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Metabolic control of cellular function is significant in the context of inflammation-induced metabolic
dysregulation in immune cells. Generation of reactive oxygen species (ROS) such as hydrogen peroxide
and superoxide are one of the critical events that modulate the immune response in neutrophils. When
activated, neutrophil NADPH oxidases consume large quantities of oxygen to rapidly generate ROS, a
process that is referred to as the oxidative burst. These ROS are required for the efficient removal of
phagocytized cellular debris and pathogens. In chronic inflammatory diseases, neutrophils are exposed
to increased levels of oxidants and pro-inflammatory cytokines that can further prime oxidative burst
responses and generate lipid oxidation products such as 4-hydroxynonenal (4-HNE). In this study we
hypothesized that since 4-HNE can target glycolysis then this could modify the oxidative burst. To ad-
dress this the oxidative burst was determined in freshly isolated healthy subject neutrophils using 13-
phorbol myristate acetate (PMA) and the extracellular flux analyzer. Neutrophils pretreated with 4-HNE
exhibited a significant decrease in the oxidative burst response and phagocytosis. Mass spectrometric
analysis of alkyne-HNE treated neutrophils followed by click chemistry detected modification of a
number of cytoskeletal, metabolic, redox and signaling proteins that are critical for the NADPH oxidase
mediated oxidative burst. These modifications were confirmed using a candidate immunoblot approach
for critical proteins of the active NADPH oxidase enzyme complex (Nox2 gp91phox subunit and Rac1 of
the NADPH oxidase) and glyceraldehyde phosphate dehydrogenase, a critical enzyme in the metabolic
regulation of oxidative burst. Taken together, these data suggest that 4-HNE-induces a pleiotropic me-
chanism to inhibit neutrophil function. These mechanisms may contribute to the immune dysregulation
associated with chronic pathological conditions where 4-HNE is generated.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phagocytosis is an innate mechanism for the clearance of pa-
thogens and apoptotic and senescent cells by the immune system
[1,2]. Neutrophils are one of the major cell types actively involved
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in this process to maintain tissue homeostasis and to defend
against invading pathogens [2,3]. Environmental, metabolic, and
genetic factors have all been shown to impact the efficiency and
the dynamics of phagocytosis in humans and in animal models [4].
The inability of neutrophils to execute phagocytosis can lead to the
development of severe and chronic pathological conditions and
dysregulation of the immune response. In particular, this inability
has been observed in pathological conditions such as chronic
granulomatous disease, severe glucose-6-phosphate dehy-
drogenase (G6PD) deficiency and glycogen storage disease type 1b
[5,6]. Inadequate clearance of cellular debris and pathogens
through phagocytosis also leads to enhanced recruitment of pha-
gocytic cells to the inflammatory foci and amplification of the
inflammatory response and oxidative stress [6,7].

Phagocytosis is a complex process that involves pattern
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recognition, cellular signaling, and cytoskeletal reorganization
which is critical for phagosome formation, engulfment and de-
granulation [4,8]. The high energetic requirement of phagocytosis
is satisfied to a great extent by glycolysis [9]. In addition, glucose
metabolism through the pentose phosphate pathway generates
NADPH, a required reducing substrate for the oxidative burst in
activated neutrophils [10,11]. We have previously shown that the
neutrophil oxidative burst can significantly inhibit the oxidative
and glycolytic metabolism of lymphocytes, preventing them from
undergoing clonal expansion and producing cytokines [10]. These
findings highlight the need for active metabolic machinery to
execute neutrophil phagocytosis and the oxidative burst. Clinically,
inefficient phagocytosis can increase the incidence of bacterial and
fungal infections, skin abscess, inflammatory bowel disease, oral
ulcers and organ damage [2,5].

NADPH oxidase plays a critical role in controlling the process of
neutrophil activation and phagocytosis [12]. Generation of large
amounts of reactive oxygen species (ROS; superoxide and hydro-
gen peroxide) by NADPH oxidase through the oxidative (re-
spiratory) burst is a key event in the process of phagocytosis and
recycling of macromolecules [4]. A sustained oxidative burst is
associated with chronic pathological conditions and generates
reactive metabolites of macromolecules in tissues and vascular
compartments [13]. This can result in modification of cellular
proteins, lipids and DNA and can cause cellular and tissue dys-
function. Membrane lipids are one of the major targets of oxida-
tive damage and the generation of secondary reactive molecules
[14]. Non-enzymatic lipid peroxidation induced by oxidants such
as superoxide, hydrogen peroxide, hypochlorous acid and perox-
ynitrite generates reactive lipid species such as 4-hydroxynonenal
(4-HNE) from polyunsaturated fatty acids (PUFA) of membrane
lipid bilayers [15–17]. These reactive species are capable of mod-
ifying cellular enzymes and cytoskeletal proteins and amplifying
the oxidative reactions in cells and tissues [15,18]. Extensive
modification of cellular proteins and DNA can impact the cellular
homeostasis by altering cell signaling, metabolic pathway dy-
namics, metabolite flux, and ATP synthesis which in turn can affect
critical neutrophil functions such as cellular motility, phagocytosis
and microbial killing [19,20].

