

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(9H-Fluoren-9-vlidene)(2-methoxyphenyl)methyl]-1,1,1-trimethylsilanamine

Zhong-Yuan Li, Peng Wang and Xia Chen*

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China Correspondence e-mail: chenxia@sxu.edu.cn

Received 7 December 2013; accepted 10 December 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.075; wR factor = 0.173; data-to-parameter ratio = 18.7.

The title molecule, C₂₄H₂₅NOSi, is a hydrolysis product of the reaction between 9-trimethylsilyfluorenyl lithium and 2-methoxybenzonitrile. The fluorene ring system is substantially planar, with an r.m.s. deviation of 0.0288 Å from the best-fit plane through its 13 C atoms. This plane forms a dihedral angle of 58.07 $(7)^{\circ}$ with the 2-methoxybenzylamine ring plane. In the crystal, molecules are linked by N-H··· π and C- $H \cdots \pi$ interactions, which leads to the formation of twodimensional network lying parallel to the bc plane.

Related literature

For the use of fluorene as a ligand in organometallic chemistry, see: Alt & Samuel (1998); Kirillov et al. (2005); Bochmann et al. (1993); Decken et al. (2002); Knjazhanski et al. (2002); Novikova et al. (1985); Johnson & Treichel (1977). For $\sigma - \pi$ stacking, see: Calhorda (2000); Desiraju & Steiner (1999). For a related aminofulvene structure, see: Axenov et al. (2009).

15991 measured reflections

 $R_{\rm int} = 0.057$

4628 independent reflections

4212 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C24H25NOSi	V = 2031.1 (9) Å ³
$M_r = 371.54$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.611 (3) Å	$\mu = 0.13 \text{ mm}^{-1}$
b = 9.5694 (19) Å	$T = 173 { m K}$
c = 20.325 (6) Å	$0.19 \times 0.17 \times 0.12 \text{ mm}$
$\beta = 124.10 \ (2)^{\circ}$	

Data collection

Bruker P4 diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.976, T_{\max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.075$	248 parameters
$wR(F^2) = 0.173$	H-atom parameters constrained
S = 1.24	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
4628 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg4 are the centroids of the C1,C2,C7,C8,C13, C2-C7 and C15-C20 rings, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots Cg1^{i}$	0.88	2.69	3.347 (3)	133
$C12-H12A\cdots Cg4$	0.95	2.99	3.750 (4)	138
$C16-H16A\cdots Cg2^{i}$	0.95	2.65	3.470 (3)	145
$C21 - H21C \cdots Cg2^{ii}$	0.98	2.94	3.736 (4)	139
$C24-H24A\cdots Cg3^{i}$	0.98	2.99	3.923 (4)	158

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We thank the Natural Science Foundation of China (grant No. 20942009, 21072120), the Shanxi Scholarship Council of China (No. 201310) and the Key Technologies R & D Program of Shanxi Province (No. 20110321055).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5378).

References

- Alt, H. G. & Samuel, E. (1998). Chem. Soc. Rev. 27, 323-329.
- Axenov, K. V., Kehr, G., Fröhlich, R. & Erker, G. (2009). Organometallics, 28, 5148-5158
- Bochmann, M., Lancaster, S. J., Hursthouse, M. B. & Mazid, M. (1993). Organometallics, 12, 4718-4720.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calhorda, M. J. (2000). Chem. Commun. pp. 801-809.
- Decken, A., Mackay, A. J., Brown, M. J. & Bottomley, F. (2002). Organometallics, 21, 2006-2009.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 152. Oxford University Press.

Johnson, J. W. & Treichel, P. M. (1977). J. Am. Chem. Soc. 99, 1427-1436.

