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Abstract: Non-alcoholic fatty liver (NAFLD) over the past years has become a metabolic pandemic
linked to a collection of metabolic diseases. The nuclear receptors ERRs, REV-ERBs, RORs, FXR,
PPARs, and LXR are master regulators of metabolism and liver physiology. The characterization of
these nuclear receptors and their biology has promoted the development of synthetic ligands. The
possibility of targeting these receptors to treat NAFLD is promising, as several compounds including
Cilofexor, thiazolidinediones, and Saroglitazar are currently undergoing clinical trials. This review
focuses on the latest development of the pharmacology of these metabolic nuclear receptors and how
they may be utilized to treat NAFLD and subsequent comorbidities.

Keywords: non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; nuclear receptors;
lipogenesis; metabolism; inflammation; glucose metabolism; oxidative stress; insulin sensitivity;
fibrosis; therapeutics

1. Introduction

Non-alcoholic fatty liver (NAFLD) is the most prevalent chronic liver disease world-
wide. NAFLD comprises a spectrum of diseases from simple steatosis (greater than 5%
hepatic fat) to steatohepatitis (combination of lipid accumulation and inflammation and/or
fibrosis) (Figure 1) [1–5]. In some cases, this disease can progress into advanced-stage liver
diseases including cirrhosis or hepatocellular carcinoma (HCC). NAFLD is often associated
with other metabolic disorders including obesity, type II diabetes, and cardiovascular
diseases (including atherosclerosis). Considering the continued increase in patient BMI,
it is no surprise that NAFLD has become so prevalent. In fact, obesity appears to play
a significant role in both the development and progression of NAFLD and increases the
chance that patients will develop non-alcoholic steatohepatitis (NASH) and fibrosis [6–10].
While approximately 15–20% of NAFLD patients are not considered obese, all NAFLD
patients clearly demonstrate dysregulation of metabolic processes, lipid storage, endothelial
damage, and increased expression of inflammatory markers [1,2,6,11–15].
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Figure 1. Stages of non-alcoholic fatty liver disease (NAFLD). Figure created with BioRender. 

NAFLD is a complex multifactorial disease associated with genetic, epigenetic, and 
environmental factors, with a pathogenesis that not only differs from patient to patient 
but remains unclear. Often, a “multi-hit” model is used to describe the development and 
progression of NAFLD, where the accumulation of hepatic triglycerides (steatosis) via in-
creased lipogenesis and impaired free fatty acid degradation, in many cases as a result of 
insulin resistance and obesity, leads to the pathogenesis of fatty liver disease [16–19]. The 
accumulation of hepatic lipids leads to the activation of proinflammatory molecules and 
oxidative stress, which itself can lead to increased mitochondrial dysfunction, fibrosis, 
and NASH (Figure 2). 

 
Figure 2. “Multi-hit” process of NAFLD progression. Insulin resistance, obesity, hyperlipidemia, 
and other factors may act independently or collaboratively to initiate the pathogenesis of fatty liver 
disease, characterized by increased hepatic triglyceride storage and steatosis. Disease progression 
may also be multifactorial, but most often occurs upon increased proinflammatory cytokine activa-
tion and increased hepatic oxidative stress, leading to NASH with fibrosis. Genetic, epigenetic, en-
vironmental, and other factors also play a role in the development of primary factors as well as in 
the development of steatosis. Figure created with BioRender. 

Oxidative stress is the imbalance between reactive oxygen species (ROS) production 
and the scavenging capacity of the antioxidant system. ROS include hydrogen peroxide 
and superoxide free radicals that are produced as byproducts of energetic metabolism in 
different types of liver cells. Steatosis induces the overproduction of ROS, which causes 
oxidative modifications to DNA, lipids, and proteins. These damaged macromolecules 
can accumulate and induce liver injury, cell death, inflammation, and promote metabolic 
dysfunction [20–24]. Targeting oxidative stress in addition to other factors (steatosis, in-
flammation, etc.) may be a viable therapeutic option for NAFLD. 

The innate immune response is an important component of the immune system that 
recognizes and responds to potential pathogens in a “generic” fashion. In contrast to the 

Figure 1. Stages of non-alcoholic fatty liver disease (NAFLD). Figure created with BioRender (accessed
on 7 February 2022).