Experimental models of inflammatory diseases demonstrate
that 4-HNE is produced by activated neutrophils which can serve
as a potent chemoattractant for further leukocyte recruitment to
the inflammatory foci [16,17,21]. 4-HNE is a reactive and diffusible
aldehyde which can form adducts with several nucleophilic amino
acid residues such as arginine, lysine and cysteine [19,22]. It is
then possible that 4-HNE treatment modifies several neutrophil
proteins that are involved in the oxidative burst response, glyco-
lysis and phagocytosis. Acute and chronic inflammatory responses
such as those associated with inflammatory disease are suggested
to induce generation of 4-HNE in tissue and vascular compart-
ments [23]. Rapid recruitment of neutrophils to the site of injury
and increased oxidative stress support this hypothesis. Accumu-
lation of 4-HNE and 4-HNE–modified proteins has been detected
in aging and in various diseases such as cancer, atherosclerosis,
neurodegenerative disorders, metabolic syndrome, diabetes and
autoimmune diseases [20,24]. Recent studies have suggested that
4-HNE can range from 0.05 to 0.15 mM in healthy human blood and
serum [25–27]. Under pathological conditions, the tissue and
plasma membrane concentration of 4-HNE increases significantly
and can reach 4100 mM in locations close to the core of the lipid
peroxidation sites [26,28].

In chronic inflammatory conditions, the phagocytic cells exist
in a highly oxidative and reactive environment. Interestingly,
several lines of evidence suggest that exposure of neutrophils to
oxidative stress can modify cellular function [29]. Previous studies
have shown that 4-HNE can modify neutrophil and macrophage
oxidative burst responses in human and mouse samples [29,30].
Compromised oxidative burst responses to the bacterial peptide
N-formylmethionyl-leucyl-phenylalanine (fMLP) and PMA by
4-HNE treated macrophages have also been shown in vitro studies,
suggesting oxidative damage to these cell types [31]. However, the
mechanisms of these responses are not well established. Although
neutrophils are designed to survive the reactivity of the in-
flammatory foci, prolonged inflammation combined with in-
adequate antioxidant defenses can make these cells susceptible to
oxidative modifications by reactive lipids. It is proposed that oxi-
dative modification of the cellular proteins alter the critical pro-
cesses involved in oxidative burst and phagocytosis. Exposure of
4-HNE to isolated cells can modify key glycolytic enzymes such as
glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phos-
phate dehydrogenase [32]. The critical subunits of NADPH oxidase
enzyme and Rac1 are also found to be modified by reactive lipids
and electrophiles in inflammatory conditions similar to that ob-
served in pathological situations [33]. These processes signify a
possible regulatory role for 4-HNE and related bioactive reactive
lipids in controlling NADPH oxidase activity during conditions of
increased oxidative stress. Due to the high energy and metabolic
demand of phagocytosis, it is proposed that the metabolic path-
ways of glucose utilization can also serve as check points of oxi-
dative burst and phagocytosis. Since several of the metabolic en-
zymes can be regulated by redox mechanisms, understanding the
role of secondary metabolites of oxidative stress on neutrophil
function has the potential to uncover viable targets of intervention
in chronic inflammatory diseases.

In this study we investigated the impact of 4-HNE on phago-
cytosis in human neutrophils and how oxidative burst influences
phagocytosis. In addition, we identified 4-HNE protein targets
using mass spectrometry techniques. The findings from these
studies present potential mechanisms of 4-HNE induced metabolic
alterations in neutrophils that may lead to impairment of phago-
cytosis in pathological conditions.
2. Methods

2.1. Neutrophil isolation from human blood

All study protocols for collection and handling of human
samples were reviewed and approved by the Institutional Review
Board, University of Alabama at Birmingham. Blood samples (2
tubes, 8.5 ml/tube) were collected from 12 different healthy vo-
lunteers (25–55 years of age) in vacutainers (BD Biosciences)
containing 1.5 ml ACD solution (trisodium citrate, 22.0 g/l; citric
acid, 8.0 g/l; and dextrose 24.5 g/l) and processed within 15 min of
collection. Neutrophils were isolated from freshly drawn blood
from healthy donors as described [34,35]. Briefly, the blood tubes
were centrifuged at 500g for 10 min at room temperature to col-
lect the buffy coat and separate the platelet-rich plasma. The buffy
coat containing the peripheral blood mononuclear cells (PBMC)
and the polymorphonuclear granulocytes (PMN) was diluted 1:4
using RPMI cell culture media without serum and antibiotics and
carefully applied onto the Histopaque density gradient (Histopa-
que 1.077/1.119, 3 ml each) in a 15 ml conical Falcon centrifuge
tube and centrifuged for 20 min at 700g at room temperature.
Following centrifugation, the PBMC and PMN layers were clearly
visible and separated. The PBMC layer formed on top of the His-
topaque 1.077 layer and the PMN layer formed at the interface
between Histopaque 1.077 and 1.119 were collected separately,
diluted 1:4 using RPMI media and pelleted by centrifuging at
700� g for 10 min at room temperature. CD15þ neutrophils were
purified from the PMN fraction using the MACS protocol (Milte-
neyi Biotec). The PMN pellet resuspended in 80 ml of RPMI
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containing 0.05% bovine serum albumin (BSA) was incubated with
magnetic bead labeled anti-CD15 (for neutrophils) antibodies for
15 min at 4 °C. The antibody-labeled cells were collected by posi-
tive selection by passing through the columns placed in the
magnetic field. The cells adhered to the magnetic field were
eluted, resuspended in the assay medium (XF-DMEM without
serum and antibiotics) and counted.