- Kirillov, E., Saillard, J. Y. & Carpentier, J. F. (2005). Coord. Chem. Rev. 249, 1221-1248.
- Knjazhanski, S. Y., Cadenas, G., García, M., Pérez, C. M., Nifant'ev, I. E., Kashulin, I. A., Ivchenko, P. V. & Lyssenko, K. A. (2002). Organometallics, 21, 3094-3099.
- Novikova, L. N., Ustynyuk, N. A., Zvorykin, V. E., Dneprovskaya, L. S. & Ustynyuk, Y. A. (1985). J. Organomet. Chem. 292, 237-243.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2014). E70, o59-o60 [doi:10.1107/S1600536813033424]

N-[(9*H*-Fluoren-9-ylidene)(2-methoxyphenyl)methyl]-1,1,1-trimethylsilanamine

Zhong-Yuan Li, Peng Wang and Xia Chen

1. Experimental

1.1. Synthesis and crystallization

The 9-trimethylsilyl-fluorenyllithium (0.68 g, 2.8 mmol) mixed with (o-MeO)PhCN (0.34 ml, 2.8 mmol) at 0 °C. The resulting mixture was slowly warmed to room temperature and stirred for a further 10 hours to give a clear brown solution. H₂O (2.8 mmol, 0.41 ml, 6.94 *M* in THF) was added to a stirred solution, prepared *in situ* without purification, at 0 °C. The resulting cloudy yellow solution was allowed to warm to room temperature for 7 days, yielding colorless crystals of the title compound (0.62 g, 59% yield). Mp: 172 °C. ¹H NMR (300 MHz, C₆D₆): δ (ppm) -0.14 (s, 9H, - Si(CH₃)₃), 2.68 (s,1H,-NH), 3.78 (s, 3H, -OCH₃), 6.71 (s, 2H, -CH- of phenyl), 6.88-6.90 (d, *J*_{HH}=7.5 Hz, 2H, -CH- of fluorenyl), 7.21-7.44 (m, 2H, -CH- of phenyl), 7.59-7.63 (m, 2H, -CH- of fluorenyl), 7.71-7.73 (d, *J*_{HH}=7.8 Hz, 2H, -CH- of fluorenyl), 7.89-7.92 (d, *J*_{HH}=7.8 Hz, 2H, -CH- of fluorenyl). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) 1.99 (3C, C of SiMe₃), 58.23 (1C, -OCH3), 109.33, 113.23, 120.27, 121.02, 122.11, 124.21, 126.35, 127.33, 128.53, 138.40, 139.24, 140.12, 140.35, 141.11, 143.23 (17C, C of fluorenyl and phenyl), 151.78, 166.65 (2C, Cipso of phenyl), 154.32 (1C, PhCNHSiMe₃). Anal. Calc. for C₂₄H₂₅NOSi (Mr = 371.55): C, 77.58; H, 6.78; N, 3.77%. Found: C, 77.80; H, 6.68; N, 3.82%.

1.2. Refinement

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. N–H bond distances was restrained to be 0.88 Å and $U_{iso}(H) = 1.2U_{eq}(N)$. The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

2. Comment

Fluorene is an attractive ligand for organometallic chemistry for several reasons. It may be regarded as a doubly benzannelated cyclopentadiene, which may be deprotonated at the 9 position to generate a substituted Cp ligand. Indeed, it is this unit upon which much of the organometallic chemistry of fluorene is based. This ligand may bind to metals in a wide variety of ways, many of which are unavailable to analogous Cp species, with η^1 , η^3 , and η^5 forms all structurally characterized (Alt and Samuel, 1998; Kirillov *et al.*, 2005; Bochmann *et al.*, 1993; Decken *et al.*, 2002; Knjazhanski *et al.*, 2002). Fluorene may also be regarded as a CH₂-bridged biphenyl unit, with two potential binding sites on the arene rings. Again, this has been exploited, with the synthesis of several bimetallic systems with the ligand again showing the ability to bind in a variety of coordination modes, η^5 and η^6 are both known (Novikova *et al.*, 1985; Johnson and Treichel, 1977). Here, we report the synthesis and structure of the new compound N-((9H-fluoren-9-ylidene)(2-methoxyphenyl)-methyl)-1,1,1-trimethylsilanamine.

