
OR I G I N A L R E S E A R C H

Intrathecal TRPM8 blocking attenuates cold

hyperalgesia via PKC and NF-κB signaling in the
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Background: TRPM8 channel plays central roles in the sensitization of nociceptive trans-

duction and is thought as one of the potential targets for the treatment of neuropathic pain.

However, the specific molecular mechanisms are still less clear.

Methods: Sciatic chronic constriction injury (CCI) rats were intrathecally administered with

AMTB (TRPM8-selective antagonist) or PDTC (nuclear factor-kappa B (NF-κB) inhibitor).

Cold-, thermal- and mechanical-pain thresholds were examined in CCI and sham-operated

rats before and after intrathecal administration of AMTB or PDTC. Protein expression levels

of TRPM8 and NF-κB p65, p-PKC/PKC value and p-PKA/PKA value in the CCI ipsilateral

L4-6 dorsal root ganglions (DRGs) were analyzed. In addition, the co-expression of TRPM8

and NF-κB was evaluated in DRG.

Results: Intrathecal injection of AMTB decreased the cold hypersensitivity and aggravated

the thermal-hyperalgesia in the next 2 weeks after CCI surgery. The protein expression of

TRPM8 and NF-κB p65 in the ipsilateral DRGs significantly increased after CCI surgery,

which can be reversed by intrathecal administration of AMTB. The PKC, PKA, p-PKC/PKC

and p-PKA/PKA values showed significantly increase after CCI surgery, while intrathecal

AMTB administration offset the expression increase of PKC, p-PKC and p-PKC/PKC but

PKA or p-PKA/PKA in the DRG. NF-κB inhibitor not only efficiently increased the cold-,

thermal-pain threshold of CCI rats, but also enhanced AMTB’s anti-cold pain effect although

exerted no anti-thermal hyperalgesia effect compared with TRPM8 blockade group.

Immunofluorescence results showed co-expression of TRPM8 and NF-κB in DRG neurons.

Conclusion: TRPM8 channels in DRGs participate in the pathogenesis of cold and thermal

hyperalgesia (not mechanical allodynia) in rats with neuropathic pain, which could be

regulated by PKC (not PKA) and NF-κB signaling. TRPM8 channel, PKC and NF-κB are

potential targets for cold hyperalgesia treatment in neuropathic pain patients.
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Introduction

More than one-third of pain-related symptoms are accounted for neuropathic pain,

which refers to the dysfunction of somatosensory system or the pain caused by

diseases.1 The clinical manifestations of neuropathic pain include allodynia,

sensory paralyzes and spontaneous pain.2,3 The pathogenesis of neuropathic

pain is complex, and the ideal therapeutic method is yet to be found.4

Pathological cold pain is a common symptom in several kinds of neuropathic

pain, which are presented as cold allodynia, a pain response to cold temperatures
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that do not normally provoke pain, and/or cold hyperal-

gesia, an increased sensitivity to painful cold

temperature.5,6

Transient receptor potential melastatin 8 (TRPM8)

ion channel belongs to the transient receptor potential

protein family, mainly locating in small neurons of the

dorsal root ganglion (DRG) and trigeminal ganglia.7 The

role of TRPM8 in nerve injury-evoked cold and

mechanical allodynia was recently described.8,9 In ani-

mals with neuropathic pain, the expression of TRPM8 in

sensory neurons significantly increased compared with

normal ones, which induces increased sensitivity to

cold.10 For example, rats with sciatic nerve chronic

constriction injury (CCI) showed elevated expression

of TRPM8 in spinal cord and DRG.11,12 TRPM8 chan-

nels also play vital roles in the sensitization of nocicep-

tive transduction; therefore, it is thought as one of the

potential targets for neuropathic pain treatment.13

However, the specific molecular mechanisms for its

roles in neuropathic pain regulation are less clear.

PKC, PKA and their phosphorylation form have been

proved to be involved in the regulation of neuropathic

pain.14–16 Nuclear factor-kappa B (NF-κB) took part in

the transmission of nociceptive sensory information in

the DRG17 and spinal cord18,19 in murine with neuro-

pathic pain. PKA and PKC can activate NF-κB in DRG

and maintaining persistent inflammatory pain in rat.20

Alleviation of the inflammatory pain can be induced by

reducing the formation of NF-κB through antioxidant

regulation.21 It is reported that PKC/NF-κB signaling

in rat DRG involved in inflammation-induced neuro-

pathic pain.20,22 Recently, Liu et al23 found that cold

stimuli induce inflammatory responses in primary air-

way epithelial cells of asthmatic mice through TRPM8.