NAFLD is a complex multifactorial disease associated with genetic, epigenetic, and
environmental factors, with a pathogenesis that not only differs from patient to patient
but remains unclear. Often, a “multi-hit” model is used to describe the development and
progression of NAFLD, where the accumulation of hepatic triglycerides (steatosis) via
increased lipogenesis and impaired free fatty acid degradation, in many cases as a result of
insulin resistance and obesity, leads to the pathogenesis of fatty liver disease [16–19]. The
accumulation of hepatic lipids leads to the activation of proinflammatory molecules and
oxidative stress, which itself can lead to increased mitochondrial dysfunction, fibrosis, and
NASH (Figure 2).

Metabolites 2022, 12, x FOR PEER REVIEW 2 of 29 
 

 

 
Figure 1. Stages of non-alcoholic fatty liver disease (NAFLD). Figure created with BioRender. 

NAFLD is a complex multifactorial disease associated with genetic, epigenetic, and 
environmental factors, with a pathogenesis that not only differs from patient to patient 
but remains unclear. Often, a “multi-hit” model is used to describe the development and 
progression of NAFLD, where the accumulation of hepatic triglycerides (steatosis) via in-
creased lipogenesis and impaired free fatty acid degradation, in many cases as a result of 
insulin resistance and obesity, leads to the pathogenesis of fatty liver disease [16–19]. The 
accumulation of hepatic lipids leads to the activation of proinflammatory molecules and 
oxidative stress, which itself can lead to increased mitochondrial dysfunction, fibrosis, 
and NASH (Figure 2). 

 
Figure 2. “Multi-hit” process of NAFLD progression. Insulin resistance, obesity, hyperlipidemia, 
and other factors may act independently or collaboratively to initiate the pathogenesis of fatty liver 
disease, characterized by increased hepatic triglyceride storage and steatosis. Disease progression 
may also be multifactorial, but most often occurs upon increased proinflammatory cytokine activa-
tion and increased hepatic oxidative stress, leading to NASH with fibrosis. Genetic, epigenetic, en-
vironmental, and other factors also play a role in the development of primary factors as well as in 
the development of steatosis. Figure created with BioRender. 

Oxidative stress is the imbalance between reactive oxygen species (ROS) production 
and the scavenging capacity of the antioxidant system. ROS include hydrogen peroxide 
and superoxide free radicals that are produced as byproducts of energetic metabolism in 
different types of liver cells. Steatosis induces the overproduction of ROS, which causes 
oxidative modifications to DNA, lipids, and proteins. These damaged macromolecules 
can accumulate and induce liver injury, cell death, inflammation, and promote metabolic 
dysfunction [20–24]. Targeting oxidative stress in addition to other factors (steatosis, in-
flammation, etc.) may be a viable therapeutic option for NAFLD. 

The innate immune response is an important component of the immune system that 
recognizes and responds to potential pathogens in a “generic” fashion. In contrast to the 

Figure 2. “Multi-hit” process of NAFLD progression. Insulin resistance, obesity, hyperlipidemia, and
other factors may act independently or collaboratively to initiate the pathogenesis of fatty liver disease,
characterized by increased hepatic triglyceride storage and steatosis. Disease progression may also
be multifactorial, but most often occurs upon increased proinflammatory cytokine activation and
increased hepatic oxidative stress, leading to NASH with fibrosis. Genetic, epigenetic, environmental,
and other factors also play a role in the development of primary factors as well as in the development
of steatosis. Figure created with BioRender (accessed on 7 February 2022).

Oxidative stress is the imbalance between reactive oxygen species (ROS) production
and the scavenging capacity of the antioxidant system. ROS include hydrogen peroxide
and superoxide free radicals that are produced as byproducts of energetic metabolism in
different types of liver cells. Steatosis induces the overproduction of ROS, which causes
oxidative modifications to DNA, lipids, and proteins. These damaged macromolecules
can accumulate and induce liver injury, cell death, inflammation, and promote metabolic
dysfunction [20–24]. Targeting oxidative stress in addition to other factors (steatosis,
inflammation, etc.) may be a viable therapeutic option for NAFLD.

