patients following ESAs treatment. 
The association between cancer and increased risk of VTE 
is well established [41]. VTE could be an explanation of 
worse overall survival. However, a number of trials did not 
report increased VTE events. On the other hand, a num-
ber of clinical studies indicate better survival rate in cancer 
patients who receive anti-coagulants [40–43]. Another ex-
planation is the binding of tumour cell erythropoietin re-
ceptors by ESAs which could stimulate tumour cell growth, 
decrease cell apoptosis or increase resistance to therapy 
[44–47]. The activation of EPO-R is similar to cell activa-
tion by growth receptors [44]. This activation depends on 
tyrosine kinase that phosphorylates tyrosine residues it-
self and provides docking sites for signal transducers [44]. 
Tyrosine kinase activity is important in many growth factor 
receptors and in oncogenes, and because of its ability to 
stimulate mitogenic potential it may play an important role 
in this mechanism. EPO-R or EPO-R mRNA are present on 
some cancer cells but do not necessarily indicate receptor 
functionality [44]. However, some researcher suggests that 
EPO-R expression like tumour size and lymphovascular in-
vasion may act as a prognostic factor [48]. A very interest-
ing hypothesis suggests that ESAs may directly stimulate 
tumour growth through activation of the coagulation cas-
cade and subsequent stimulation of angiogenesis [46,48]. 
This hypothesis is supported by clinical evidence both of 
increased VTE rates and increased coagulability with ESAs 
exposure [46]. Pathological angiogenesis could be stimu-
lated directly by EPO via recruitment endothelial progen-
itors cells or by the thrombosis pathways [46,49]. These 
processes are numerous and complicated and are an active 
area of research. In 2007 the American Society of Clinical 
Oncology/American Society of Hematology (ASCO/ASH) 
recommended against the use of EPO in anemic cancer 

Type of tissue protection Possible mechanisms of action

Cardioprotection

Reduces apoptosis, modifies inflammation, increases endothelial nitric oxide synthase,
stimulates angiogenesis, promotes endothelial progenitor cells proliferation and differentiation, enhances 
antioxidant enzyme expression and reduces the rate of free radical production, improves cardiac function 
reflected by increased ventricular developed pressure (dP/dtmax) and relaxation (dP/dtmin), reduction of left 
ventricular mass index and increased ejection fraction.

Neuroprotection

Antagonizes glutamate’s cytotoxic action, normalizes cerebral blood flow, stimulates neoangiogenesis, 
promotes endothelial progenitor cells proliferation and differentiation, affects neurotransmitter release, 
modifies inflammation and immune response, stimulates non-differentiated Schwann cells to proliferate, 
reduces apoptosis, enhances antioxidant enzyme expression and reduces the rate of free radical 
production.

Renoprotection

Reduction of apoptosis and inflammatory response, promotion of vascular repair, increasing the 
proliferation of tubular cells, enhances antioxidant enzyme expression and reduces the rate of free 
radical production. Possible autocrine-paracrine action of erythropoietin within the kidney mediates 
cytoprotection.

Table 1. Non-hematopoietic mechanism of tissue protection by erythropoietin.
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patient not receiving chemotherapy with the exception of 
the low-risk myelodysplastic syndrome [50].