2.2. Determination of oxidative burst in human neutrophils

To determine the oxidative burst in neutrophils, were seeded
on Cell-Tak coated XF assay plates (75,000 cells/well) and attached
by low speed centrifugation as previously described [34]. Briefly,
the seeded plates were centrifuged at 201g on a swinging bucket
rotor for 1 s without brake. The centrifugation was repeated at
296g for 1 s after turning the plates 180°. The oxidative burst was
assessed using the XF96 analyzer from Seahorse Biosciences which
measures real-time O2 consumption in cells non-invasively by
measuring the oxygen consumption rate following PMA (100 ng/
ml) activation. The attached cells were pretreated with 4-HNE for
2 h prior to PMA activation. The area under the non-mitochondrial
oxygen consumption rate curve was calculated after normalizing
to the number of cells per well. Glycolytic changes following PMA
treatment were also calculated by analyzing the area under the
curve of the extracellular acidification rate (ECAR).

2.3. Assessment of phagocytosis by human neutrophils

Freshly isolated neutrophils were resuspended in XF-DMEM
medium (pH 7.4, 37 °C) and seeded at 75,000 cells per well (in
75 ml) on Cell-Tak-coated 96-well microtiter assay plates (Corning).
The seeded neutrophils were attached to the plates by cen-
trifugation as described above. The neutrophils were treated with
4-hydroxynoneneal (4-HNE) at 30 mM concentration at 37 °C for
1 h. The ability of 4-HNE-treated neutrophils to phagocytose bac-
teria was performed by modified phagocytosis assay using FITC-
labeled opsonized Staphylococcus aureus (S. aureus, S285, Life
technologies, NY, USA). The labeled bacteria (2�108 bacteria/ml)
were added to the cells seeded in the assay plate and incubated at
37 °C for 15 min [36,37]. Phagocytosis was stopped by washing the
cells with ice-cold PBS. Fluorescence of the internalized bacteria
was determined by quenching the extracellular fluorescence using
0.04% trypan blue (Sigma-Aldrich, USA) and then normalized to
the total fluorescence intensity per well. Increased intracellular
fluorescence corresponds to increased phagocytosis.

2.4. Determination of 4-HNE-protein adducts in human neutrophils

Ethanol stocks of 4-HNE or alkyne-HNE (aHNE) were diluted in
XF media and added to cells within 5 min of making the lipid di-
lution in media. Neutrophils (2�106 cells per sample) were trea-
ted for 1 h at room temperature by vehicle (ethanol), 30 mM 4-HNE
or 50 mM aHNE in a total volume of 600 ml of XF media. The con-
centrations of 4-HNE and aHNE for the determination of HNE-
protein adducts were chosen based so that the level of inhibition
of the PMA-induced oxidative burst was approximately the same.
After the reaction, cells were pelleted and washed once with
200 ml PBS. Pelleted cells were then lysed on ice in 10 mM Tris (pH
7.4) with 1% Triton X-100, containing protease inhibitor and 5 mM
PMSF. Lysates were cleared by centrifugation at 16,860g for 10 min
and supernatants were collected. Protein concentrations were
measured by Bradford assay (Bio-Rad) per manufacturer's proto-
col. Lysates were then either processed for SDS-PAGE western
analysis or click chemistry.
2.5. Determination of cellular targets of 4-HNE in human neutrophils

Pre-cleared neutrophil cell lysates were treated with 10 mM
sodium borohydride and incubated for 30 min. The Cu(I)-catalyzed
click reaction [38] was initiated by adding 2 mM ascorbate (pro-
tected from light), 1 mM cupric sulfate, and 0.5 mM Azide-PEG3-
biotin to each sample and incubated on a shaker for 1.5 h at room
temperature. Samples were either stored at �20 °C or im-
mediately processed. Protein was precipitated using 2 times the
volume of ice cold methanol for 30 min on ice and then cen-
trifuged at 20,817g for 10 min. The pellet was washed once with
100 ml of ice cold methanol and centrifuged at 20,000g for 5 min.
Methanol was removed and the pellets were re-suspended in 50 ml
RIPA (50 mM Tris pH 7.4, 0.5% w/v sodium deoxycholate, 0.1% w/v
SDS, 150 mM sodium chloride, 1 mM EDTA, and 1% v/v NP-40)
buffer containing PIC and 5 mM PMSF. Protein concentrations
were estimated assuming no protein loss occurred during the click
and precipitation procedure. Clicked lysates were either loaded
onto SDS-PAGE gel for processing or biotin affinity precipitation.

2.6. Biotin affinity precipitation using neutravidin resin

Biotin affinity precipitation was performed using Neutravidin
Plus UltraLink Resin (ThermoScientific, USA). Micro Bio-Spin col-
umns (Bio-Rad, #732-6204) were loaded with 20 ml of 50% neu-
travidin slurry using a large orifice pipet tip. The resin was equi-
librated to RIPA buffer by three 100 ml washes. Thirty micrograms
of “clicked” lysates were loaded onto the equilibrated resin. The
volume was brought up to 100 ml with RIPA lysis buffer and lysates
were incubated on resin for 1 h at room temperature on a shaker.
After incubation, the flow through was collected into a fresh tube
for further analysis. The resin was washed six times with 100 ml
volumes of RIPA lysis buffer and then resuspended in 300 ml of
RIPA buffer in a fresh 0.6 ml tube using a 1 ml pipet tip. The resin
was allowed to settle for 10 min and the supernatant was re-
moved, leaving a meniscus of RIPA solution over the resin. The
bound proteins were eluted using 15 ml of 2X Laemmeli sample
buffer containing β-mercaptoethanol, by vortexing and heating at
80 °C for 10 min. Within 5 min of heating, the supernatant was
collected into a clean 0.6 ml tube for analysis by SDS-PAGE or
stored at �20 °C for later analysis.