The molecular structure of the title compound is illustrated in Fig. 1. The compound is a hydrolysis product of the reaction between 9-trimethylsilyfluorenyl lithium and 2-methoxybenzonitrile. The fluorene ring system is substantially

planar with an rms deviation of 0.0288 Å from the best fit plane through its 13 C atoms. This plane forms a dihedral angle of 58.07 (7)° with the 2-methoxybenzonitrile ring plane. The five-membered shows alternating C=C and C—C bond length. The exocyclic C1—C14 [1.368 (4)Å] linkage is in the typical double bond range [1.32 Å]. This comound contains a typical aminofulvene framework (Axenov *et al.*, 2009). The adjacent C14—N1 bond is also short, indicating the presence of delocalization in the C1—C14—N1 fragments to some extent. The other adjacent bond distance, C14—C15, is 1.490 (3)Å which is in agreement with single bond character [1.53 Å]. A number of N–H… π and C–H… π stacking interactions involving the phenyl rings help to consolidate the crystal packing. The N…Cg and C…Cg (Cg = ring centroid) distances lie in the range 2.989-3.473 Å, which is normal for such interactions (Calhorda, 2000; Desiraju & Steiner, 1999) and lead to the formation of an infinite one-dimensional chain structure (Fig. 2).

Computing details

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Figure 2

Crystal packing of 1 with N–H··· π and C–H··· π contacts drawn as dotted lines and spheres representing the aromatic ring centroids.

N-[(9*H*-Fluoren-9-ylidene)(2-methoxyphenyl)methyl]-1,1,1-trimethylsilanamine

Crystal data	
C ₂₄ H ₂₅ NOSi	F(000) = 792
$M_r = 371.54$	$D_{\rm x} = 1.215 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6083 reflections
a = 12.611 (3) Å	$\theta = 1.6 - 27.5^{\circ}$
b = 9.5694 (19) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 20.325 (6) Å	T = 173 K
$\beta = 124.10 \ (2)^{\circ}$	Prism, yellow
$V = 2031.1 (9) Å^3$	$0.19 \times 0.17 \times 0.12 \text{ mm}$
Z = 4	
Data collection	
Bruker P4	15991 measured reflections
diffractometer	4628 independent reflections
Radiation source: fine-focus sealed tube	4212 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{ m int} = 0.057$
ω scans	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 12$
$T_{\min} = 0.976, \ T_{\max} = 0.985$	$l = -25 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.075$	Hydrogen site location: inferred from
$wR(F^2) = 0.173$	neighbouring sites
S = 1.24	H-atom parameters constrained
4628 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 1.2002P]$
248 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Si1	0.66989 (6)	0.64695 (7)	0.46564 (4)	0.02799 (19)
01	0.94557 (19)	0.4521 (2)	0.70940 (11)	0.0421 (5)
N1	0.81941 (18)	0.5781 (2)	0.49531 (11)	0.0270 (4)
H1	0.8454	0.6009	0.4646	0.032*
C1	1.0326 (2)	0.5139 (2)	0.60208 (13)	0.0253 (5)
C2	1.0993 (2)	0.6446 (2)	0.60736 (14)	0.0253 (5)
C3	1.0568 (2)	0.7744 (2)	0.56909 (15)	0.0300 (5)
H3A	0.9696	0.7869	0.5268	0.036*
C4	1.1426 (2)	0.8843 (3)	0.59324 (16)	0.0334 (6)
H4A	1.1131	0.9719	0.5670	0.040*
C5	1.2708 (3)	0.8693 (3)	0.65494 (16)	0.0353 (6)
H5A	1.3276	0.9464	0.6708	0.042*
C6	1.3158 (2)	0.7417 (3)	0.69335 (15)	0.0315 (5)
H6A	1.4034	0.7305	0.7354	0.038*
C7	1.2307 (2)	0.6306 (2)	0.66934 (14)	0.0268 (5)
C8	1.2521 (2)	0.4893 (2)	0.70131 (14)	0.0274 (5)
C9	1.3646 (2)	0.4240 (3)	0.76098 (15)	0.0342 (6)
H9A	1.4436	0.4732	0.7886	0.041*
C10	1.3589 (3)	0.2860 (3)	0.77916 (16)	0.0388 (6)
H10A	1.4346	0.2403	0.8199	0.047*
C11	1.2439 (3)	0.2140 (3)	0.73847 (16)	0.0386 (6)
H11A	1.2421	0.1191	0.7515	0.046*
C12	1.1311 (2)	0.2778 (3)	0.67909 (16)	0.0332 (6)
H12A	1.0532	0.2265	0.6511	0.040*
C13	1.1335 (2)	0.4186 (2)	0.66094 (14)	0.0271 (5)
C14	0.9032 (2)	0.4938 (2)	0.55932 (14)	0.0257 (5)

