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Abstract: Cellular senescence represents a state of irreversible cell cycle arrest occurring naturally
or in response to exogenous stressors. Following the initial arrest, progressive phenotypic changes
define conditions of cellular senescence. Understanding molecular mechanisms that drive senescence
can help to recognize the importance of such pathways in lung health and disease. There is increasing
interest in the role of cellular senescence in conditions such as chronic obstructive pulmonary disease
(COPD) and idiopathic pulmonary fibrosis (IPF) in the context of understanding pathophysiology and
identification of novel therapies. Herein, we discuss the current knowledge of molecular mechanisms
and mitochondrial dysfunction regulating different aspects of cellular senescence-related to chronic
lung diseases to develop rational strategies for modulating the senescent cell phenotype in the lung
for therapeutic benefit.
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1. Introduction

Cellular senescence is characterized by a permanent cell-cycle arrest triggered by vari-
ous stimuli, including DNA damage to telomere shortening, genomic instability, epigenetic
alterations, loss of proteostasis, and mitochondrial dysfunction (Figure 1) [1]. Despite
being in cell-cycle arrest, senescent cells are resistant to apoptosis due to activation of anti-
apoptotic signaling. Senescent cells remain metabolically active, secreting inflammatory
cytokines, growth factors, chemokines (CXCs), and extracellular matrix (ECM) proteins,
collectively known as senescence-associated secretory phenotype (SASP) [2,3].

Senescent cells are thought to have beneficial effects on repairing injured tissue and
maintaining organismal integrity. The role of senescent cells in tumor suppression is
also recognized. Under normal conditions, senescent cell burden is limited by removing
excessive senescent cells via the immune system. However, with aging, impairment of
the immune response results in accumulation of senescent cells that can exacerbate their
effects leading to detrimental consequences, i.e., diseases of aging. Furthermore, there is
now increasing evidence for different senescent cell phenotypes such that a shift towards
detrimental, pro-inflammatory, pro-fibrotic senescent cells and SASP can occur with aging,
contributing to disease.

Compared to other organ systems where senescence, SASP and contributions to
aging and diseases of aging have been substantially explored, there is relatively less data
on the aging lung, and senescent cells in aging-associated lung diseases such as COPD,
pulmonary fibrosis, and even asthma. Senescent cells do accumulate in aging lungs and can
exacerbate lung diseases [4–6] (Figure 1). However, the mechanisms by which senescent
cells, via their SASP, can induce paracrine signaling to activate neighboring naïve cells to
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induce remodeling (altered ECM deposition and/or cell proliferation) or modulate cell–cell
interactions to promote disease are still under investigation.
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nescent cells. Senescent cells are characterized by telomere shortening, secreting high rates of SASP, 
mitochondrial dysfunction, and an imbalance in mitochondrial fission and fusion. Figure 1. was 
created with BioRender.com. 

One factor relevant to cellular senescence and aging that may be of importance to the 
lung is cellular stress, which promotes mitochondrial dysfunction, including mitochon-
drial oxidative stress, mitochondrial DNA (mtDNA) mutation, imbalance in mitochon-
drial fission and fusion, and alterations in mitochondrial respiration [7]. Mitochondrial 
oxidative stress has been thought to be involved in accelerating aging effects. Separately, 
mitochondrial oxidative stress has been associated with lung diseases such as COPD and 
IPF and could thus play a role in stimulating as well as maintaining cellular senescence 
towards impaired lung function [8–10]. 

In this review, we discuss mechanisms of cellular senescence relevant to different 
aspects of the structure and function of aging lungs and to lung diseases, focusing on 
COPD and IPF. We review the influence of mitochondrial dysfunction in the context of 
cellular senescence and lung diseases. Finally, we summarize promising methods cur-
rently used to target senescent cells as a potential therapy to improve healthspan in the 
context of normal aging lung, and counteract lung diseases associated with aging. We 
appreciate that cellular senescence and SASP signaling is complex, and likely cell- and 

Figure 1. Left schematic figure shows a normal lung of young age with a low number of senescent
cells rapidly cleared by immune cells, normal cells maintain a baseline of telomere length and
mitochondrial homeostasis. Right schematic figure shows aged and diseased lung associated with
increased fibrosis, higher numbers of senescent cells, and slow response of immune cells to clear
senescent cells. Senescent cells are characterized by telomere shortening, secreting high rates of SASP,
mitochondrial dysfunction, and an imbalance in mitochondrial fission and fusion. Figure 1 was
created with BioRender.com accessed on 24 April 2022.