2.7. Determination of protein targets of aHNE in human neutrophils
by tandem mass spectrometry

Affinity enriched fractions were separated by gel electrophor-
esis and stained with Coommassie Blue. The stained bands were
excised and the staining was removed by an overnight wash in
50% 100 mM ammonium bicarbonate/50% acetonitrile. Disulfide
bonds were reduced using dithiothreitol (25 mM) at 50 °C for
30 min followed by alkylation of free thiols groups with iodoace-
tamide (55 mM) for 30 min in the dark. After removal of excess
alkylating agent, the gel pieces were evaporated to dryness prior
to reswelling in 100 mM ammonium bicarbonate buffer and
overnight digestion using mass spectrometry grade trypsin
(12.5 ng/ml). Tryptic peptides were extracted using solution of 1%
formic acid in water and acetonitrile (50/50) and then evaporated
to dryness in a Speedvac. Samples were resuspended in 30 ml of
ddH2O with 0.1% formic acid for mass spectrometry evaluation.

An aliquot (5 ml) of each digest was loaded onto a Nano cHiPLC
200 mm�0.5 mm ChromXP C18-CL 3 mm 120 Å reverse-phase trap
cartridge (Eksigent, Dublin, CA) at 2 ml/min using an Eksigent au-
tosampler. After washing the cartridge for 4 min with 0.1% formic
acid in double-distilled water (ddH20), the bound peptides were
flushed onto a Nano cHiPLC column (200 mm ID�15 cm ChromXP
C18-CL 3 mm 120 Å, Eksigent, Dublin, CA) with a 45 min linear
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(5–50%) acetonitrile gradient in 0.1% formic acid at 1000 nl/min
using an Eksigent Nano1DþLC (Dublin, CA). The column was
washed with 90% acetonitrile-0.1% formic acid for 10 min and then
re-equilibrated with 5% acetonitrile-0.1% formic acid for 10 min.
The SCIEX 5600 Triple-Tof mass spectrometer (Sciex, Toronto, Ca-
nada) was used to analyze the protein digest. The IonSpray voltage
was 2300 V and the declustering potential was 80 V. Ion spray
and curtain gases were set at 10 psi and 25 psi, respectively. The
interface heater temperature was 120 °C.

Eluted peptides were subjected to a time-of-flight survey scan
fromm/z 400–1250 to determine the top twenty most intense ions
for MS/MS analysis. Product ion time-of-flight scans at 50 ms were
carried out to obtain the tandem mass spectra of the selected
parent ions over the range from m/z 400–1500. Spectra are cen-
troided and de-isotoped by Analyst software, version 1.6 TF (Sciex).
A β-galactosidase trypsin digest was used to establish and confirm
the mass accuracy of the mass spectrometer.

2.8. Protein pilot 4.5 search queries

The tandem mass spectrometry data were processed to provide
protein identifications using an in-house Protein Pilot 4.5 search
engine (Sciex) using the Homo sapiens Sprot protein database and
using a trypsin digestion parameter. Proteins of significance were
accepted on the criteria of having at least two peptides detected
with a confidence score of 95% or greater.
3. Results

3.1. 4-HNE inhibits neutrophil phagocytosis

Freshly isolated human neutrophils from healthy donors were
used to determine the impact of 4-HNE on phagocytosis. As shown
in Fig. 1A, pretreatment with 4-HNE (0–30 mM) for 2 h inhibited
the ability of neutrophils to phagocytize fluorescently labeled heat
inactivated bacteria (S. aureus) in a concentration dependent
manner.

Previous studies have shown that the oxidative burst plays a
critical role in the bactericidal process of phagocytosis [14,39]. One
of the mechanisms that control the oxidative burst is to regulate
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Fig. 1. 4-HNE inhibits phagocytosis in human neutrophils. (A) Pretreatment of neutrophi
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the supply of NADPH, the substrate for NADPH oxidase activity.
Inhibiting hexokinase with 2-deoxyglucose treatment prevented
the ability of neutrophils to undergo phagocytosis in control cells
to a similar extent as 30 mM 4-HNE (Fig. 1B). These data support a
critical role for glucose in regulating neutrophil phagocytosis.
4-HNE did not have any significant additive effect on 2-DG
mediated inhibition of phagocytosis consistent with them acting
at similar targets (Fig. 1B).

3.2. 4-HNE inhibits oxidative burst and glycolysis in neutrophils

The ability of neutrophils to undergo oxidative burst and the
amount of ROS generated can be determined using the extra-
cellular flux analyzer by measuring PMA-stimulated oxygen con-
sumption rate under conditions where mitochondrial respiration
is inhibited using antimycin A [34,40]. To assess the effects of
4-HNE on neutrophil oxidative burst and glycolysis the effects of
4-HNE were compared with alkyne HNE (aHNE), which will be
used in the study as a probe to detect HNE-protein adducts. As
shown in Fig. 2A, the addition of PMA causes a rapid increase in
OCR that declines slowly over time in control cells. Pretreatment
(2 h) of neutrophils with 4-HNE or aHNE concentration depen-
dently inhibited the PMA-induced oxidative burst response with
an IC50 of 17.772.9 mM for 4-HNE and 31.673.3 mM for aHNE
(Fig. 2A and B). aHNE is approximately 1.8 times less potent than
4-HNE in inhibiting the oxidative burst.

