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Abstract: This work focuses on the fabrication of lanthanum cerate (La2Ce2O7, LC) powders via two
chemical routes: modified Pechini sol-gel method and solid-state synthesis. The synthesized LC pow-
ders were heat treated in the temperature range of 1000–1400 ◦C for 6 h and investigated as a material
for thermal barrier coating (TBC) applications. For this purpose, the powder morphology, chemical
composition, crystal structure and thermal stability were studied. Scanning electron microscopy
(SEM) of the synthesized powders revealed an agglomerated structure consisting of fine and uni-
formly distributed grains. Energy-dispersive X-ray spectroscopy (EDXS) indicated that the chemical
compositions of the LC powders were similar to the stoichiometric ratio of La2Ce2O7. A cubic fluorite
structure was observed by X-ray diffraction analysis (XRD) after calcining the LC powder prepared
by solid-state synthesis at 1300 ◦C. In contrast, there was always a fluorite structure in the LC powder
synthesized by the Pechini sol-gel method after heat treatment over the entire temperature range. The
thermal behavior of the LC powders was analyzed by differential scanning calorimetry (DSC) and
thermogravimetric analysis (TG) in the temperature range of 25–1300 ◦C. Neither an obvious mass
change nor a visible energy change was observed within the tested temperature range, indicating
high phase stability of the LC powder and its suitability for TBC applications. Spheroidization on
the prepared LC powders was also investigated, revealing that powder size and morphology had a
significant impact on the spheroidization efficiency.

Keywords: La2Ce2O7; powder; Pechini sol-gel; solid-state synthesis; flame synthesis

1. Introduction

Recently, there has been a considerable interest in the synthesis and structural charac-
terization of rare earth metal (RE)-doped cerates due to their outstanding catalytic, electrical
and mechanical properties, as well as their improved chemical stability and ionic conductiv-
ity [1,2]. Such properties make these materials promising candidates for many applications,
such as ionic conductors in solid oxide fuel cells, oxygen sensors, catalyst carriers, hy-
drogen separation membranes or thermal barrier coatings (TBCs) [3–7]. TBCs have been
applied in gas turbines for decades to decrease the surface temperature of hot sections of
the metallic components and to protect them from combustion environments. The choice
of TBC materials is limited by some basic requirements, such as a high melting point,
low thermal conductivity, thermal expansion match with the metallic substrate, no phase
transformation during service, chemical stability and good adhesion to the underlying
metallic substrate [2,6].

Among various RE-doped cerates, La2Ce2O7 (LC) is one of the most promising TBC
materials for high-temperature applications due to its high phase stability and ability to
withstand high temperatures (>1250 ◦C) [6,8]. Moreover, LC exhibits a higher thermal
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expansion coefficient (CTE), lower thermal conductivity and better calcium–magnesium–
aluminum–silicate (CMAS) corrosion resistance than the conventional TBC with an yttria-
stabilized zirconia (YSZ) top layer [2,7–10]. La2Ce2O7 is a solid solution of La2O3 in CeO2
with a defect fluorite structure [6]. Oxides with a general formula of A2B2O7 crystallize
to ordered pyrochlore and disordered fluorite-type structures. The disordered La2Ce2O7
structure is acquired by replacing half of the Ce4+ cations with La3+, while one-eighth of the
O anions are removed through random selection due to charge compensation. Cubic fluorite
structures like this have a desired stoichiometry, with each cation site being occupied by 0.5 Ce
and 0.5 La atoms on average, and each anion site is on average occupied by 0.875 O atoms [11].
Bae et al. [3] reported that the CeO2 fluorite structure is preserved for La concentrations up to
x = 0.40 (in La2Ce2O7, x = 0.50), and only for higher La concentrations will the pyrochlore
arrangement of the cations occur. It has been also observed that the disordered fluorite
structure is favorable when the cation radii ratio rA/rB is lower than 1.46 [12].