One factor relevant to cellular senescence and aging that may be of importance to the
lung is cellular stress, which promotes mitochondrial dysfunction, including mitochondrial
oxidative stress, mitochondrial DNA (mtDNA) mutation, imbalance in mitochondrial fis-
sion and fusion, and alterations in mitochondrial respiration [7]. Mitochondrial oxidative
stress has been thought to be involved in accelerating aging effects. Separately, mitochon-
drial oxidative stress has been associated with lung diseases such as COPD and IPF and
could thus play a role in stimulating as well as maintaining cellular senescence towards
impaired lung function [8–10].

In this review, we discuss mechanisms of cellular senescence relevant to different
aspects of the structure and function of aging lungs and to lung diseases, focusing on
COPD and IPF. We review the influence of mitochondrial dysfunction in the context of
cellular senescence and lung diseases. Finally, we summarize promising methods currently
used to target senescent cells as a potential therapy to improve healthspan in the context of
normal aging lung, and counteract lung diseases associated with aging. We appreciate that
cellular senescence and SASP signaling is complex, and likely cell- and context-dependent.
Accordingly, a review of these topics is necessarily brief and perhaps simple, but is relevant
to the specific topic of aging lung and associated diseases.

BioRender.com
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2. Overview of Cellular Senescence

Cellular senescence was originally described by Hayflick and Moorhead [11], where
they demonstrated that human fetal fibroblasts lose their ability to divide after a certain
number of subcultures (i.e., replicative senescence), associated with changes in cellular
morphology such as flattening and increased cell size. Several studies have since de-
scribed a similar phenomenon of replicative senescence in other cell types from different
organs [12,13]. It is also now clear that other factors can accelerate cells towards losing their
ability to proliferate in vitro, including the age and donor health condition [14], as well as
environmental and genotoxic stresses. Examples include telomere shortening, inflamma-
tory signaling, mitochondrial dysfunction and oxidative stress, oncogene-induced senes-
cence (OIS), cell differentiation [15,16], chemotherapeutic drugs such as etoposide [17,18],
exposure to UV radiation, and DNA damage stress.

Among cellular stressors, telomere shortening is now recognized as a hallmark of
aging and senescence. Telomeres contain a repetitive nucleotide sequence of complemen-
tary double-strand DNA (5′-AGGGT-3′ and 3′-TCCCA-5) and wind up with a tail of a
single-stranded DNA (5′-TTAGGG-3′) [19–21]. Telomeres protect chromosomal ends from
recombination and fusion, and maintain DNA stability. Without telomeres, the DNA
damage response is initiated [21]. In replicative senescence, the telomere shortens due to
the inability of DNA polymerase to complete DNA replication. When a short length of
telomeres is reached, a damage signal is initiated in the coiled DNA [22,23]. Therefore,
telomere shortening has been used as a hallmark of aged and senescent cells [23–25].

Senescent cells are thought to support physiological functions during embryonic and
postnatal development, tissue regeneration, and wound healing [26–29]. For instance, upon
wound closure, activated myofibroblasts limit excessive fibrosis at the injury site [26–29].
The effects of senescent cells are kept in check by immune monitoring and clearance
of senescent cells. Indeed, it is thought that during development, senescent cells avoid
elimination from their microenvironment by altering their SASP components to avoid the
immune system [26–29]. However, with aging, the efficiency of the immune system to
clear senescent cells is impaired [30]. Consequently, senescent cells accumulate, secreting
SASP factors that may become detrimental to naïve/neighboring cells by virtue of the
quantity of such factors or an altered phenotype involved in more inflammatory and fibrotic
elements [29–33].