We next assessed whether a 2 h pre-treatment of 4-HNE or
aHNE inhibits PMA-stimulated glycolysis in neutrophils under
identical conditions described above. As shown in Fig. 2C and D,
4-HNE (0–30 mM) or aHNE (0–50 mM) pretreatment caused a
concentration-dependent inhibition of glycolysis with an IC50 of
22.471.4 mM for 4-HNE and 29.271.84 (Fig. 2D) which are not
significantly different than the concentrations which inhibit the
oxidative burst.

The inhibitory effects of 4-HNE on oxidative burst and glyco-
lysis could potentially be dependent on the extent of neutrophil
activation. In the next set of experiments, we determined the
impact of 4-HNE on the concentration-dependent effects of PMA
on both the oxidative burst and glycolysis. Neutrophils were pre-
treated with 4-HNE (30 mM) for 2 h before measuring the oxidative
burst and glycolysis with different doses of PMA (0–100 ng/ml). As
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Fig. 2. 4-HNE inhibits oxidative burst and glycolysis in human neutrophils. Representative profiles of PMA-stimulated (A) oxygen consumption rate and (C) extracellular
acidification rate of neutrophils pre-treated with 4-HNE at the indicated concentration for 2 h using the extracellular flux analyzer are shown. The area under the curve of
OCR (B) and ECAR (D) following PMA stimulation in 4-HNE or alkyne HNE (aHNE) treated neutrophils. The IC50 of 4-HNE and aHNE for OCR and ECAR was calculated from
3 independent samples (shown in Figs. 2B & 2D). Mean7sem from n¼5–6 replicates with an individual representative donor. #, pr0.05 compared to the respective
untreated control.
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shown in Fig. 3A and B, 4-HNE treatment inhibited both the
maximal OCR and the rate at which the maximal OCR was
achieved. Pretreatment of 4-HNE also inhibited maximal glycolysis
(Fig. 3C and D).

3.3. aHNE formation of protein adducts in neutrophils

4-HNE reacts with cellular protein targets to form covalent
adduct which can result in alterations in protein function [15–
17,22,38]. 4-HNE-modified proteins were identified in the next
series of experiments using alkyne HNE (aHNE) and the azido
Click-Chemistry technique [22]. As shown in Fig. 2, aHNE is less
potent compared to the unmodified 4-HNE in inhibiting the oxi-
dative burst and for this reason the concentration of aHNE was
increased to 50 mM using the same conditions for the treatment
with 4-HNE (Fig. 2). The total proteins after reaction were col-
lected and separated on SDS-PAGE gels. No significant differences
in the total protein pattern on the blot were evident using Ponceau
S staining for total protein (Fig. 4A). Affinity detection of the biotin
tagged proteins showed no positive signal in the control or 4-HNE
sample but multiple bands in the samples treated with aHNE
indicating that the tagging protocol was effective (Fig. 4B). The
functional data suggested that 4-HNE was capable of targeting
both proteins in glycolysis and/or the NADPH oxidase or associated
signaling pathways. To test this, Biotin tagged proteins were affi-
nity purified and blotted against NOX2 (gp91phox), GAPDH or
Rac1. As shown in Fig. 4C, the total cell lysate had detectable levels
of NOX2, GAPDH and Rac 1 which were not altered by aHNE
treatment. After biotin pull down the levels of all three proteins
were substantially enhanced compared to the total cell lysate in
the aHNE treated sample and compared to the control (Fig. 4D–F).
Western blots of NOX2 (Fig. 4G) and GAPDH (Fig. 4H) show that
there is no difference in the expression levels of NOX2 or GAPDH
in neutrophils between each control donor lysate samples.

It is clear from Fig. 4B that a significant number of proteins
have been modified by aHNE under these conditions. To determine
members of the aHNE proteome in neutrophils the affinity en-
riched samples shown in Fig. 4C were used and subjected to mass
spectrometry. The analysis of the control neutrophil cell lysate
subjected to the affinity enrichment protocol revealed 45 proteins
which were assigned as false positives. After subtraction of the
false positives a total of 93 proteins, represented by at least two
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peptide fragments and exhibiting more than 95% homology with
corresponding regions of the native protein in the aHNE treated
sample were identified and grouped according to their major
cellular functions. Using this approach, proteins involved in the
cytoskeleton, cellular metabolism, redox homeostasis, in-
flammatory response, NADPH oxidase activity and small GTPases
were identified as potential targets of aHNE in neutrophils (Ta-
bles 1–6).
4. Discussion

Neutrophils mediate key components of the cellular immune
response which involves cellular adhesion, migration to the site
injury, phagocytosis of opsonized molecules and degradation and
turnover of phagocytic metabolites [14,29,37,41]. Cytokines and
chemokines enable these processes by generating a concentration
gradient of the chemotaxins which are recognized by the cell re-
ceptors of the phagocytic cells [4,13]. In response to the chemo-
taxins, neutrophils and macrophages undergo activation, which
changes the metabolic responses of the cell and lead to the gen-
eration of reactive oxygen and nitrogen species [13,14]. In order to
meet the rapidly changing cellular energy and metabolite de-
mands of activation, phagocytic cells increase the metabolic rate
through glycolysis and/or switch the metabolic phenotype from
oxidative to glycolytic. The interdependent operation of several
cellular processes, the irreversible nature of phagocytosis and the
involvement of large quantities of reactive metabolites necessitate
an extremely high level of cellular regulation in the phenotypic
adaptation [1,4,10,29,41,42].