C15	0.8397 (2)	0.3807 (2)	0.57581 (15)	0.0278 (5)
C16	0.7537 (2)	0.2919 (3)	0.51407 (16)	0.0347 (6)
H16A	0.7369	0.3050	0.4627	0.042*
C17	0.6921 (3)	0.1846 (3)	0.5262 (2)	0.0446 (7)
H17A	0.6342	0.1243	0.4838	0.054*
C18	0.7167 (3)	0.1672 (3)	0.6009 (2)	0.0517 (8)
H18A	0.6748	0.0943	0.6096	0.062*
C19	0.8008 (3)	0.2535 (3)	0.66320 (19)	0.0452 (7)
H19A	0.8163	0.2395	0.7142	0.054*
C20	0.8628 (2)	0.3610 (3)	0.65138 (16)	0.0340 (6)
C21	0.9910 (3)	0.4175 (4)	0.78948 (17)	0.0574 (9)
H21A	1.0579	0.4837	0.8258	0.086*
H21B	1.0262	0.3226	0.8014	0.086*
H21C	0.9199	0.4225	0.7962	0.086*
C22	0.6655 (3)	0.6740 (4)	0.55400 (18)	0.0524 (8)
H22A	0.6696	0.5834	0.5778	0.079*
H22B	0.5857	0.7216	0.5383	0.079*
H22C	0.7387	0.7314	0.5928	0.079*
C23	0.5336 (3)	0.5378 (3)	0.39032 (18)	0.0457 (7)
H23A	0.5327	0.4500	0.4148	0.069*
H23B	0.5430	0.5176	0.3466	0.069*
H23C	0.4532	0.5882	0.3698	0.069*
C24	0.6621 (3)	0.8163 (3)	0.41832 (18)	0.0424 (7)
H24A	0.6755	0.8001	0.3758	0.064*
H24B	0.7289	0.8789	0.4582	0.064*
H24C	0.5779	0.8590	0.3959	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0246 (3)	0.0260 (3)	0.0320 (4)	-0.0010 (3)	0.0151 (3)	0.0018 (3)
01	0.0480 (11)	0.0507 (12)	0.0328 (10)	-0.0042 (9)	0.0258 (9)	0.0010 (9)
N1	0.0255 (10)	0.0295 (10)	0.0279 (10)	-0.0011 (8)	0.0162 (9)	0.0041 (8)
C1	0.0286 (11)	0.0223 (11)	0.0279 (11)	0.0025 (9)	0.0177 (10)	0.0025 (9)
C2	0.0277 (11)	0.0242 (11)	0.0284 (12)	-0.0011 (9)	0.0184 (10)	-0.0016 (9)
C3	0.0268 (12)	0.0259 (12)	0.0363 (13)	0.0012 (9)	0.0171 (11)	0.0031 (10)
C4	0.0379 (13)	0.0217 (11)	0.0429 (15)	-0.0013 (10)	0.0240 (12)	0.0028 (10)
C5	0.0379 (14)	0.0274 (13)	0.0419 (15)	-0.0089 (11)	0.0232 (12)	-0.0042 (11)
C6	0.0297 (12)	0.0320 (13)	0.0303 (13)	-0.0047 (10)	0.0154 (11)	-0.0037 (10)
C7	0.0289 (12)	0.0267 (12)	0.0283 (12)	-0.0017 (9)	0.0182 (10)	-0.0020 (9)
C8	0.0302 (12)	0.0273 (12)	0.0270 (12)	0.0003 (9)	0.0174 (10)	-0.0001 (9)
C9	0.0274 (12)	0.0404 (14)	0.0310 (13)	0.0025 (10)	0.0140 (11)	0.0035 (11)
C10	0.0370 (14)	0.0384 (15)	0.0372 (14)	0.0144 (12)	0.0184 (12)	0.0127 (12)
C11	0.0459 (15)	0.0293 (13)	0.0458 (16)	0.0080 (12)	0.0288 (13)	0.0109 (12)
C12	0.0353 (13)	0.0268 (12)	0.0409 (14)	0.0012 (10)	0.0235 (12)	0.0036 (11)
C13	0.0302 (12)	0.0265 (12)	0.0282 (12)	0.0013 (9)	0.0186 (10)	0.0009 (9)
C14	0.0290 (12)	0.0229 (11)	0.0285 (12)	0.0006 (9)	0.0181 (10)	0.0011 (9)
C15	0.0274 (11)	0.0238 (11)	0.0366 (13)	0.0001 (9)	0.0205 (11)	0.0034 (10)
C16	0.0338 (13)	0.0267 (12)	0.0448 (15)	-0.0013 (10)	0.0228 (12)	0.0005 (11)
C17	0.0395 (15)	0.0278 (13)	0.065 (2)	-0.0071 (11)	0.0282 (15)	-0.0017 (13)