3. Cellular Senescence Signaling Pathways

Cellular senescence is regulated by two signaling pathways that interact but are also
independent: p53-p21CIP1 and p16Ink4a-Rb [18]. Permanent arrest of cell cycle occurs at
the G1/S transitional phase distinguishing it from the quiescent phase, G0 [24,34–36]. The
DNA damage response (DDR) regulates tumor suppressor of transcriptional factor p53 and
downstream signaling p21CIP1, to result in permanent arrest in the cell cycle [18,24,34–36].

In the nuclei, DDR foci originate in response to DNA double-strand breaks (DSB).
A subnuclear focus and accumulation of DDR proteins such as p53-binding protein 1
(53BP1), histone variant H2AX phosphorylated at serine-139 residue (γ-H2AX), and Ataxia
Telangiectasia Mutated (ATM) in the vicinity of chromosomal DNA double-strand reflect
early molecular events of cellular responses to DSB [34,37,38]. DDR then initiates a series of
molecular events to repair DSB and to prevent potential DNA mutations. Phosphorylated
at serine-139 in H2AX is mediated by ATM and Ataxia Telangiectasia and Rad3 related
protein (ATR) kinases, which lead to visible DNA damage foci within the chromatin [18].
p53 binding protein is a key modulator rapidly localized to DNA damage foci after, for
instance, ionizing radiation that causes DSB [37–41]. Although the key functions of p53
have not been fully understood, accumulated evidence suggests that the roles of p53
binding protein are engaging DSB proteins, such as interferon regulatory factor 4 (also
known as MUM1) [35,38] and RAP1-interacting factor 1 (RIF1) [38,42], amplifying ATM
activity, and promoting checkpoint signaling in response to low levels of DNA damage
signals [38–40,43–45].
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ATM and ATR stabilize p53 by activating cyclin-dependent kinase inhibitor p21CIP1,
which in turn inhibits cyclin-dependent kinases-2 (CDK2) [33,39,40,43,46]. CDK2 triggers
family members of tumor suppressors, retinoblastoma proteins (Rb), stopping the cell cycle
in the S phase, and subsequently preventing DNA replication [29,31,43,47]. The signaling
pathway of ATM-p53-p21CIP1/Rb results in a permanent arrest in the cell cycle [29,31,35,43].

Another tumor suppressor that influences key roles during cessation of cell division
is the INK4a-ARF-INK4b locus [29,41,45,46,48,49]. The INK4a and INK4b locus encode for
two cyclin-dependent kinase inhibitors, p16ink4a and p15ink4b, while ARF is associated with
p14ARF in humans (p19ARF in mice) [32,45,46,48,49]. INK4/ARF activates cyclin-dependent
kinase inhibitor p16ink4a that selectively inhibits cyclin-dependent kinases-4 (CDK4) and
cyclin-dependent kinases-6 (CDK6) [29,31,32,43]. Upon activation, CDK4/6 phosphorylates
retinoblastoma protein (Rb). As a result, transcriptional factor E2F3 is upregulated and
leads to cell cycle arrest in the S phase [29,31,32,43,50,51]. Although upregulation of p16ink4a

is meditated by the downstream signaling of p53-p21CIP1 [29,31,32,43,52], it is believed that
the transcriptional factor p21CIP1 upregulates earlier than p16 ink4a [47], giving a chance
for cultured cells to go for another division cycle before making it to a complete cell
cycle arrest [29,31,32,43,51,53]. Thus, the expressions of p53-p21 and p16 ink4a appear to
demonstrate a non-linear functional relationship.