Oxidative burst plays critical roles in the cellular function of
neutrophils. Clinical conditions such as chronic granulomatous
disease have chronic inflammation and inefficient clearance of
cellular debris due to defective NADPH oxidase activity [5,43].
When neutrophils undergo an oxidative burst, large quantities of
ROS are generated within a short duration and at a high con-
centration close to the cellular compartment [1,2,14,42]. In addi-
tion, activated neutrophils undergo rapid apoptosis [8,44] and
NETosis [45,46], releasing DNA, myeloperoxidase and proteases
creating a highly reactive and oxidative environment capable of
inducing lipid peroxidation and generating reactive lipid species
such as 4-HNE. The uncontrolled generation of reactive metabo-
lites in chronic inflammatory diseases has been shown to induce
cellular and organelle dysfunction in a variety of cell types [47,48].
In vivo and in vitro experimental models support this hypothesis
and suggest that increased oxidative stress has profound effects on
leukocytes. However, the impact of reactive lipid peroxidation
products generated secondary to uncontrolled oxidative burst, on
neutrophil function and the mechanisms involved, are not well
characterized. In this study we demonstrate that the non-enzy-
matic lipid peroxidation product, 4-HNE can inhibit phagocytosis,
oxidative burst and cellular metabolism, the key functions that
regulate the immune response of human neutrophils and mono-
cytes. Mass spectrometry analyses demonstrate that 4-HNE forms
adducts with proteins involved in key pathways of neutrophil
oxidative burst, phagocytosis, redox homeostasis and glucose
metabolism (Tables 1–6). This study also confirms the formation of
neutrophil protein-4-HNE adducts using candidate proteins found
to be modified by mass spectrometry [49–51]. The PMA stimulated
oxidative burst is a well characterized experimental system to
determine neutrophil immune response, which directly stimulates
the protein kinase C pathway to trigger the assembly of active
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Fig. 4. 4-HNE modifies NADPH Oxidase (Nox-2), glyceraldehyde-3-phosphate dehydrogenase and Rac1 in human neutrophils. Total cell lysates of vehicle, 4-HNE or alkyne-
HNE treated neutrophils stained with (A) Ponceau S or (B) streptavidin-HRP biotin staining. Immunoprecipitation of the aHNE modified proteins were probed for NOX2
(gp91phox subunit), GAPDH and Rac1 (Figure C, representative blots) with densitometric quantitation of the bands (D, E and F) from three independent donors. Nox2 (G) and
GAPDH (H) total protein levels in primary human neutrophils prior to 4-HNE/aHNE treatment in samples used for the detection of adducts. Mean7sem from n¼3. #,
pr0.05 compared to the control.
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Table 1
Cytoskeletal/cytoskeleton interacting proteins are targets of HNE modification in
human neutrophils. The list of cytoskeletal/cytoskeleton interacting proteins
modified by aHNE in neutrophils as determined by mass spectrometry are re-
ported. The protein accession ID and the number of peptides identified with 95%
confidence are shown.

No Protein name Accession I.D. Peptides % Coverage

1 Beta-actin-like protein 2 P61160 3 20.81
2 Plastin-2 O15143 2 23.12
3 Myosin-9 O15144 3 20.67
4 Alpha-actinin-1 O15145 2 17.42
5 Tubulin alpha-1B chain P59998 4 26.19
6 Tubulin alpha-1C chain P61158 4 22.97
7 Moesin P12814 11 26.23
8 Actin-related protein 2/3 com-

plex subunit 4
Q562R1 36 55.32

9 Actin-related protein 3 Q14019 2 33.80
10 Actin-related protein 2/3 com-

plex subunit 1B
P52907 2 18.88

11 Actin-related protein 2/3 com-
plex subunit 3

P47756 2 24.91

12 Vinculin P21333 2 7.18
13 Myosin light chain 6B P40121 4 31.32
14 Myosin light polypeptide 6 P26038 10 41.42
15 Myosin-If P14649 2 11.54
16 F-actin-capping protein subunit

alpha-1
P60660 2 26.49

17 F-actin-capping protein subunit
beta

P35579 12 20.10

18 Actin-related protein 2 O00160 2 8.56
19 Actin-related protein 2/3 com-

plex subunit 2
P13796 42 78.47

20 Macrophage-capping protein Q9Y490 3 8.70
21 Talin-1 P68363 4 16.85
22 Coactosin-like protein Q9BQE3 4 14.03
23 Filamin-A P50552 2 23.68
24 Vasodilator-stimulated

phosphoprotein
P18206 6 23.72

Table 2
Cellular metabolism-related proteins are targets of aHNE in human neutrophils.
Metabolic proteins that are modified by aHNE were identified by mass spectro-
metry. Table demonstrates the list of proteins with protein accession ID, number of
peptides identified with 95% confidence, and the percent coverage of the peptides
identified to the sequence of the protein with 95% confidence are shown.