In the past few years, several methods have been employed for the synthesis of
RE-doped cerates, such as conventional solid-state synthesis [12,13], co-precipitation
route [1,14], the hydrothermal method [15,16], sol-gel [17,18], the molten salt method [19]
and the citrate–nitrate combustion method [20]. Some of these methods are expensive and
require multiple steps. Furthermore, in the case of La2Ce2O7 synthesis by the conventional
co-precipitation and hydrothermal methods, water is used as a solvent, which could result
in a high possibility of forming hard agglomerates [21]. The compounds prepared by the
traditional solid-state route require long, high-temperature treatments, and micron-sized
particles are formed. Nano-sized lanthanum cerate with good powder homogeneity and
a low crystallization temperature can be prepared by alkoxide-based sol-gel and citrate
methods. Many research articles have been also focused on investigating the structure and
properties of LC. For example, Hongsong et al. [17] studied the photo-catalytic properties
of La2Ce2O7 powder synthesized by a sol-gel method. The optical properties of La2Ce2O7
nano-powders were investigated in the work of Khademinia and Behzad [16]. Wang
et al. [22] analyzed the crystal growth and sintering behavior of La2Ce2O7 nanocrystals. Ma
et al. [9] investigated the phase stability and thermal expansion coefficients of La2Ce2O7
solid solutions. In recent decades, considerable efforts have been dedicated to improving
the performance of LC thermal barrier coatings. For instance, Dehkharghani et al. [23]
devoted their work to improving the thermal shock resistance and fracture toughness of
La2Ce2O7 thermal barrier coatings. Zhang et al. [24] reported the mechanical and thermal
cycling performance of YSZ-toughened La2Ce2O7 composite thermal barrier coatings.

In the present study, pure La2Ce2O7 powders with a fluorite structure were fabricated
by both solid-state synthesis and a modified Pechini sol-gel method [25]. This method has
been used as an alternative to the conventional sol-gel method. The main advantage of the
Pechini sol-gel method is its simplicity and low cost. Furthermore, the metallic ions are
immobilized in a rigid polymer network, which ensures their homogeneous dispersion in
the polymer network without precipitation or phase segregation. This process provides
thorough control over the product stoichiometry, even for more complex oxide powders.
In addition, the Pechini sol-gel route allows the reactant cations to mix at the atomic scale,
leading to an increase in reaction rate and a lowered synthesis temperature [26,27].

Usually, LC powder with a desired structure is difficult to obtain commercially; con-
sequently, it must be synthesized in the laboratory and then transformed to a plasma
sprayable powder for producing TBCs. To ensure good deposition efficiency and improve
the coating properties, the density, shape, size and flow characteristics of such particles
should be controlled. Moreover, particles with spherical morphology are preferred over
particles with an irregular shape. Spray drying, plasma processing and gas atomization pro-
cedures are commonly used for fabricating spherical particles [2,28–30]. In this study, we
attempted made to produce nonporous La2Ce2O7 spherical particles with flame synthesis
as a new method.

In this work, La2Ce2O7 powders with a fluorite structure were synthesized via two
chemical processes (solid-state synthesis and modified Pechini sol-gel method) to compare
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the morphologies and study their crystal structure and thermal stability. The purpose of
this work is to explore more favorable method for preparing LC powders and to investigate
for the first time the spheroidization process of LC particles by flame synthesis.

2. Materials and Methods
2.1. Powder Synthesis

In this work, LC powder was synthesized by two chemical processes: modified
Pechini sol-gel method and solid-state reaction, as illustrated in Figure 1. For the Pechini
sol-gel route, La2O3 (99.95%, Alchimica, Praha, Czech Republic) was first dissolved in
concentrated nitric acid to form its respective nitrate solution. Next, the calculated amount
of Ce(NO3)3.6H2O (99.95%, Treibacher Industrie AG, Althofen, Austria) was dissolved in
deionized water and added to the nitrate solution. Subsequently, an aqueous solution of
citric acid and ethylene glycol with a 1:1 molar ratio was added to the resultant mixture
dropwise and heated in an oil bath under continuous stirring at ~85 ◦C for 2 h. The molar
ratio of citric acid/cerium was 2:1. The solution was then slowly evaporated until a solid
porous mass was obtained. Finally, the product was dried in an oven at 120 ◦C for 12 h,
crushed and then heat treated at 650 ◦C in a muffle furnace for 12 h to burn out the
organic compounds.
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Figure 1. Scheme of obtaining LC powders by Pechini sol-gel method and solid-state synthesis.