4. Biomarkers of Cellular Senescence

Accumulation of senescent cells can be recognized by utilizing various methods
in vitro and in vivo. For instance, upregulation of the transcriptional factors p53, p21,
and p16, and SASP elements such as IL-6 and IL-8, are well-validated markers [31–33,41].
Senescence-associated β-galactosidase (SA-βgal) is another technique that is widely used to
identify senescent cells in vitro and in vivo [28,50], where due to increased levels of lysoso-
mal enzyme, the enzymatic activity of SA-βgal results in blue color at a pH of 6.0 [50,52,54].
However, SA-βgal is not the most sensitive or specific marker of senescence. Fluorescence
in situ hybridization (FISH) of telomerase combined with immunofluorescence staining of
γ-H2AX results in localization of telomere-associated foci (TAF) and has more recently been
used to identify senescent cells [22,24,28,55]. SASP and SASP regulators are also used to
characterize senescent cells, including (1) proinflammatory factors such as IL-1α, and IL1ß,
IL-6 and IL-8; (2) signaling pathway such as Akt and MAPK; (3) NF-kB [51]; (4) growth fac-
tors such as TGF-β1 and matrix-degrading enzymes, metalloproteinases; (5) extracellular
matrix proteins such as fibronectin [47]. However, it should be noted that the SASP profile is
highly cell and context dependent, and it is not unusual for the profile to change with time,
making it difficult to identify a unique, stable, and broadly applicable set of senescence
markers. In this regard, while RNA sequencing and whole-genome analysis have been
widely utilized to identify senescence-associated genes [47,53,56–58], there is substantial
interest in the use of fluorescence-activated cell sorting (FACS) and particularly cytometry
by time of flight (CyTOF) using antibodies that recognize antigens selectively expressed in
senescent cells and can distinguish between detrimental and beneficial phenotypes based
on expression of p16 and p21 (generalized markers) and that of NF-kB (detrimental) [55,59].

5. Senescence Signaling in Lung Diseases

Given the clinical impact of aging per se, and that of aging-associated lung diseases, it
is important to identify biomarkers and signaling pathways in the context of senescence and
its contributions to COPD [24] and IPF [60,61], and even asthma [18,62]. The importance of
this area is reflected by the increasing number of research and review papers published on
samples from human COPD and IPF patients and in animal models (Figure 2).

Lung tissues from patients with COPD and IPF show hallmarks of senescent cells
[24,35,63,64]. Key biomarkers of senescence in aging adults are upregulation of p53, p21CIP1,
p16ink4a, a robust release of SASP, positive staining for SA-βgal, TAF, and upregulation of
anti-apoptotic signaling networks [24,25,35,63,65–69]. Increased expression of proinflam-
matory cytokines such as MCP-1, KC, MIP-1α, IL-12p40, and G-CSF have been observed in
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a mouse model of COPD [64,70]. In ROS-induced human senescent fibroblasts, IL-6 and
IL-8 are increased following 14 and 25 days in culture [24,26].
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Figure 2. An increased number of articles related to Cellular Senescence and COPD or IPF have
been published in PubMed-indexed journals during the past 10 years. Keywords used in PubMed
search engines are “Cellular Senescence Chronic Obstructive Pulmonary Disease” or “Cellular
Senescence Idiopathic Pulmonary Fibrosis”. Figure 2 was created from National Library of Medicine
(https://pubmed.ncbi.nlm.nih.gov accessed on 24 April 2022).

6. Cellular Senescence in COPD

COPD is a major healthcare issue with a high morbidity and mortality rate [71]. COPD
is characterized by obstruction in small airways (bronchiolitis), alveolar emphysema, and
airway remodeling. Although tobacco smoke is the leading cause of COPD [63,72], air
pollution, genetic disorders (alpha-1 deficiency), and respiratory infections are also risks
for COPD. While there is no known cure, COPD is managed via lifestyle changes and med-
ications, but these therapies have limitations, necessitating exploration of novel therapies.

Studies have shown that endothelial colony-forming cells (ECFC) derived from COPD
patients have increased expression of SA-βgal, p16, p21, and γ-H2AX compared to ECFC
isolated from control group patients [73]. In addition, lung fibroblasts derived from
COPD patients show greater release of IL-6 and IL-8 and a higher percentage of SA-βGal
staining [74]. Increased p21 and p16-positive epithelial cells have also been reported in
COPD lung tissues compared to control groups [75]. More recently, COPD lung fibroblasts
have been found to show senescence and 42 SASP secretome elements, which are implicated
in chronic inflammation of COPD [76].