supplementary materials

C18	0.0493 (17)	0.0341 (15)	0.082 (2)	-0.0043 (13)	0.0429 (18)	0.0143 (15)	
C19	0.0468 (16)	0.0465 (16)	0.0550 (18)	0.0070 (13)	0.0364 (15)	0.0192 (14)	
C20	0.0347 (13)	0.0319 (13)	0.0423 (15)	0.0055 (11)	0.0258 (12)	0.0072 (11)	
C21	0.071 (2)	0.068 (2)	0.0338 (16)	0.0138 (18)	0.0295 (16)	0.0103 (15)	
C22	0.0468 (17)	0.071 (2)	0.0466 (18)	0.0152 (16)	0.0306 (15)	0.0058 (16)	
C23	0.0296 (14)	0.0359 (15)	0.0547 (18)	-0.0058 (11)	0.0132 (13)	0.0013 (13)	
C24	0.0390 (15)	0.0309 (13)	0.0519 (17)	0.0021 (11)	0.0221 (14)	0.0078 (12)	

Geometric parameters (Å, °)

Sil—N1	1.754 (2)	C11—C12	1.388 (4)
Si1—C22	1.846 (3)	C11—H11A	0.9500
Si1—C23	1.854 (3)	C12—C13	1.402 (3)
Si1—C24	1.859 (3)	C12—H12A	0.9500
O1—C20	1.364 (3)	C14—C15	1.491 (3)
O1—C21	1.429 (3)	C15—C16	1.396 (3)
N1—C14	1.385 (3)	C15—C20	1.407 (4)
N1—H1	0.8800	C16—C17	1.390 (4)
C1—C14	1.366 (3)	C16—H16A	0.9500
C1—C13	1.475 (3)	C17—C18	1.378 (5)
C1—C2	1.477 (3)	C17—H17A	0.9500
C2—C3	1.403 (3)	C18—C19	1.380 (5)
C2—C7	1.417 (3)	C18—H18A	0.9500
C3—C4	1.387 (3)	C19—C20	1.392 (4)
С3—НЗА	0.9500	С19—Н19А	0.9500
C4—C5	1.391 (4)	C21—H21A	0.9800
C4—H4A	0.9500	C21—H21B	0.9800
C5—C6	1.387 (4)	C21—H21C	0.9800
С5—Н5А	0.9500	C22—H22A	0.9800
C6—C7	1.391 (3)	С22—Н22В	0.9800
C6—H6A	0.9500	С22—Н22С	0.9800
C7—C8	1.459 (3)	C23—H23A	0.9800
C8—C9	1.395 (3)	С23—Н23В	0.9800
C8—C13	1.411 (3)	С23—Н23С	0.9800
C9—C10	1.383 (4)	C24—H24A	0.9800
С9—Н9А	0.9500	C24—H24B	0.9800
C10—C11	1.385 (4)	C24—H24C	0.9800
C10—H10A	0.9500		
N1—Si1—C22	109.34 (12)	C12—C13—C1	132.2 (2)
N1—Si1—C23	113.09 (12)	C8—C13—C1	109.0 (2)
C22—Si1—C23	111.28 (16)	C1—C14—N1	121.7 (2)
N1—Si1—C24	103.88 (12)	C1—C14—C15	124.0 (2)
C22—Si1—C24	111.08 (15)	N1-C14-C15	114.3 (2)
C23—Si1—C24	107.95 (13)	C16—C15—C20	118.7 (2)
C20—O1—C21	117.4 (2)	C16—C15—C14	119.0 (2)
C14—N1—Si1	130.40 (16)	C20—C15—C14	122.3 (2)
C14—N1—H1	114.8	C17—C16—C15	121.3 (3)
Si1—N1—H1	114.8	C17—C16—H16A	119.3
C14—C1—C13	127.5 (2)	C15—C16—H16A	119.3