No Protein name Accession Peptides % Coverage

1 Alpha-enolase P52209 18 48.24
2 Pyruvate kinase isozymes M1/M2 P06733 33 72.12
3 6-phosphogluconate dehydrogenase,

decarboxylating
P04075 7 42.58

4 L-lactate dehydrogenase A chain P11413 11 54.17
5 Transketolase P06744 12 39.07
6 Phosphoglycerate kinase 1 P06737 11 26.09
7 Glucose-6-phosphate isomerase P52790 9 25.35
8 Glucose-6-phosphate

1-dehydrogenase
P00338 16 44.58

9 Glycogen phosphorylase, liver form P07195 6 23.05
10 Transaldolase P40925 2 12.87
11 Hexokinase-3 Q96G03 2 18.95
12 Triosephosphate isomerase P00558 14 36.21
13 Fructose-bisphosphate aldolase A P00491 4 28.72
14 L-lactate dehydrogenase B chain P14618 30 68.36
15 UTP–glucose-1-phosphate

uridylyltransferase
P37837 10 43.62

16 Purine nucleoside phosphorylase P29401 15 45.75
17 Malate dehydrogenase, cytoplasmic P60174 8 41.37
18 Phosphoglucomutase-2 Q16851 5 29.72

Table 3
aHNE modifies redox homeostasis related proteins in human neutrophils. The re-
dox homeostasis-related proteins modified by aHNE in neutrophils as determined
by mass spectrometry are reported. The protein accession ID, number of peptides
identified with 95% confidence, and the percent coverage of the peptides identified
to the sequence of the protein with 95% confidence are shown.

No Protein name Accession Peptides % Coverage

1 ATP synthase subunit alpha,
mitochondrial

P25705 2 8.68

2 Catalase P04040 5 22.39
3 Glutathione reductase, mitochondrial P00390 2 8.81
4 Glutathione S-transferase omega-1 P78417 2 11.2
5 Glutathione S-transferase P P09211 4 36.67
6 Heat shock protein HSP 90-alpha P07900 2 14.89
7 Myeloperoxidase P05164 4 13.29
8 Protein disulfide-isomerase P07237 7 34.06
9 Protein DJ-1 Q99497 2 16.4
10 Ras-related C3 botulinum toxin sub-

strate 2
P15153 10 43.23

11 Synaptic vesicle membrane protein
VAT-1 homolog

Q99536 3 22.9

12 Thioredoxin-dependent peroxide re-
ductase, mitochondrial

P30048 2 10.16

Table 4
Proteins associated with inflammatory response are modified by aHNE in human
neutrophils. aHNE modified proteins related to inflammatory pathways in neu-
trophils as determined by mass spectrometry are reported. The protein accession
ID, number of peptides identified with 95% confidence, and the percent coverage of
the peptides identified to the sequence of the protein with 95% confidence are
shown.

No Protein name Accession Peptides % Coverage

1 Annexin A3 P12429 18 70.28
2 Annexin A4 P09525 4 24.45
3 Annexin A5 P08758 3 20.94
4 Annexin A6 P08133 12 36.11
5 Arachidonate 5-lipoxygenase P09917 3 5.19
6 Arachidonate 5-lipoxygenase-acti-

vating protein
P20292 2 25.47

7 Coronin-1A P31146 10 52.93
8 Guanine nucleotide-binding protein

G(i) subunit alpha-2
P04899 7 47.04

9 Guanine nucleotide-binding protein
G(I)/G(S)/G(T) subunit beta-1

P62873 5 31.18

10 Guanine nucleotide-binding protein
G(I)/G(S)/G(T) subunit beta-2

P62879 4 22.65

11 Heat shock 70 kDa protein 1 A/1B P08107 12 39.00
12 Heat shock cognate 71 kDa protein P11142 6 20.59
13 Integrin alpha-M P11215 4 7.29
14 Leukotriene-B(4) omega-hydroxylase

1
P78329 3 10.00

15 Leukotriene-B(4) omega-hydroxylase
2

Q08477 4 14.42

16 Peptidyl-prolyl cis-trans isomerase A P62937 6 55.76
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NADPH oxidase complex on the plasma membrane [1,4,52]. Sev-
eral methods have been employed to determine the oxidative
burst in neutrophils, which either lack sensitivity or are have
limited throughput [52–54]. In addition these methods determine
the products of oxidative burst which are reactive and have
competing targets within the cells and in the assay medium
[55,56]. In this method for the determination of neutrophil oxi-
dative burst using the extracellular flux analyzer, the amount of
oxygen consumed by activated neutrophils is accurately de-
termined [35,57]. Neutrophil mitochondria do not consume sig-
nificant amount of oxygen and hence almost all of the oxygen
consumed following PMA activation is dedicated for the oxidative
burst, which can be quantified by calculating the area under the
oxygen consumption rate time course [10,58]. In addition, the
assay is performed in the presence of antimycin A, an inhibitor of
mitochondrial complex III to exclude any oxygen consumption
from the mitochondria [57].

Neutrophil activation causes rapid assembly of the NADPH
oxidase subunits and triggers oxygen consumption, which is
consistent with the rapid rise in OCR curve following the addition



Table 5
NADPH Oxidase-related proteins are modified by aHNE in human neutrophils.
NADPH Oxidase related proteins modified by aHNE in neutrophils as determined by
mass spectrometry are reported. The protein accession ID, number of peptides
identified with 95% confidence, and the percent coverage of the peptides identified
to the sequence of the protein with 95% confidence are shown.