We hypothesize that TRPM8 blocking can attenuate

neuropathic pain via PKC or PKA/NF-κB signaling in

the DRG.

To analyze TRPM8’s effect on thermal-, mechanical-

and cold-pain in CCI rats and to examine contributions

from PKC, PKA and NF-κB signaling, TMPM8 blocker

N-(3-aminopropyl)-2-[(3-methylphenyl) methoxy]-N-(2-

thienylmethyl)-benzamide (AMTB) and NF-κB blocker

pyrrolidinedithiocarbamate ammonium (PDTC) were

intrathecally injected, then the NF-κB p65 expression,

p-PKC/PKC value, p-PKA/PKA value and the

co-expression of TRPM8 and NF-κB were evaluated in

the ipsilateral DRG.

Methods
Ethical approval and animal preparation
Ethical approval was given by the Experimental Animal

Care and Use Committee of Zunyi Medical University

with approval number ZMC2013-0009. Thirty male and

30 female Sprague-Dawley rats (180–200 g, 16–20 weeks

old) were purchased from the Animal Experimental Center

of Third Military Medical University (Chongqing, China)

and housed in groups of three to four under a standard

12-hr light/dark cycle with access to food and water ad

libitum for at least 1 week before the beginning of the

experiments. Experiment procedures and general handling

complied with the Guide for the Care and Use of

Laboratory Animals published by the National Institute

of Health (8th Edition, 2011).

Intrathecal catheter placement and drug

administration
Rats were anesthetized with 10% chloral hydrate

(0.4 mL/100 g intraperitoneally). Intrathecal catheter place-

ment surgeries were conducted as reported.24 A skin incision

about 2 cm in length was made and muscles were bluntly

dissected to expose the spinal dura mater. A syringe needle

was used to pierce the spinal dura mater, and a polyethylene

catheter was implanted into the lumbar enlargement and

fixed. Twenty-four hours later, rats exhibiting neurological

deficits were excluded from the experiments. If the catheter

was in the subarachnoid space, 20 μL of 2% lidocaine injec-

tion through intrathecal catheter will induce paralysis of hind

limb within 30 s after lidocaine administration. Penicillin at a

dose of 120 mg per day was administered for 3 days after the

operation, and the rats were raised separately in cages.

TRPM8 antagonist AMTB hydrochloride and NF-κB
blocker PDTC were purchased from Sigma-Aldrich

(Shanghai, China). From the second day after CCI surgery,

in the next two weeks, AMTB and PDTC were given

intrathecally twice a day. In the Sham group, 20 μL normal

saline was applied intrathecally; 10 μL of 10 μM25 AMTB

+10 μL normal saline and 10 μL of 12.2 mM PDTC+10 μL
normal were applied intrathecally in the TRPM8 blockade

group and NF-κB inhibition group, respectively.

CCI model establishment
CCI operation was performed 5 days after intrathecal

catheter placement. The surgical procedure was con-

ducted with reference to Bennett’s work.26 Rats were
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anesthetized with 10% chloral hydrate (0.4 mL/100 g

intraperitoneally), and the right common sciatic nerve

was bluntly dissected and exposed behind the femur.

Four loose ligatures were made with a 5–0 silk thread

at an interval of 1 mm, and the desired degree of

constriction was to induce slight tremor of the calf

muscle and not to arrest blood flow. For rats in the

Sham group, the sciatic nerve only received blunt dis-

section through the biceps femoris, no ligatures were

applied before closing the incisions. Penicillin at a

dose of 120 mg per day was administered for 3 days

after the operation, and the rats were raised separately in

cages.

Pain threshold tests
The pain threshold tests were performed before CCI sur-

gery (baseline pain threshold), and on the 1st, 3rd, 7th,

10th and 14th day after CCI surgery.

The cold hyperalgesia was determined in accordance

with Bennett’s method.26 Rats were placed on a stainless

plate cooled with ice (4±1°C) under a transparent plastic

cover. When rats adapted to the testing environment and

stayed still, the total number of right hind paw with-

drawals from the cold surface not related to general

movement was quantified over the subsequent 20-min

period.