C14—C1—C2	126.5 (2)	C18—C17—C16	118.8 (3)
C13—C1—C2	105.54 (19)	C18—C17—H17A	120.6
C3—C2—C7	118.0 (2)	С16—С17—Н17А	120.6
C3—C2—C1	133.2 (2)	C17—C18—C19	121.4 (3)
C7—C2—C1	108.6 (2)	C17—C18—H18A	119.3
C4—C3—C2	119.7 (2)	C19—C18—H18A	119.3
C4—C3—H3A	120.1	C18—C19—C20	120.0 (3)
С2—С3—НЗА	120.1	C18—C19—H19A	120.0
C3—C4—C5	121.5 (2)	С20—С19—Н19А	120.0
C3—C4—H4A	119.2	O1—C20—C19	123.7 (3)
C5—C4—H4A	119.2	O1—C20—C15	116.6 (2)
C6—C5—C4	120.0 (2)	C19—C20—C15	119.7 (3)
С6—С5—Н5А	120.0	O1—C21—H21A	109.5
C4—C5—H5A	120.0	O1—C21—H21B	109.5
C5—C6—C7	118.9 (2)	H21A—C21—H21B	109.5
С5—С6—Н6А	120.6	O1—C21—H21C	109.5
С7—С6—Н6А	120.6	H21A—C21—H21C	109.5
C6—C7—C2	121.8 (2)	H21B—C21—H21C	109.5
C6—C7—C8	129.7 (2)	Si1—C22—H22A	109.5
C2—C7—C8	108.4 (2)	Si1—C22—H22B	109.5
C9—C8—C13	121.4 (2)	H22A—C22—H22B	109.5
C9—C8—C7	130.3 (2)	Si1—C22—H22C	109.5
C13—C8—C7	108.3 (2)	H22A—C22—H22C	109.5
С10—С9—С8	118.7 (2)	H22B—C22—H22C	109.5
С10—С9—Н9А	120.7	Si1—C23—H23A	109.5
С8—С9—Н9А	120.7	Si1—C23—H23B	109.5
C9—C10—C11	120.6 (2)	H23A—C23—H23B	109.5
C9—C10—H10A	119.7	Si1—C23—H23C	109.5
C11—C10—H10A	119.7	H23A—C23—H23C	109.5
C10-C11-C12	121.3 (2)	H23B—C23—H23C	109.5
C10-C11-H11A	119.3	Si1—C24—H24A	109.5
C12—C11—H11A	119.3	Si1—C24—H24B	109.5
C11—C12—C13	119.2 (2)	H24A—C24—H24B	109.5
C11—C12—H12A	120.4	Si1—C24—H24C	109.5
C13—C12—H12A	120.4	H24A—C24—H24C	109.5
C12—C13—C8	118.7 (2)	H24B—C24—H24C	109.5
C22—Si1—N1—C14	29.8 (3)	C7—C8—C13—C12	177.0 (2)
C23—Si1—N1—C14	-94.8 (2)	C9—C8—C13—C1	179.6 (2)
C24—Si1—N1—C14	148.4 (2)	C7—C8—C13—C1	-0.3 (3)
C14—C1—C2—C3	-5.7 (4)	C14—C1—C13—C12	13.6 (4)
C13—C1—C2—C3	-177.8 (2)	C2-C1-C13-C12	-174.5 (2)
C14—C1—C2—C7	168.4 (2)	C14—C1—C13—C8	-169.6 (2)
C13—C1—C2—C7	-3.6 (2)	C2-C1-C13-C8	2.3 (2)
C7—C2—C3—C4	-0.9 (3)	C13—C1—C14—N1	-167.5 (2)
C1—C2—C3—C4	172.9 (2)	C2-C1-C14-N1	22.2 (4)
C2—C3—C4—C5	0.0 (4)	C13—C1—C14—C15	11.7 (4)
C3—C4—C5—C6	0.6 (4)	C2-C1-C14-C15	-158.7 (2)
C4—C5—C6—C7	-0.3 (4)	Si1—N1—C14—C1	-139.9 (2)