EPo and thE cEntral and PEriPhEral nErvous systEM

Both EPO and its receptor are present in the central and 
peripheral nervous system [51]. Moreover, analysis of spi-
nal fluid revealed a significant increase in EPO following its 
administration confirming that EPO crosses the blood-brain 
barrier [52]. In vitro, EPO protects nerve cells from hypox-
ia-induced glutamate toxicity, which is the main cause of hy-
poxia-induced nerve cell death [51]. Furthermore, in a mul-
tiple sclerosis animal model, the systematic administration of 
EPO alpha reduced the immune response and the inflamma-
tory reaction including enhanced nerve recovery after spi-
nal cord injury [53]. EPO, both in animal and human mod-
els, reduced the level of impairment after cerebral ischemia 
[53]. EPO and EPO-R play an essential role in neurogene-
sis, especially during embryonic neurogenesis [54]. In the 
peripheral nervous system, EPO is produced in the bodies 
and axon of normal ganglions in the rat dorsal root and an 
increased EPO level are seen in Schwann cells after periph-
eral nerve injury [55]. EPO stimulates non-differentiated 
Schwann cells to proliferate [55]. Experiments have shown 
that systemic administration of rHuEPO reduces apoptosis 
of dorsal root ganglion cells and contributes the recovery of 
mechanical allodynia following nerve injury [53]. EPO en-
hances antioxidant enzyme expression and reduces the rate 
of free radical production [53–55]. EPO-R and dismutase per-
oxide (SOD) are activated via the same metabolic pathways 
[53]. Akt activation by EPO inhibits various metabolic path-
ways that are related to cell death, such as those related to 
glycogen synthetase kinase 3b (GSK3b), Bcl-2-associated cell 
death promoting protein (BAD) and caspase-9 [53–56]. In a 
systematic review and meta-analysis of EPO in experimental 
stroke, 19 studies involving 346 animals for infarct size and 
425 animals for neurobehavioral were evaluated [57]. EPO 
improved infarct size by 30.0% (95%CI: 21.3–38.8) and neu-
robehavioral outcome by 39.8% (95%CI: 33.7–45.9). The re-
sults are promising but when the impact of common sourc-
es of bias are considered, this efficacy falls, suggesting that 
the potential benefit may be overestimated [57]. The most 
recent clinical study reported that recombinant EPO failed 
to protect from damage induced by ischemic stroke [58].

EPo and rEnoProtEction

The discovery of EPO-R mRNA and EPO-R in kidney sug-
gested that EPO may act as a protective agent in acute kid-
ney injury (AKI). EPO-R is expressed by mesangial cells, ep-
ithelial cells of the proximal tubule and distal tubule and 
the collecting duct [59]. In cultured renal cells, EPO sig-
naling occurs through the JAK/STAT5 pathway and results 
in increase DNA synthesis and proliferation [60]. It is hy-
pothesized that autocrine-paracrine action within the kid-
ney mediates cytoprotection [60]. AKI induces apoptosis 
and inflammatory response but EPO decreases this process-
es by anti-apoptosis mechanisms, promotion of vascular re-
pair and increasing the proliferation of tubular cells [61,62]. 
There is evidence that in ischemic AKI, renal expression of 
EPO is significantly decreased whereas EPO-R level stay un-
changed thus a cytoprotective effect maybe only possible by 
administration of exogenous EPO [60]. Studies performed 
on rodents revealed a protective effect of EPO/ESAs in the 

experimental setting of ischemic, septic AKI or induced by 
hemorrhagic shock, cisplatin or radio contrast media [60]. 
Moreover, the cytoprotective effect was achievable both 30 
min and 6 h post ischemic kidney injury compared with 
the respective control group [63]. In most of these studies 
EPO/ESAs had no effect on Hb concentration within the 
time frame of the studies [60–63]. Therefore, renoprotec-
tion may depend on mechanisms other than the hemato-
poietic properties of EPO-R [63].

However, in a recently published study – Early intervention 
with erythropoietin does not affect the outcome of acute 
kidney injury (the EARLYARF trial) [64], investigators per-
formed a double-blind placebo-controlled trial to study 
whether early treatment (within 6 h of injury) with high-
dose EPO (up to 50,000 U) could prevent the development 
of AKI in intensive care unit (ICU) patients. High dose of 
EPO did not alter the outcome of patients receiving EPO 
compared with placebo. There was no difference in the in-
cidence of EPO-specific adverse events end early interven-
tion with high-dose EPO was safe. However, this study had 
some limitations – a composite of 2 biomarkers (the prox-
imal tubular brush border enzymes gamma-glutamyl trans-
peptidase and alkaline phosphatase) was insufficient for risk 
stratification in a patient population with a heterogeneous 
onset of AKI [64]. Therefore, further work is needed [65].