Thermal hyperalgesia was measured using a TF2

beam-thermal system (YuYan Instruments, Shanghai,

China), and expressed as paw withdrawal latency

(PWL, in second) of the right hind paw. Heat was

generated from the optical radiation and reached 50°C.

Tests were performed after rat adapted to the testing

environment and stayed still. Length of time course

from the beginning of beam on the right hind paw to

the appearance of first paw withdrawal movement were

recorded. The maximum time of beam was limited to 30

s in order to prevent tissue injury. Six measurements

were taken for each rat, at 10-min intervals, and the

mean was regarded as PWL.

Mechanical withdrawal thresholds (MWTs, in gram)

were assessed using an electronic von Frey plantar

aesthesiometer (IITC, Wood Dale, IL, USA) and served

as an index of mechanical allodynia as reported.27

Graded mechanical stimulation was applied vertically

by the test probe on the right hind paw, and the test

was completed when the rats lifted their hind paw. Six

measurements were taken for each rat, at 5-min inter-

vals, and the mean was regarded as MWT.

Western blotting
After behavioral tests, rats in each groupwere anesthetized and

sacrificed on the 7th or 14th day after CCI surgery to perform

Western blotting analysis as reported elsewhere.28 The col-

lected ipsilateral L4-6 DRGs (the sciatic nerve is originated

from theL4 to S3 segments of the sacral part of the spinal cord)

tissue was mechanically homogenized and centrifuged. The

supernatant was collected and stored at – 80°C. Protein con-

centrations of the supernatant were determined using the BCA

protein assay kit (Beyotime, China). Equal amounts of total

protein (20 μg) were subjected to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and transferred to mem-

branes for immunoblotting. The primary antibodies used were

listed as follows: rabbit monoclonal [EPR4196(2)] to TRPM8

(1:500, Abcam, Shanghai, China); rabbit monoclonal anti

phospho-NF-κB p65 (Ser536) (1:1000, Abcam, Shanghai,

China); rabbit anti-PKA 2 beta [EP2648] (1:5000, Abcam,

Shanghai, China); rabbitmonoclonal [E151] toPKAR2 (phos-

pho S99) (1:2500, Abcam, Shanghai, China); rabbit anti-PKC

alpha (1:1000, Abcam, Shanghai, China); rabbit anti-PKC

alpha (phospho S657+Y658, 1:1000, Abcam, Shanghai,

China). Protein expression was visualized with horseradish

peroxidase-conjugated secondary antibodies and enhanced

chemiluminescence (1:5000, Abcam, Shanghai, China), and

was detected using the Odyssey Infrared Imaging System (LI-

COR, USA) and the digital images were analyzed by densito-

metry using ImageJ software (National Institutes of Health,

USA). Protein levels were normalized to β-actin as the loading
control. Relative optical density of the protein bands was

measured after subtracting the film background. Data are

expressed as mean ratio±S.E.M of the target protein/β-actin
protein.

Immunocolocalization of TRPM8 and

NF-κB-p65 in DRG
The rats were sacrificed and perfused transcardially with

PBS followed by 4% paraformaldehyde. L4 DRGs were

removed and fixed in 4% paraformaldehyde overnight at

4°C, placed in 20% sucrose solution overnight at 4°C

and embedded in O.C.T. compound (Sakura Finetek,

Japan). Slices (10 μm thick) were made using a cryostat

(Leica, Germany). For immunofluorescence analysis of

TRPM8 and NF-κB-p65, the sections were incubated in
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1% normal goat serum in PBS with 0.3% Triton X-100

for 1 hr. The L4 DRG sections were incubated with

rabbit monoclonal [EPR4196(2)] to TRPM8 antibody

(1:300, Abcam, Shanghai, China) and mouse monoclo-

nal anti- NF-κB p65 (F-6) antibody (1:200, Santa Cruz,

USA) overnight at 4°C. TRPM8 antibody was labeled

with goat-anti-rabbit-DyLight 649 (red); NF-κB-p65
antibody was labeled with goat-anti-mouse-FITC

(shown in green) as a secondary antibody. Cellular

nuclei were stained with DAPI (shown in blue). The

sections were examined under a confocal microscopy

(Leica, Germany).

Statistical analysis
Statistics were performed using GraphPad Prism statisti-

cal software (Version 7.0, GraphPad Software, USA). All

data were expressed as mean±SD. Differences among

groups were assessed with one-way ANOVA or two-

way ANOVA. P-value <0.05 was considered statistically

significant.