Tobacco smoke can trigger cellular senescence via oxidative stress-mediated DNA
damage. Conversely, targeting p16-positive cells can inhibit tobacco smoke-induced em-
physema in mouse models [63]. Furthermore, tobacco smoke accelerates telomere erosion
and causes oxidative damage in cells [77]. Increased production of ROS associated with
oxidative stress and changes in mitochondrial complex II, III, and V expression enhance
cellular senescence [20]. Increased senescence in airway epithelial cells of severe COPD
patients along with increased SASP has also been observed [3,78,79], and is relevant given
the role of inflammation in COPD.

Multiple senescence signaling pathways may be involved in COPD, and activated in
patients with a history of tobacco smoking and/or E-cigarette vaping [9,24,63,80,81]. For
example, in older COPD patients, phosphoinositide-3-kinase (PI3K)-Akt and p38 MAPK
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cascades are activated [82,83]. Oxidative stress in COPD inhibits PTEN phosphatase activity,
which in turn activates downstream signaling of PI3K-Akt and of mammalian target
rapamycin complex 1 (mTORC1) protein kinase, which is a key player in cellular senescence.
mTORC1 can also be activated by AMP-activated protein kinase (AMPK), an energy sensor
that responds to an imbalance between AMP:ATP and ADP:ATP ratios [84–88]. Although
AMPK is best known for its roles in cellular metabolism [78], its signaling is also important
in the regulation of mitochondrial biogenesis and mitophagy [79,85–88]. Sirtuins, proteins
involved in metabolic activity, have been implicated in aging and COPD lungs [80]. For
instance, activation of mTOR upregulates microRNA-34a (miR-34a), and in return inhibits
sirtuin-1 (SIRT1) and sirtuin-6 (SIRT6) activities [81,89,90]. Inhibition of SIRT1 dysregulates
oxidative energy metabolism and influences NF-kB activity [91]. Activation of NF-kB
stimulates SASP expressions found in many age-related diseases.

Another signaling pathway that plays a role in cellular senescence and COPD is p38
MAPK [92,93]. Increased p38 MAPK phosphorylation has been found in bronchial epithelial
cells of COPD and asthmatic patients [92–95]. p38 MAPK signaling is known to enhance
senescence burden in the lung [82,93]. SASP secretomes and oxidative stress stimuli such
as tobacco smoke as well as respiratory pathogens can drive p38 MAPK phosphorylation
in COPD lungs [90,93]. Increased p38 MAPK upregulates c-Jun proteins and activator
protein-1 (AP-1), resulting in upregulation of microRNA-570 (miR-570), which inhibits
SIRT1 and enhances NF-kB activity, leading to downstream activation of p53 and enhanced
SASP expression [20,84].

Overall, these data provide evidence of senescence in COPD, and the potential involve-
ment of multiple signaling pathways that could contribute to at least the inflammatory
aspects of this disease. Of note, these signaling pathways are also well known to contribute
to cell proliferation and remodeling and may thus be relevant to these aspects of COPD
as well.

7. Cellular Senescence in IPF

IPF is a life-threatening chronic lung disease with poor prognosis and survival. IPF is
characterized by scarred lungs associated with hyperproduction of ECM proteins [96,97].
In the past decade, there has been increasing interest in understanding the contributions of
senescence to IPF (Figure 2). Several studies have shown that higher senescence markers
are detected in IPF-derived cells and IPF tissues harvested from humans or in animal
models. For example, upregulation of senescence-related pathways in alveolar type 2 (AT2)
cells has been noted in a mouse model of IPF where AT2 Sin3a has been knocked out to
induce senescence [61]. Conversely, targeting p53 signaling in alveoli reduces fibrosis [61].
p21 and p16-positive cells have also been shown to accumulate in IPF lung tissues [61,75].
Furthermore, SASP, such as matrix metalloproteinases MMP2 and MMP9 and collagen
type I alpha 1 (COL1A1), show higher expression in IPF lungs [60]. Increased expression
of p16 along with increased pro-fibrotic SASP has been reported in bleomycin-induced
pulmonary fibrosis mouse models [60]. Sirtuins also play an important role during IPF
as shown in fibroblast–myofibroblast differentiation (FMD), a process often triggered by
TGF-β1. Reduced expression of SIRT-3 has been observed in IPF lung tissue, and inhibiting
SIRT-3 has been associated with increased FMD in a murine IPF model after exposure to
TGF-β1 [98]. Overexpression of SIRT-3 prevents TGF-β1-mediated FMD [98]. Thus, these
limited data highlight the importance of senescence and associated signaling pathways
in IPF.