Few studies assessed the renoprotective effects of rHuEPO 
in CKD. The explanation could be that therapeutic efforts 
in CKD patients were made only to correct anemia and the 
putative hypoxic renal tissue damage as a result of anemia. 
Some results from recently published large trials in patients 
with CKD revealed no beneficial effect on progression CKD 
[4]. However, study by Gouva et al. in which rHuEPO ther-
apy was started in CKD patients with only mild-to-moder-
ate anemia, and the anemia was corrected only to subnor-
mal levels over a period of 6 months [66]. The authors 
observed significantly reduced progression and significant-
ly less need for renal replacement therapy in the group of 
rHuEPO-treated patients [66].

EPo and inflaMMation

Anemia is very common in chronic inflammatory diseases 
[4]. Pro-inflammatory cytokines such as interferon (IFN)-g, 
tumor necrosis factor (TNF)-a, interleukin (IL)-1 and -6b are 
responsible for suppression of EPO production both in vitro 
and in vivo [67–71]. But EPO production in patients with can-
cer disease is not diminished enough to cause anemia, is not 
the only explanation of this mechanism [67]. Moreover IFN-g, 
TNF-a, TRAIL and IL-1b are cytokines responsible for inhi-
bition of the proliferation and differentiation of erythroid 
progenitor cells [71]. Therefore, a disturbance of erythro-
poiesis is most likely due to apoptosis induction, cell growth 
inhibition, EPO-R down regulation as a result of locally in-
creased cytokines and as well due to impaired iron metabo-
lism [72]. The role of reactive oxygen species (ROS) is even 
more complicated since they may either trigger or prevent 
hematopoietic proliferation and differentiation [72,73].

EPo and safEty

EPO has been abused in sport, particularly in disciplines 
requiring an adequate supply of oxygen to muscles. The 
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first suspected cases of doping with EPO was in the 1980s; 
since then doping with EPO has been reported many times 
by the World Anti-Doping Agency [74]. Doping with EPO 
is associated with serious adverse side-effect beginning 
from hypertension, headaches and an increased number 
of thrombotic events and death [74]. Moreover, EPO with-
drawal may be complicated in neocytolysis – hemolysis of 
young red blood cells in the presence of increased hemato-
crit [74]. The great safety concern was brought to the light 
when The Normal Hematocrit Study provided one of the 
first suggestions that the use of ESAs to raise Hb concen-
trations into the normal range could cause harm [75]. This 
concept was presented by large observational trials, all of 
them have shown an increase in mortality related to high-
er Hb values in kidney patients. The CHOIR has fuelled 
the debate on the safety of rHuEPO [76]. As a result, the 
Food and Drug Administration (FDA) has recommended 
the lowest possible dose to slowly raise the Hb concentra-
tion to the lowest level that will avoid the need for a blood 
transfusion [77]. However subsequent analysis of the trial 
results revealed that the cause of the worse outcomes was 
not the Hb level but the high ESA dose [77]. Solomon et 
al. observed that patients with a poor response to darbepo-
etin a who had subsequently higher doses of this drug to 
meet target Hb levels, as compared with those with a better 
response, had higher rates of the composite cardiovascular 
end point (adjusted HR 1.31; 95%Cl: 1.09–1.59) or death 
(adjusted HR 1.41; 95%CI: 1.12–1.78) [78].

EPo and hyPErtEnsion

The most common side effect of rHuEPO therapy seems 
to be hypertension which may occur even in healthy sub-
jects [74,79,80]. rHuEPO increases peripheral vascular re-
sistance and decreases cardiac output [4,74]. All of that is 
caused by increases in endothelins, angiotensin, impaired 
vascular endothelial relaxation, altered calcium levels in 
vascular smooth muscle cells and the release of serotonin 
by platelets [81]. EPO has direct vasoconstrictor effects in 
isolated renal resistance vessels [82]. Production of endog-
enous EPO is as well regulated by the renin-angiotensin-
system [83]. When angiotensin II are given to normal hu-
man subjects, plasma EPO levels increased [83]. A similar 
situation is observed when inhibition of angiotensin en-
zyme decrease plasma EPO [84,85]. Angiotensin II stimu-
lates growth factors similar to insulin by inducing tyrosine-
kinase receptors in vascular smooth muscle cells, which in 
turn produces an increase in vascular intimal hyperplasia 
[86]. EPO and angiotensin II seem to be similar to other cy-
tokines that activate tyrosine-kinase receptor and that may 
be responsible for harmful effects of both hypertension and 
vascular disease progress. The main EPO mechanism for the 
raising the hematocrit is an increase in RBC mass but a de-
crease plasma volume also occurs [87]. However, the link 
between hypertension and an increase in hematocrit has not 
be proven with certainty, and arterial hypertension may oc-
cur independently of EPO`s hematopoietic effect [88–90].