Results
TRPM8 blocker reduces cold pain,

aggravates thermal pain but has no effect

on mechanical pain in CCI rats
For rats in the Sham group, intrathecal injection of normal

saline did not induce behaviors of neuropathic pain. For the rats

in CCI group, neuropathic pain behaviors such as toe closing,

licking and back flexion can be observed on the first day after

CCI surgery, but without motor dysfunction and autonomy.

As compared with the Sham group, the paw lift times

on cold plate increased, and the thermal withdraw latency

and mechanical paw withdrawal threshold decreased sig-

nificantly in CCI group since the first day after CCI
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Figure 1 TRPM8 blocker reduces cold pain, aggravates thermal pain but has no effect on mechanical pain in chronic constriction injury (CCI) rats. (A) Cold pain sensitivity

assessed by cold plate tests, which significantly decreased in AMTB group compared with CCI group on the 3rd, 7th, 10th and 14th day after CCI surgery. (B) The thermal

withdrawal latencies assessed by a beam-thermal system were decreased in AMTB rats compared with CCI rats on the 3rd, 7th, 10th and 14th day after CCI surgery. (C)

Mechanical withdrawal thresholds (MWTs) were assessed with the electronic von Frey plantar aesthesiometer on ipsilateral hind paws of CCI, CCI+TRPM8 blockade and

sham-operated rats, which showed no obvious change between CCI and AMTB group. Data are expressed as mean±SD, n=12 for the three experiments. Statistical analyses

consisted of repeated measures two-way ANOVA tests. *P<0.05 vs Sham group, #P<0.05 vs CCI group.
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surgery (Figure 1A–C). When blocked TRPM8 with

AMTB, compared with the CCI group, both the paw lift

times on cold plate (Figure 1A) and the thermal withdraw

latency decreased (Figure 1B) on the 3th, 7th, 10th and

14th day after CCI surgery, but rats in CCI and AMTB

group showed no difference on mechanical paw withdra-

wal thresholds at all time points after CCI surgery

(Figure 1C).

CCI surgery increases TRPM8 protein

expression, while TRPM8 blockade

reduces CCI induced TRPM8

overexpression in DRGs
The TRPM8 protein expression was evaluated before CCI, on

the 7th and 14th day after CCI. Compared with the Sham

group, the expression of TRPM8 in the L4-6 DRGs in the

CCI group was significantly increased on the 7th and 14th day

after CCI surgery. Compared with the CCI group, the expres-

sion level of TRPM8protein inAMTBgroupwas significantly

decreased on the 7th and 14th day after CCI surgery (Figure 2).

Intrathecal injection of AMTB decreases

PKC overexpression and p-PKC/PKC

level in DRGs of CCI rats
Compared with the Sham group, CCI increased the expres-

sion of PKC, p-PKC as well as the value of p-PKC/PKC

(Figure 3A). In addition, CCI increased the expression of

PKA and p-PKA although did not change the p-PKA/PKA

value compared with sham-operated rats (Figure 3B).

Compared with CCI group, intrathecal injection of

AMTB decreased CCI-induced overexpression of PKC

and elevated p-PKC/PKC value (Figure 3A) but showed

no effect on PKA, p-PKA and p-PKA/PKA (Figure 3B).

NF-κB participates in the neuropathic

pain regulation of TRPM8
To evaluate whether NF-κB participates in the neuropathic

pain regulation of TRPM8, we detected NF-κB p65 expres-

sion with Western blotting and retested the pain thresholds

after blocking NF-κB with its specific inhibitor PDTC.

The expression level of NF-κB p65 in the CCI group was

significantly increased on the 7th and 14th day after CCI

surgery when compared with the Sham group. Its expression

in the TRPM8 group was significantly lower than that of the

CCI group on the 7th and 14th day after CCI surgery

(Figure 4A). In the NF-κB inhibition experiments, NF-κB
p65 expression in the CCI group was significantly increased

on the 7th and 14th day after CCI surgerywhen comparedwith

the Sham group. Interestingly, NF-κB inhibition with PDTC

significantly decreased NF-κB p65 expression on the 7th and

14th day after CCI surgery comparedwith that of CCI group at

the same time point (Figure 4B).