For the solid-state reaction procedure, stoichiometric amounts of commercial binary
oxides La2O3 and CeO2 (both 99.95% purity, Alchimica, Praha, Czech Republic) were mixed
and ball-milled with zirconia balls in isopropanol for 24 h. The suspension was then dried
by continuous stirring to remove the excess alcohol. For both processes, i.e., modified
Pechini sol-gel method and solid-state reaction, the obtained LC powders were sieved
through a 40 µm analytical sieve and calcined in an electric furnace at temperatures of
1000 ◦C, 1100 ◦C, 1200 ◦C, 1300 ◦C and 1400 ◦C for 6 h. The powders are labeled according
to the applied synthesis route, i.e., LC-SG and LC-SS represent the Pechini sol-gel and
solid-state reaction route, respectively.

2.2. Characterization Methods

The crystalline phases of the prepared LC powders calcined at different temperatures
were identified by X-ray powder diffraction (XRD, PANalytical Empyrean DY1098 (Pan-
alytical, BV, Almelo, The Netherlands)) using a Cu anode and an X-ray wavelength of
λ = 1.5405 Å over 2θ angles of 10–80◦. Diffraction records were evaluated using HighScore
Plus (v. 3.0.4, Panalytical, Almelo, The Netherlands) with the use of the PDF4 database. The
mean crystallite size of the prepared powders was calculated by Scherrer’s Equation (1):



Materials 2022, 15, 4007 4 of 15

D =
0.89λ

βcosθ
, (1)

where D is the crystallite size, λ is the X-ray wavelength, β is the peak width at half of the
maximum intensity and θ is the diffraction angle. Raman spectra of the LC powders heat
treated at 1400 ◦C for 6 h were recorded in the range of the Raman shift (100–800) cm−1

by a RENISHAW inVia Reflex Raman spectrometer (RENISHAW, Wotton-under-Edge,
England, UK). The morphology of the produced powders was examined in detail by
scanning electron microscopy (SEM, JEOL JSM 7600 F, JEOL, Tokyo, Japan). The chemical
composition of the powders was determined by energy-dispersive X-ray spectroscopy
(EDXS, Oxford Instruments, Abingdon, UK). The thermal stability studies of the powders
were conducted using thermogravimetric analysis and differential scanning calorimetry
(TG/DSC, Netzsch STA 449 F1 Jupiter, NETZSCH-Gerätebau GmbH, Selb, Germany) in
the temperature range of 25–1300 ◦C with a heating rate of 10 ◦C/min. A sample weight of
≈13 mg was used for the TG/DSC experiments.

2.3. Spheroidization of LC Powder

To increase the powder density and decrease the porosity, the LC particles were
spheroidized by flame synthesis. The laboratory equipment for the flame synthesis is
located at the FunGlass Centre (Trenčín, Slovakia) and was approved as a utility model [31].
A schematic drawing with descriptions of the individual parts of the used device is shown
in Figure 2. The prepared LC powders were fed into a high-temperature flame (CH4/O2, T
~2200 ◦C) using a vacuum powder feeder. The molten particles were quenched in deionized
water and collected in a container. Then, the spheroidized particles were micro-filtered
through a ceramic filter (porosity < 0.3 µm) located below the collection tank and the
products were dried overnight at ~120 ◦C and calcined at 650 ◦C for 4 h to remove any
organic residue. The overall efficiency of the laboratory device for flame synthesis is in the
range of 75–85%. The investigation of the spherical particles was conducted with the use
of SEM/EDXS. The SEM images were also used to evaluate the size and size distribution
of the spherical particles using the Lince (TU Darmstadt, Darmstadt, Germany) software
for image analysis. The particle size distribution was obtained by the analysis of ten
different SEM images recorded at a 500× magnification, measuring the diameters of at
least 200 spherical particles. For a more detailed examination of the microstructure, the
samples were cold mounted in polymeric resin and carefully polished (EcoMet 300, Buehler,
Leinfelden-Echterdingen, Germany) to prepare cross-sections. XRD was used to investigate
the phase composition of the spheroidized particles.
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3. Results and Discussion
3.1. Characterization of Prepared Powders