EPo and throMBosis

Some trials and meta-analyses reported an increased risk of 
VTE following ESAs treatment. Before the use of EPO to 
treat anemia the incidence of deep vein thrombosis (DVT) 
and pulmonary embolism (PE) was rare in patients with 

CKD [81,91]. There is evidence suggesting that rHuEPO 
enhances procoagulant pathways, which can cause adverse 
effects and, therefore, potentially limit the clinical use of 
EPO [92]. rHuEPO increases platelet aggregability and may 
decreased proteins C and S levels [92]. In hemodialysis pa-
tients rHuEPO raises the platelet count and mean platelet 
volume but did not change the numbers of surface platelet 
receptors [93]. The platelet aggregation can be reversed by 
using aspirin but taking aspirin cannot prevent vascular ac-
cess thrombosis in hemodialysis patients [93]. Vascular ac-
cess thrombosis is associated with intimal hyperplasia and 
smooth muscle cell proliferation [94]. Another hypothesis 
for increased thrombosis in heamodialysis patients could 
be thrombocytosis due to the presence of iron deficiency 
caused by ESA [95]. This hypothesis is supported by a study 
where the use of IV iron reduced the risk of thromboembol-
ic events by 40% [96]. Another possible explanation of in-
creased adverse events is that chronic administration of EPO 
may enhance angiogenesis in the atherosclerotic plaque by 
increased vascular endothelial growth factor production with 
subsequent plaque rupture and acute coronary syndrome 
or stroke. From the clinical perspective, another possible 
explanation for high incidence of thrombosis could be vis-
cosity of the blood, which leads to a risk of vascular throm-
bosis [97]. By taking into account blood viscosity as a main 
determinant of the work of the heart, and elevated blood 
viscosity appears to be both a strong predictor of cardiovas-
cular disease and an important pathophysiological factor in 
the development of atherothrombosis [98].

conclusions

The role of ESAs and future indications are unclear. Tissue 
protection after ischemia and injury has been found in the 
brain, heart and kidney [99–101]. Benefits include an in-
creased Hb to the recommended level in anemic patients 
with CKD or HF or both or in the palliative chemotherapy 
setting remains. An increase QoL has been reported almost 
in every study with ESAs. However, QoL was not generally 
designed as a specific end-point. Furthermore, analysis of 
the current available data shows major inhomogeneities in 
the tools used for assessment of QoL and in data reporting 
which suggest that only partial correction of anemia with 
EPO may improve QoL [102]. On the other hand a bet-
ter correction of anemia with higher Hb target is associat-
ed with increased risk for stroke, hypertension, vascular ac-
cess thrombosis compared with a lower Hb target [103].

Studies have demonstrated a decrease survival outcome 
of cancer patients that received rHuEPO for anemia. This 
caused great concern regarding patients on hemodialysis 
who have previous cancer diagnoses. However, we know 
that the doses of ESAs have more than tripled in the USA 
since ESAs were introduced and that cancer specific mor-
tality rates remained stable among US hemodialysis pa-
tients between 1995 and 2005 [25]. Despite all the prom-
ising outcomes in numerous preclinical studies (in vitro 
and in vivo), EPO use as a neuroprotective drug failed in 
clinical studies. However, this does not mean that the neu-
roprotective abilities of EPO are wrong but it means that 
we have to be more critical in evaluating the future use of 
EPO [104–106]. To minimize possible side effect of ESAs 
therapy, a greater understanding of the physiology of this 
molecule and its receptors are required with the possible 
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alternative method of administration. Perhaps the new gen-
eration of ESAs (asialo EPO and carbamylated EPO), with-
out the erythropoietic activity of EPO, while preserving its 
tissue protective properties, will provide better outcome in 
ongoing clinical trials [107,108].
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