Pain behavior tests showed that compared with the

CCI group, NF-κB blockade with PDTC significantly

decreased the paw lift times and reduced thermal

hyperalgesia since the first day after CCI surgery

(Figure 4C and D). When the TRPM8 and NF-κB
were both inhibited, the paw lift times on cold plate

decreased more on the 3rd, 7th, 10th and 14th day after

CCI surgery compared with that of NF-κB blockade

group, but no difference of thermal hyperalgesia was

found between NF-κB inhibition group and NF-κB +

AMTB blockade group at these time points (Figure 4C

and D).

Co-localization of TRPM8 and NF-κB p65

in DRG neurons
To determine the possibility that TRPM8-NF-κB signaling in

the DRG neuron regulates pain intensity in neuropathic pain

rats, the co-localized expression of TRPM8 and NF-κB p65

was assessed by immunofluorescence detected by confocal

microscopy. As shown in Figure 4E, both TRPM8 and

NF-κB p65 were localized in the cytoplasm in the Sham and

CCI rat DRG. In the same cells, we observed that

0.0

0.5

1.0

1.5

* * *#
#

TRPM8 (128 kDa)

β-actin (42 kDa)

TR
P

M
8/

β-
ac

tin

AMTB 14
d

AMTB 7d

CCI 1
4d

CCI 7
d

Sha
m

Figure 2 TRPM8 blockade reduces chronic constriction injury (CCI)-induced TRPM8

overexpression in DRGs. The TRPM8 protein expression was evaluated withWestern

blotting. Compared with the Sham group, the expression of TRPM8 in the L4-6 dorsal

root ganglions (DRGs) was significantly increased on the 7th and 14th day after CCI

surgery. Compared with the CCI group, the expression level of TRPM8 protein in

AMTB group was significantly decreased on the 7th and 14th day after CCI surgery.

Data are expressed as mean±SD and analyzed with one-way ANOVA. *P<0.05 vs Sham
group, #P<0.05 vs CCI group.
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NF-κB p65 (shown in green) and TRPM8 (shown in red)

localized to the same sites (yellow areas).

Discussion
In the present study, intrathecal injection of TRPM8 antago-

nist AMTB significantly decreased the cold hypersensitivity

and increased the thermal hypersensitivity in rats with

chronic sciatic nerve ligation. In addition, TRPM8 blockade

reduced the nerve injury-induced overexpression of NF-κB
p65 and p-PKC/PKC in the L4-6 DRGs, while NF-κB inhibi-

tion reduced cold hyperalgesia and enhance the anti-cold

hyperalgesia effect of AMTB, which indicates that NF-κB
and PKC pathways may play roles in the pathogenesis of

TRPM8-mediated cold/thermal hyperalgesia after nerve

injury (Figure 5).

Previous studies have shown that TRP channels are

closely related to neuropathic pain, especially TRPM8,

TRPV1 and TRPA1 are vital in the pathogenesis of per-

ipheral and central neuropathic pain.29–31 These TRP

channels have been proved to be involved in the occur-

rence of pain induced by chemical, temperature and

mechanical stimulation. Proudfoot et al11 found that,

after sciatic nerve injury, the expression of TRPM8 in

the DRGs was significantly increased. Su et al32 observed

the same results in rats with chronic neuropathic pain, and

concluded that the upregulation of TRPM8 channel plays

an important role in the generation and maintenance of

neuropathic pain. Our results of TRPM8 expression are in

line with these reports. Besides, we found that blocking

TRPM8 increased the thermal hypersensitivity in CCI rats.

TRPM8 expression may directly influence the thermal

pain threshold given that TRPM8 blocker reduced

TRPM8 expression in CCI rats (Figure 2). There may be

correlations between TRPM8 and other thermo-sensitive

receptors, such as Nav1.7,33 TRPA134 and TRPV1,35

which need further research to detect the expression of

these receptors when TRPM8 was blocked.

For the decreased expression of TRPM8 in CCI rats

received intrathecal injection of AMTB (Figure 2), we spec-

ulate that intrathecal administration of AMTB blocks the

TRPM8-mediated pain signaling and reduces pain percep-

tion, which could be the cause of the decreased TRPM8

overexpression as shown in CCI rats (Figure 2, CCI group).