The XRD is an important analytical technique to investigate the structure of La2Ce2O7.
The differences between fluorite and a typical pyrochlore pattern are small and are mainly
differentiated by the presence of characteristic low-intensity pyrochlore peaks located at
36.9◦ and 44.5◦ 2θ [15]. XRD patterns of LC-SG and LC-SS powders after heat treatment at
various temperatures are shown in Figure 3. For comparison, the XRD pattern of a pure
CeO2 powder is also included in Figure 3a. Evidently, XRD patterns of all LC-SG samples
(Figure 3a) match well with the cubic fluorite phase of CeO2, as the XRD records show
eight clear peaks that can be well designated to the (111), (200), (220), (311), (222), (400),
(331) and (420) lattice planes of the fluorite structure [13]. Diffraction peaks corresponding
to unreacted La2O3 or CeO2 were not detected in the XRD patterns of the LC-SG powder,
confirming the formation of La2Ce2O7 solid solution with high phase purity. Moreover,
the intensities of the XRD peaks corresponding to the La2Ce2O7 phase increased with
increasing temperature, indicating the high crystallinity of the powder.
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For the LC-SS powders, additional peaks corresponding to La2O3 were observed in
the XRD patterns of the powder heat treated up to 1200 ◦C (Figure 3b). It can be seen
that the La2Ce2O7 phase starts to form from 1100 ◦C. In contrast, the intensities of the
diffraction peaks corresponding to La2O3 and CeO2 gradually decreased with increasing
temperature. When the temperature reached 1300 ◦C, a single La2Ce2O7 phase was formed
and the peaks belonging to La2O3 and CeO2 totally disappeared. Moreover, the diffraction
peaks of the La2Ce2O7 phase became sharper with increasing temperature, indicating a
crystallite size increase. The diffraction peaks of the La2Ce2O7 phase in both powders are
shifted to lower angles compared to undoped CeO2 powder because of the larger radius of
La3+ (0.103 Å) than Ce4+ (0.087 Å) [32]. In both cases (i.e., LC-SG and LC-SS), no secondary
pyrochlore peaks are visible in the XRD spectra. This is consistent with the XRD spectra of
La2Ce2O7 generally presented in literature [9,14,33,34]. It was also reported that the LC
fluorite structure remains stable, even at very high temperatures [6,9]. The results presented
here also indicate that the Pechini sol-gel method synthesis temperature for La2Ce2O7 was
lowered from the 1300 ◦C of the solid-state reaction to 1000 ◦C. The fluorite structure of
LC powder prepared by solid-state synthesis was also identified at 1300 ◦C in the work of
Dehkharghani et al. [13,23].

The crystallite size of the prepared LC powders was calculated using Scherrer’s
Equation (1). Figure 4 shows the relationship between the calcination temperature and the
average crystallite size of LC powders prepared by different methods. It is evident that
as the calcination temperature increased, the crystallite size increased due to the sintering
effect. This was also shown in the intensities of the diffraction peaks. As shown in Figure 4,
the average crystallite size of LC-SG powder calcined at different temperatures from 1000 ◦C
to 1400 ◦C varied from 48 nm to 98 nm. The calculated crystallite size for LC-SS is 42 nm for
the sample calcined at 1300 ◦C and 57 nm for the sample calcined at 1400 ◦C. As can be noted
from Figure 4, the LC-SS powder exhibited a smaller crystallite size compared with that of
the LC-SG powder calcined at the same temperature. The results indicate that the synthesis
route affects the crystallite size of the fluorite-type La2Ce2O7. Wang et al. [22] synthesized
LC nanoparticles at 1100 ◦C via the hydrothermal method using polyethyleneglycol as a
surfactant. It was also shown that when increasing the calcination temperature from 700 ◦C
to 1300 ◦C, the average crystallite size of La2Ce2O7 varied from approximately 11 nm to
60 nm. The fluorite structure of LC was also successfully synthesized at 800 ◦C by a sol-gel
method, with the average crystallite size of LC powders ranging from 10 nm to 30 nm [17].
A smaller crystallite size was obtained by the co-precipitation route using triethylamine [1].
The cubic fluorite structure of LC was observed after heating the sample at 600 ◦C and
900 ◦C for 3 h, while the calculated crystallite sizes were 5 nm and 28 nm, respectively.
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The lattice parameters of the produced LC samples were determined by XRD using
the most intense (111) line, and the obtained results are presented in Table 1. Compared to
the lattice parameter for undoped CeO2 (a = 0.54187 nm), there is an increase in the cell
parameter in both LC samples (see Table 1). This can be attributed to lattice expansion
during partial substitution of Ce4+ ions with larger La3+ ions [35]. No influence of the
calcination temperature on the lattice parameters of the LC-SG and LC-SS samples was
observed in the present study. In general, the small crystallite size and stable cell parameter
during the high temperature treatment implies that the investigated material has suitable
thermal stability [35].