C5—C6—C7—C2	-0.6 (4)	Si1—N1—C14—C15	40.8 (3)
C5—C6—C7—C8	-177.5 (2)	C1-C14-C15-C16	-127.0 (3)
C3—C2—C7—C6	1.2 (3)	N1-C14-C15-C16	52.3 (3)
C1—C2—C7—C6	-174.0 (2)	C1-C14-C15-C20	53.6 (3)
C3—C2—C7—C8	178.7 (2)	N1-C14-C15-C20	-127.2 (2)
C1—C2—C7—C8	3.5 (3)	C20-C15-C16-C17	-0.6 (4)
C6—C7—C8—C9	-4.6 (4)	C14—C15—C16—C17	179.9 (2)
C2—C7—C8—C9	178.2 (2)	C15—C16—C17—C18	0.4 (4)
C6—C7—C8—C13	175.2 (2)	C16—C17—C18—C19	-0.2 (5)
C2—C7—C8—C13	-2.0 (3)	C17—C18—C19—C20	0.1 (5)
C13—C8—C9—C10	1.4 (4)	C21—O1—C20—C19	13.5 (4)
C7—C8—C9—C10	-178.8 (2)	C21—O1—C20—C15	-167.3 (2)
C8—C9—C10—C11	0.5 (4)	C18—C19—C20—O1	178.9 (3)
C9—C10—C11—C12	-0.6 (4)	C18—C19—C20—C15	-0.3 (4)
C10-C11-C12-C13	-1.1 (4)	C16—C15—C20—O1	-178.7 (2)
C11—C12—C13—C8	2.9 (4)	C14—C15—C20—O1	0.8 (3)
C11—C12—C13—C1	179.5 (2)	C16—C15—C20—C19	0.6 (4)
C9—C8—C13—C12	-3.1 (3)	C14—C15—C20—C19	-180.0 (2)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C1,C2,C7,C8,C13, C2-C7 and C15-C20 rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···Cg1 ⁱ	0.88	2.69	3.347 (3)	133
C12—H12 <i>A</i> ··· <i>Cg</i> 4	0.95	2.99	3.750 (4)	138
C16—H16 A ··· $Cg2^i$	0.95	2.65	3.470 (3)	145
С21—Н21С…Сд2 ^{іі}	0.98	2.94	3.736 (4)	139
C24—H24 A ···Cg3 ⁱ	0.98	2.99	3.923 (4)	158

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+2, *y*-1/2, -*z*+3/2.