8. Mitochondria in Senescence and Aging

Mitochondria are essential in eukaryotic cells for maintaining cellular homeostasis
and function. Mitochondria regulate numerous cellular activities such as metabolism,
replication, differentiation, senescence, and apoptosis [99]. Mitochondria produce energy
for cells to perform essential functions by metabolized sources of macromolecules, such
as glucose, amino acids, monosaccharides, and monoacylglycerols [99]. Several enzymes
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participate in the mitochondrial respiratory chain, a multistep process required to convert
macronutrients into high-level energy. Mitochondrial respiration of glycolysis and the
electron transport chain has been discussed in the literature extensively [100,101]. Herein,
we will discuss mitochondrial roles in the context of senescence, aging lungs, and lung-
related diseases.

Mitochondrial dysfunction can contribute to cellular senescence. For instance, gradual
alterations of mitochondrial DNA (mtDNA mutations), variations in mitochondrial fission
and fusion, elevated mitochondrial ROS production, and changes related to mitochondrial
morphology (increased mitochondrial mass and elongation) can all play a role [35,102–104].
Senescent fibroblasts (replicative senescence) show dynamic changes in mitochondrial
mass [26,28], while other studies show a dynamic feedback loop between damaged DNA
and mitochondria [26,28,105,106].

Induction of senescence via disruption of mitochondrial function results in a dis-
tinctive SASP portfolio compared to senescence induced by genotoxic stress [107]. This
mitochondrial dysfunction-associated senescence has been termed MiDAS and has been
further shown to be a low NAD+/NADH ratio that drives it through AMPK-mediated
p53 activation. Specifically, MiDAS secretomes are distinguished by higher levels of IL-10,
CCL27, and TNF-α than core components of SASP such as IL-6 and IL-8 [107].

Overproduction of mitochondrial ROS is also an important player that causes DNA
damage and results in DDR. The circle of ROS-DNA damage involves phosphorylation
of DDR kinase ATM and Akt [108]. ATM activation initiates a series of phosphorylation
events through ATM, NEMO, and IKK, ultimately activating nuclear transcription factor
NF-kB, which enhances inflammation [108,109]. However, it is important to note that NF-kB
activity is also affected by several factors, including metabolic activity and ROS production.
For instance, reduced NAD+ and an alteration in AMP:ATP and ADP:ATP ratios affect
SASP through NF-kB regulation [108]. Furthermore, activation of sirtuins such as SIRT1 and
SIRT6 has been shown to inhibit NF-kB activity, affecting multiple SASP genes [100,110,111].
Activation of inhibitor sirtuins requires cofactor NAD+ [107,112]. Therefore, a reduction in
the sirtuin cofactor NAD+ can increase NF-kB activity, and ultimately SASP responses.

Patients with COPD show changes in proteins that influence oxidative stress. PTEN-
induced protein kinase-1 (PINK1), a mitochondrial stress protein marker that accumulates
on the outer membrane of damaged mitochondria, is found to be elevated in COPD [72,113].
On the other hand, excessive production of mitochondrial catalase, an enzyme that protects
cells from oxidative damage catalyzing hydrogen peroxide to oxygen and water, extends
lifespan in the mouse [114]. Conversely, a reduction in prohibitin genes, such as PHB1 in the
inner mitochondrial membrane that maintain mitochondrial function, has been observed
in COPD and in smokers with no history of COPD [115,116]. Hydrogen peroxide can
promote mitochondrial dysfunction in airway smooth muscle (ASM) cells [117–120]. ASM
cells from patients with COPD show higher ROS associated with (1) increased IL-8 release,
(2) decreased mitochondrial complex enzyme expression, and (3) reduced mitochondrial
membrane potential [18,119].