Table 1. Crystallite sizes, lattice parameters and chemical composition of the LC powders calcined at 1400 ◦C.

Sample Crystallite Size (nm) Lattice Parameter a (nm) La (at %) Ce (at %) O (at %)

LC-SG 98 0.55729 18.4 18.8 62.8
LC-SS 57 0.55712 18.7 18.9 62.4

SG—modified Pechini sol-gel method, SS—solid-state synthesis.

Raman spectroscopy has proven to be a useful analytical technique, providing infor-
mation about the crystalline structure of materials [36–38]. To confirm the solid solution
phase, the LC-SG and LC-SS powders heat treated at 1400 ◦C were investigated by Raman
spectroscopy, as shown in Figure 5. For comparison, the Raman spectrum of pure CeO2
is also included in Figure 5. According to the literature [39], the ideal fluorite structure
has only one allowed Raman active mode (F2g). This mode correlates with the symmetric
vibration of oxygen atoms around each cation. In the case of undoped CeO2, there is only a
single peak centered at ~465 cm−1 and it corresponds to the F2g Raman band from the space
group Fm3m of a cubic fluorite structure [17]. As illustrated in Figure 5, the synthesized
LC-SG and LC-SS powders have similar patterns: Raman spectra show one dominant band
at ~455 cm−1, one broader band at ~575 cm−1 and four weak bands at lower frequencies.
Remarkably, the F2g modes at ~455 cm−1 are shifted to a lower frequency and become
broader and more asymmetric. This is a common effect of rare earth doping on the F2g

mode [35,39]. Moreover, the intensity of the peak at ~455 cm−1 is higher for LC-SG com-
pared to that of the LC-SS. The broad bands at higher frequencies, i.e., at ~575 cm−1, were
assigned to oxygen vacancies as a result of La+3 incorporation into a fluorite type CeO2
matrix [15]. The weak bands at low frequencies in the Raman patterns of LC powders can
be attributed to second-order scattering and forbidden acoustic modes caused by defects in
the structure [12,36]. The results of Raman spectroscopy are consistent with the XRD results,
as they prove that both LC powders still maintain the fluorite structure up to 1400 ◦C.
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To evaluate the thermal behavior and phase stability of the prepared powders, TG/DSC
records were measured from room temperature to 1300 ◦C, as shown in Figure 6. To investi-
gate the possible phase transformations, the LC-SG and LC-SS powders calcined at 1000 ◦C
and 1300 ◦C, respectively, were used for thermal analysis. As can be seen in Figure 6, both
LC-SS and LC-SG powders exhibit high phase stability since neither an endothermic peak
nor an exothermic peak were observed in the temperature range of 100–1300 ◦C. In the DSC
curve of LC-SG powder (Figure 6a), only a small peak occurring at ~75 ◦C is observed and
corresponds to a release of absorbed moisture. These results also prove that both prepared
powders still preserve the fluorite structure within the experimental temperatures. In the
case of the TG curve for LC-SS (Figure 6b), there is no obvious mass loss in the tested
temperature range. For the TG curve of LC-SG, the negligible mass loss of 0.26% was
observed because of the evaporation of physically adsorbed water and decomposition of
residual nitrates and organic compounds.
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SEM analysis was employed to obtain important information about the morphology
and size of the produced LC powders. Figures 7 and 8 show the morphology of the LC
powders calcined up to 1400 ◦C under two different magnifications. As shown in the
microstructural images (Figure 7a–f), the morphology of the sieved LC-SG powder is block-
shaped and the particles are made of agglomerated, small primary particles. The irregular
and angular shape of the grains are a result of the crushing process. According to the
magnified microstructural images (Figure 7b,d,f), an approximate estimation of the size of
the primary nanoparticles in LC-SG powder is less than 200 nm. The size of the nanocrystals
became larger as a function of calcination temperature. This agrees with the crystallite size
estimated from Scherrer’s equation. When the calcination temperature reached 1400 ◦C, a
kind of sintering process took place, and the nanocrystals formed more aggregates.
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Figure 8a–d illustrates the SEM images of the as-prepared LC-SS powder calcined at
1300 ◦C and 1400 ◦C. SEM examination of the LC-SS powder also revealed an agglomerated
structure consisting of finely and uniformly distributed irregular particles that agglomer-
ated to form larger particles, similar to LC-SG powders. As can be seen in the magnified
microstructural image (Figure 8d), heat treatment up to 1400 ◦C resulted in powder sinter-
ing and grain growth. Therefore, determining the size of the primary particles was difficult.
It is evident that different synthesis route influenced the particle size and morphology of
the prepared material. The obtained SEM images indicate that the homogeneity and size
distribution of the nanoparticles are better for LC-SG powder. At a calcination temperature
of 1400 ◦C, the obtained LC-SS nanocrystals showed more irregularly sized blocks made
of aggregated and sintered particles. This is due to the smaller size of the nanocrystals
compared to LS-SG powder.