Consistent with results reported previously,36,37 we

found that the CCI injury upregulated the expression of

PKC and PKA, it also elevated the value of p-PKC/PKC

and p-PKA/PKA in the DRGs of rats. However, TRPM8

blocking can only reduce p-PKC/PKC but not p-PKA/

PKA; hence, it is reasonable to consider that PKC (not

PKA) signaling is involved in the TRPM8-regulated

hyperalgesia induced by nerve injury although PKA

involved the neuropathic pain event. Mandadi et al38 also

proved that treatment with PKC agonists on the TRPM8

expressing sensory neurons will induce desensitization of

TRPM8, which supports our finding on the relationship
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Figure 4 NF-κB participates in the neuropathic pain regulation of TRPM8 in DRGs of chronic constriction injury (CCI) rats. To exam whether NF-κB involved in the pain

regulation of TRPM8, NF-κB p65 expression (A and B) and pain thresholds (C and D) were detected in Sham, CCI rats and CCI rats with TRPM8 blockade (with AMTB) or

TRPM8+NF-κB blockade (with PDTC). (A and B) Western blotting images and statistics of NF-κB expression levels. Data are expressed as mean±SD, n=3. *P<0.05 vs Sham

group, #P<0.05 vs CCI group (C and D). Pain behavior tests showed that compared with the CCI group, NF-κB blockade with PDTC significantly decreased the paw lift

times and reduced thermal hyperalgesia. When the TRPM8 and NF-κB were both blocked, the paw lift times on cold plate decreased more on the 3rd, 7th, 10th and 14th

day in CCI rats compared with that of NF-κB blockade CCI rats, but no difference of thermal hyperalgesia was found between NF-κB inhibition group and NF-κB + AMTB

blockade group at the time points. Data are expressed as mean±SD, n=12. *P<0.05 vs NF-κB blockade group. (E) The co-localized expression of TRPM8 and NF-κB was

assessed by immunofluorescence detected by confocal microscopy. Both TRPM8 and NF-κB were localized in the cytoplasm in Sham and CCI rat dorsal root ganglion. NF-

κB p65 (shown in red) and TRPM8 (shown in red) localized in the same cells. Cellular nuclei were stained with DAPI (shown in blue).
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between PKC and TRPM8-regulated hyperalgesia.

Premkumar and colleagues39 suggested that the negative

regulation of TRPM8 by PKC occurs indirectly via PKC-

mediated activation of phosphatase calcineurin. Therefore,

further studies are needed to elucidate the putative sites of

PKC phosphorylation, and their mechanisms in pain reg-

ulation in DRG neurons expressing TRPM8.

To evaluate whether NF-κB participates in TRPM8’s

neuropathic pain regulation effects, we detected NF-κB
p65 expression and the pain thresholds after blocking

NF-κB. CCI caused NF-κB p65 overexpression while

TRPM8 blocking decreased its overexpression. In the

NF-κB inhibition experiment, it is interesting to find that

PDTC significantly decreased NF-κB p65 expression. In

the pain behavior tests, NF-κB blockade significantly

decreased the cold- and thermal-hyperalgesia. NF-κB inhi-

bition can facilitate the anti-cold hyperalgesia effect of

TRPM8 blocker but NF-κB inhibition cannot enhance the

anti-thermal hyperalgesia effect of TRPM8 blocker. These

data suggest that NF-κB contributes to TRPM8’s

neuropathic pain regulation effect, and intervening NF-

κB activity can exert anti-neuropathic pain effect.

To evaluate the possibility that TRPM8-NF-κB signal-

ing in the DRG neurons regulates neuropathic pain inten-

sity, the co-localized expression of TRPM8 and NF-κB
was assessed by immunofluorescence. As shown in

Figure 4E, both TRPM8 and NF-κB were localized in

the cytoplasm of DRG neurons, suggesting that TRPM8-

NF-κB signaling in the DRG neurons takes part in the pain

regulation of TRPM8.

There are some limitations for this study. AMTB and

PDTC given intrathecally act on TRPM8 and NF-κB in the

spinal dorsal horn, even the brain, and the pain behavior

responses are combined effects from DRG and the central

nervous system. Further studies that using the PKC inhi-

bitor and kinase activity assays are warranted to find out

the specific link between TRPM8, PKC and NF-κB in the

pathogenesis of neuropathic pain.

Conclusion
In summary, the current study proved that TRPM8 in L4-6

DRGs participated in the pathogenesis of cold and thermal

hyperalgesia of rats with chronic nerve injury. PKC and

NF-κB signaling were involved in the TRPM8-mediated

neuropathic pain regulation.
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