9. Mitochondrial DNA Mutation in Aging Lungs and Diseases

Unlike the nuclear genome, the mitochondrial genome is a ~16.6 kb circular DNA
molecule encoding subunits of polypeptides [99,105,106,121]. Diseases associated with mi-
tochondria are driven by a variety of genetic mutations encoded by either the mitochondrial
genome or nuclear genome [110,122,123]. Mammalian cells have multiple mitochondria,
each having ~10 copies of DNA [106,121]. Mutation in mtDNA can be heteroplasmic
or homoplasmic [106,121]. mtDNA is maternally inherited during embryonic develop-
ment [111,124,125]. However, mtDNA mutations often occur during aging [82,126,127],
where mutation rates are much higher in mtDNA than in nuclear DNA (nDNA) [111,128].

Emerging evidence illustrates that alterations of mtDNA are associated with electron
transport efficiency. These changes are due to mutations in encoded subunits of polypep-
tides making up mitochondrial respiratory complexes that serve as primary sources of ROS.
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Depletion of mtDNA has been associated with premature aging and multiple chronic dis-
eases [129]. Using a murine model, inducing mutation in mtDNA (by depletion) diminishes
mitochondrial respiratory complexes I, III, and IV and ATP synthase [129]. These changes
are associated with accelerated aging, skin hair loss, and increased inflammation [129].
Furthermore, introducing a deficiency in proofreading of mitochondrial DNA polymerase
(POLG) (involved in mtDNA replication) results in premature aging in mice [71,130]. Stud-
ies show that introducing an error-prone version of mtDNA polymerase causes increased
mtDNA mutation load [131] and a deficiency in mitochondrial respiratory complexes [131],
and accelerates a premature aging phenotype in different mouse organs [71,131]. Other
studies have reported that mutations in mtDNA are associated with aging and several
chronic diseases [132–135]. For instance, much higher mtDNA mutation rates have been
shown in Parkinson’s, Alzheimer’s, and cardiovascular diseases [128,136–138]. Further-
more, alteration in mtDNA reduces resistance to oxidative stress and increases risk of
COPD, asthma, and other lung diseases [104,139,140]. More homoplasmic variants that
lead to constant changes in electronic transport chain proteins have been observed in
asthmatic patients [106]. Additionally, other studies have shown an imbalance between
mtDNA and nDNA in asthma, COPD, and asthma–COPD overlap [141,142].

10. Cellular Senescence as a Therapeutic Target

Demonstrating that suppressing the accumulation of p16Ink4a positive cells extends
lifespan by decreasing growth hormone signals has helped to excite the field regarding the
therapeutic potential of targeting senescent cells [126]. Subsequently, efforts to develop
drugs that eliminate senescent cells (senolytics) without affecting normal cells have become
a major focus in the field [68]. The idea is that senescent cells depend on their anti-apoptotic
pathways to survive [68,132]. Senolytic cocktails of small molecules target the anti-apoptotic
network [31,68,132]. Much work has focused on the use of dasatinib (D; a tyrosine kinase
inhibitor) and quercetin (Q; a plant based flavonoid) [68,132]. D + Q were initially shown
to effectively induce apoptosis in senescent cells of primary adipocyte progenitor cells and
human umbilical vein endothelial cells but not in quiescent, proliferating, or differentiated
cells [68,132]. In a mouse model, D + Q promotes physical function and reduces mortality
in aged mice [143]. Human trials for D + Q in IPF suggest improvement in respiratory and
physical function [62]. Recently, mice infected with SARS-CoV-2-related virus and treated
with a senolytic showed reduced senescent cell burden and mortality while increasing
antiviral antibodies [144].