Wang et al. [19] used SEM analysis to obtain direct information about the size and
structure of the LC nano-powders produced by the molten salt method. The as-obtained LC
powders were found to be agglomerated and composed of small particles with average size
ranging from 50 nm to 80 nm. Joulia et al. [40] reported that the LC powder prepared by
citrate route was composed of fine and uniform 50–100 nm particles, but the sintering effect
led to a strong grain growth at 1400 ◦C. Liu et al. [20] found that both the agglomerate and
dispersive nanoparticles exist in the LC powder synthesized by citrate-nitrate combustion
method, and the average grain size was less than 100 nm. Hongsong et al. [17] studied
the micro-morphology of the LC powders prepared by the sol-gel method. They found
that the synthesized powders have a relatively uniform size and exhibit a certain degree
of agglomeration caused by large surface energy. Generally, high-temperature treatment
causes gradual sintering and crystallite growth, leading to a loss of surface area. It is well
known that smaller particles have higher surface energy that in turn provides a greater
driving force for sintering [19]. However, the resistance of the rare earth-doped cerates to
thermal sintering is significant compared to that of pure ceria [35].
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EDXS analysis was performed in order to verify the elemental composition of the
prepared LC powders. The EDXS results of the LC powders calcined at 1400 ◦C for 6 h are
presented in Table 1. Both LC powders exhibit only a small deviation from the theoretical
composition of La2Ce2O7. The deviation was the highest for oxygen, which measured
lower than the theoretical value. The stoichiometric atomic ratios of La:Ce:O are 1:1.01:3.34
for LC-SS and 1:1.02:3.41 for LC-SG, compared to the original ratio 1:1:3.5.

3.2. Spheroidization of LC Powder

Figure 9 presents the microstructural images of LC-SG and LC-SS powders processed by
flame synthesis. As is obvious from Figure 9a, a significant fraction of un-melted powder with
an irregular structure is observed after flame synthesis of the LC-SS powder. Only a small
amount of spherical particles was detected. Moreover, some defects and small pores are visible
in the cross-section of the spherical particles (Figure 9b). Such low spheroidization could be
attributed to the fact that the agglomerated LC-SS particles stuck to one other as well as to
the walls of the powder feeder, making it difficult for them to enter the burner and reach the
high-temperature flame. As shown in Figure 9c, the content of un-melted particles decreased
when using LC-SG powder, and the particle morphologies changed from irregular to almost
fully spheroidized. Such spherical morphology could increase the deposition efficiency in
TBCs. Moreover, the amount of spherical particles is larger than in the case of LC-SS powder
spheroidization. The presence of un-melted and semi-melted particles in both powders
might also be due to an insufficient flame temperature for complete re-melting of the powder
or a short retention time in the flame. As can be seen from a cross-sectional image of the
spheroidized LC-SG powder (Figure 9d), the spherical particles do not exhibit the presence of
defects or intraparticle pores, confirming a density increase and the melting of the powder.
However, the parameters of flame synthesis need to be further optimized to increase the
spheroidization efficiency and to achieve a fully re-melted LC powder.
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Granulometry of the LC spherical particles (Figure 10) was determined via computer
image analysis of the SEM micrographs. The LC-SG spherical particles yielded two main
fractions with diameters in the intervals of 10–15 µm (~34%) and 15–20 µm (~35%). Only a
small fraction of spherical particles showed larger and smaller diameters. As for LC-SS,
the particle sizes are evenly distributed across the entire size range, with the main fraction
being between 5 and 15 µm (~38% total).
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The EDXS results showed that the spheroidization process of LC powder by flame
synthesis led to a considerable deviation from stoichiometry due to loss of lanthanum. The
EDXS analysis of the LC-SG spherical particles showed the chemical composition of the
material is 60.3 at % O, 24.3 at % Ce and 15.4 at % La. Similar results have been reported by
Praveen et al. in the case of plasma-transferred arc synthesis of LC powder [29]. Loss of
lanthanum has also been observed by Wen Ma et al. while investigating the thermal cycling
behavior of LC coatings obtained by EB-PVD [8]. The loss of La2O3 could be effectively
reduced by increasing the size of the powder particles for flame synthesis or by adding
an excess of La2O3 into the starting powder to prepare nearly stoichiometric La2Ce2O7
spherical particles. However, several authors [2,42] reported that partial decomposition of
La2Ce2O7 and a loss of CeO2 occurred during the preparation of TBCs by plasma spraying
or electron beam physical vapor deposition due to the different vapor pressures of La2O3
and CeO2. This led to a compositional deviation of the sprayed LC coatings from the
original LC powder. Because of this, in further work, it will be necessary to optimize and
carefully design the chemical composition of the original powders in order to obtain LC
coatings with a near stoichiometric composition.