No Protein name Accession Peptides % Coverage

1 Adenylosuccinate synthetase isozyme
2

P30520 2 20.18

2 Cytochrome b-245 heavy chain P04839 2 18.60
3 Nicotinamide

phosphoribosyltransferase
P43490 2 29.53

4 Nicotinate phosphoribosyltransferase Q6XQN6 3 16.73
5 Rab GDP dissociation inhibitor beta P50395 9 41.80
6 Rho GDP-dissociation inhibitor 2 P52566 9 55.22
7 Ras-related C3 botulinum toxin sub-

strate 2
P15153 10 43.23

Table 6
Small GTPase mediated signal transduction proteins modified by aHNE in human
neutrophils. Small GTPase mediated signal transduction proteins modified by aHNE
in neutrophils as determined by mass spectrometry are reported. The protein ac-
cession ID, number of peptides identified with 95% confidence, and the percent
coverage of the peptides identified to the sequence of the protein with 95% con-
fidence are shown.

No Protein name Accession Peptides % Coverage

1 14–3-3 protein beta/alpha P31946 2 26.42
2 ADP-ribosylation factor 1 P84077 4 33.70
3 ADP-ribosylation factor 3 P61204 4 33.70
4 ADP-ribosylation factor 4 P18085 3 31.67
5 ADP-ribosylation factor 5 P84085 3 31.11
6 ADP-ribosylation factor-like protein

8B
Q9NVJ2 2 16.13

7 Ras GTPase-activating-like protein
IQGAP1

P46940 3 6.46

8 Ras-related protein Rab-10 P61026 3 26.50
9 Ras-related protein Rab-1A P62820 2 24.88
10 Ras-related protein Rab-1B Q9H0U4 2 18.91
11 Ras-related protein Rab-27A P51159 2 23.98
12 Ras-related protein Rab-3D O95716 2 24.20
13 Ras-related protein Rab-7a P51149 3 38.65
14 Ras-related protein Rap-1A P62834 3 26.63
15 Ras-related protein Rap-1b P61224 3 26.63
16 Ras-related protein Rap-1b-like

protein
A6NIZ1 2 14.67
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of PMA (Figs. 2A & 3A). After reaching a peak, oxygen consumption
declines over 30–60 min initially and then slowly to reach the
basal values. The profile of the curve demonstrates the dynamics
of oxidative burst that includes rapid assembly of the enzyme
complex, disassembly and metabolic switching to provide sub-
strates essential for NADPH oxidase activity. 4-HNE is a highly
reactive aldehyde that generated at sites of inflammation at high
concentrations (�100 mM) during pathological conditions and is
known to have multiple targets inside the cell [10,26–28]. Previous
studies have shown that 4-HNE has the potential to act as che-
motactic agent to attract neutrophils to the site of inflammation
[59]. It is likely that neutrophils at sites of inflammation or tissue
injury get exposed to very high concentrations of reactive alde-
hydes and other intermediates of oxidative stress that exceed the
concentrations used in this study. 4-HNE treatment inhibits the
initial rate, peak and total amount of respiratory burst suggesting
inhibition of multiple pathways associated with oxidative burst
(Figs. 2A & 2B). Inhibition of ECAR (Figs. 2C & 2D) confirms the
inhibition of the glucose metabolism with 4-HNE treatment. This
response of neutrophil is different from other immune cells which
tend to activate the glycolytic pathway when they are encountered
with pro-inflammatory stimuli and oxidative stress.

In this study we utilized alkyne HNE to identify protein
adducts. Although the click chemistry approach is highly specific
to determine aHNE-protein adducts, the alkyne tag decreases the
reactivity of 4-HNE by approximately 40%. The lower reactivity
necessitated increasing the aHNE concentration appropriately to
match the reactivity of 4-HNE in the determination of protein
adducts.

Approximately 100 protein targets were identified (Tables 1–6)
including members associated with both metabolic and signaling
pathways critical for neutrophil function. Phagocytosis is a com-
plex but highly regulated process that involves metabolic, signal-
ing and structural components of the cell [4,8,60]. For example,
modification of the cytoskeletal proteins such as myosin, tubulin
and actin-related peptides by 4-HNE could affect the ability of
neutrophils to phagocytize S. aureus (Fig. 1). This is consistent with
loss of function of cytoskeletal proteins by 4-HNE modification in
oligodendrocytes and malaria infected erythrocytes [51,61]. In-
hibition of the cytoskeletal proteins could affect cellular motility
and phagosome formation. Interestingly, actin, one of most
abundant cellular target of 4-HNE was found to be heavily mod-
ified in neutrophils but not included among the modified proteins
by mass spectrometry as actin was also present in the control
protein sample. Using a candidate protein approach direct evi-
dence for modification of Rac1, GAPDH and Nox2 was found
(Fig. 4). Interestingly, modification of Rac1 by other lipid electro-
philes has previously been reported [62].

In summary, 4-HNE forms protein adducts with a broad range
of proteins essential for the normal functioning of the oxidative
burst and phagocytosis and its overall effects in inhibiting neu-
trophil function can be ascribed to the pleiotropic effects on both
cell structure, metabolism and signaling. Since this reactive lipid
intermediate is produced at sites of inflammation the partial
suppression of this essential mechanism of innate immunity may
promote a chronic inflammatory response and the failure to kill
pathogens.
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