Another approach to eliminating senescent cells is targeting the higher mitochondrial
potential in senescent cells [145]. Mitochondria-targeted tamoxifen (MitoTam) is an anti-
cancer agent that has been proven to inhibit oxidative phosphorylation and induce cell
death in senescent cells [145]. MitoTam can selectively eliminate senescent cells in aging
adults and premature or acute senescent cells at young ages [145].

Besides senolytics, strategies to develop drugs that target signaling pathways crit-
ical to senescent cells have investigated using senostatic (senomorphic) drugs [69,127].
Unlike senolytics, senostatics (senomorphics) can block paracrine signaling that activates
nearby naïve cells (Figure 3) [69,127]. While senolytics induce apoptosis and eliminate
senescent cells, senostatics (senomorphics) are geared towards inhibiting SASP release and
signaling and/or cell-specific SASP factor expression (Figure 3). Studies show polyphenols,
flavonoids, and phytochemicals are effective senostatic drugs inhibiting signals and sup-
pressing SASP factors [69,127]. Diminishing PI3K-Akt signaling via a prodrug pan-PI3K
inhibitor CL27c in aging lungs decreases inflammation and improves life expectancy in
murine animal models of acute or glucocorticoid-resistant neutrophilic asthma [133,146].
Additionally, activation of AMPK by reducing cellular metabolic activity and increasing
ATP synthesis blocks mTOR activation. Consequently, the signaling cascade that enhances
proinflammatory cytokine secretions and p53 activation is terminated. NF-kB antioxi-
dants and inhibitors are effective senostatics, suppressing SASP factors [134,147]. Using
rapamycin or torin to inhibit the mTORC1 signaling pathway has been shown to rescue
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mitochondrial dysfunction [135,148]. Similarly, the antioxidant drug MitoQ is effective at
targeting TNF-α-induced CXCL8 [72,119].
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Figure 3. Shows different mechanisms between senolytic and senostatic agents targeting senescent
cells. Left schematic figure shows normal cells exposed to DNA damaging agents resulting in
upregulations of senescence signaling pathways. Top schematic figure shows senolytic agents
selectively kill senescent cells in a living organism, inhibiting paracrine signaling with normal cell
proliferation. Bottom schematic figure shows senostatic agents inhibit senescent cells releasing SASP,
reducing paracrine signaling with normal cell proliferation. Figure 3 was created with BioRender.com
accessed on 24 April 2022.

Furthermore, the widely prescribed and FDA-approved anti-diabetic drug metformin
shows promise in the context of senescence [149–152]. Metformin can activate AMPK by
blocking complex I, which drives ATP synthesis in the mitochondrial respiratory chain,
and thus improving the AMP: ATP balance [78]. These emerging data provide substan-
tial promise to the idea of modulating senescent cell burden and/or SASP portfolios or
downstream signaling towards alleviating lung diseases associated with aging.

11. Conclusions and Future Insights

Cellular senescence is a hallmark of aging lungs and aging-associated lung diseases.
While senescent cells have beneficial roles, with aging, an enhanced senescent cell bur-
den and a pro-inflammatory and pro-fibrotic SASP can contribute to pathophysiology of
diseases such as COPD, IPF, and even asthma. Senescence can be activated by multiple
upstream mechanisms, and conversely can involve multiple, interactive downstream path-
ways. SASP effects on naïve cells can be cell and context dependent with multiple effects on
remodeling relevant to lung disease. Thus, there is substantial enthusiasm in exploring the
use of senolytics and senostatics in eliminating senescent cells or modulating SASP effects
towards therapy for lung diseases. Here, what remains to be understood is the differences
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in senescent cell and SASP phenotypes in different diseases, further complicated by likely
cell-type differences in senescence in the lung. Appreciating that aging may differentially
influence different cell types in the lung, the contribution of senescence remains to be
understood in a cell-specific fashion. Thus, understanding the relative roles of resident cells
such as bronchial and alveolar epithelium, smooth muscle and fibroblasts in senescence and
its downstream impact is critical. In this regard, the relative roles of different senescence
pathways may also show cell dependent variability that remains to be understood. Thus,
modulation of senescence as therapy may be a reality for multiple aging-associated lung
diseases; the potential for future research is high.
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