The XRD profiles of the LC-SG and LC-SS samples processed by flame synthesis are
presented in Figure 11. XRD analysis of both spheroidized LC samples revealed that the
fluorite structure is still present; however, a few additional weak peaks corresponding to
La2O3 and CeO2 are also observed. The presence of these peaks can be attributed to partial
decomposition of the powder material and phase separation of La2O3 from the La2Ce2O7
solid solution during flame synthesis. This is also supported by the presence of CeO2 in
the diffraction patterns due to the deviation in the La/Ce ratio of the spheroidized LC
samples with respect to stoichiometric LC. These results indicate that both LC powders
did not preserve their fluorite phase structure during flame synthesis. Deeper research on
the spheroidization process of LC particles and the effect of their morphology on the final
microstructure and properties of plasma-sprayed TBCs is in progress and will be published
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separately. Future work will also focus on the preparation and characterization of LC-YSZ
composites as potential materials for TBCs. The chemical reactivity of the LC and YSZ,
sintering behavior and the mechanical and thermal properties of the LC-YSZ bulk samples
will be investigated at high temperatures and pressures via hot-press experiments.
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4. Conclusions

The results presented in this paper provide a basic understanding of the structure
of La2Ce2O7 prepared by two different methods, namely, the modified Pechini sol-gel
method and solid-state synthesis. The cubic fluorite structure of the LC-SS powder was
observed by XRD after heat treatment at 1300 ◦C. In contrast, there was always a single
fluorite structure in the LC-SG powder after heat treatment over the entire temperature
range of 1000–1400 ◦C. Therefore, it can be concluded that the synthesis temperature was
lowered from 1300 ◦C to 1000 ◦C by the modified Pechini sol-gel method. SEM examination
showed that the as-obtained La2Ce2O7 powders were composed of agglomerates formed
of nano-grains with crystallite sizes ranging from 42 to 98 nm, depending on the synthesis
method and calcination temperature. However, more homogeneity in the size and shape of
the grains was observed for the LC-SG sample. As shown by EDXS, both powders have
a chemical composition close to the stoichiometric composition of La2Ce2O7. A detailed
review of the Raman spectra confirmed that both LC-SS and LC-SG have a fluorite structure
that remains stable after calcination at 1400 ◦C. The investigations in this work indicate
that the prepared LC powders are promising candidates for TBC applications and that the
Pechini sol-gel process is a simple way to prepare LC powders and can also potentially be
applied in the preparation of other fluorite type oxides. The spheroidization results showed
that the content of solid, defect-free spherical particles was higher in the case of LC powder
synthesized by the modified Pechini method. This indicates that the spheroidization ability
and efficiency were better for LC powder fabricated by the modified Pechini method than
for powder fabricated by solid-state synthesis.
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