The innate immune response is an important component of the immune system
that recognizes and responds to potential pathogens in a “generic” fashion. In con-
trast to the adaptive immune system, the innate immune system does not confer long-
lasting/protective immunity. It is typically considered the first line defense and displays
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the ability to discriminate against host vs. non-host/pathogen. Specifically, inflamma-
somes, that are quite distinct in that they form a high molecular weight caspase-1 activating
complex, control the maturation and secretion of Interleukin 1β (IL-1β) and Interleukin
18 (IL-18); these cytokines play an essential role in the inflammatory response involved in
the development and pathogenesis of fatty liver diseases (Figure 2) [25–32]. Unlike most
cytokines that are translated into their active forms, both IL-1β and IL-18 are produced
in a non-active precursor format and must be activated by proteolysis before they can be
secreted in their active forms. Inflammasomes are “gatekeepers” of IL-1β and IL-18 activity
since caspase-1 proteolytic activity associated with the multiprotein inflammasome regu-
lates the processing and activation of these two cytokines. Given the significant efficacy of
IL-1β and IL-18 in producing inflammation, their availability is controlled at two levels. Syn-
thesis of pro-IL-1β and pro-IL-18 mRNA is tightly regulated at the transcriptional level via
proinflammatory signaling mediated by nuclear factor kappa B subunit 1 (NF-κB) and/or
mitogen-activated protein (MAP) kinase signaling pathways. Low levels of these precur-
sor cytokines are maintained in cells providing minimal substrate if the inflammasome
alone is activated. Similarly, activation of transcription of these two pro-cytokines cannot
produce active cytokines without the activation of the inflammasome. Three NOD-like
receptors (NLR) containing inflammasomes have been demonstrated to have physiological
roles and they are named for the NLR protein they are associated with: NLRP1, NLRP3,
and NLRC4. Each of these inflammasomes is stimulated by danger-associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) with the specific
regulatory mechanisms by assembling an oligomerized multiprotein complex that includes
pro-caspase-1 and allows for the autocleavage of pro-caspase-1 to activate caspase-1 and
process the pro-IL-1β and pro-IL-18 [26,32,33].

Inflammasomes are often activated in liver diseases by a variety of signals including
cholesterol crystals, ROS, and palmitic acid. The role of inflammasomes in liver disease
has been attributed to their expression in Kupffer cells and their capacity to initiate in-
flammation via the proinflammatory cytokine IL-1β. IL-1β promotes the recruitment of
inflammatory cells to the liver, in addition to activating hepatic stellate cells (HSCs), which
initiates fibrosis [25]. In the context of liver disease, the NLRP3 inflammasome has been
implicated in many studies as the primary activator of inflammation and initiates the
development of NASH in both rodent models and humans [26,31–33]. The activation
of NLRP3 is mediated through liver parenchymal cells as well as hepatic immune cells.
Recent mouse studies have shown that in animals with early stages of NAFLD, steato-
sis is established, however, without inflammation. Interestingly, these animals had no
signs of NLRP3 inflammasome activation in the liver at the time of this study. The idea
that liver-specific NLRP3 activation is required and essential for the progression of liver
disease towards NASH and beyond is very interesting. Additionally, it is only when the
NLRP3 inflammasome becomes activated in additional tissues and organs that metabolic
syndrome is observed in mammals. Several nuclear receptors can regulate the expression
of the NLRP3 inflammasome as well as other proinflammatory cytokines, thus providing
promising targets for therapeutic evaluation.

Nuclear receptors (NRs) are a class of proteins that regulate the expression of genes
responsible for a variety of different processes such as metabolism, homeostasis, inflam-
mation, development, and many others. NRs are grouped into subfamilies (NR1, NR2,
NR3, NR4, NR5, NR6, and NR0) based on their DNA-binding characteristics. In humans,
there are forty-eight NR family members that act as ligand-activated transcription factors
that respond to a variety of signals from steroid hormones, vitamins, and sterol metabo-
lites [34,35]. Approximately half of these receptors are classified as orphan receptors, as
they do not have well-characterized endogenous ligands. However, NRs with characterized
ligands are targeted for the development of synthetic therapeutics to treat a myriad of
diseases including diabetes, reproductive disorders, inflammation, and metabolic diseases.

The basic structure of a nuclear receptor consists of domains each having a unique
role: N-terminal domain, transcription regulation domain, DNA binding domain (DBD),



Metabolites 2022, 12, 238 4 of 28

hinge domain, ligand binding domain (LBD), and C-terminal domain. The DBD is the
most conserved domain that contains a rich number of cysteines and basic amino acids.
The position of the cysteines is conserved among receptors and their arrangement of Zn2+

ions within the two zinc-finger structures located within the domain [34]. The binding of a
nonpolar molecule to the ligand binding domain induces conformational changes that seem
to control these properties and influence gene expression. The conformational changes
that accompany the transition between the ligand-bound and ligand-unbound forms of the
nuclear hormone receptors significantly affect their affinity for other proteins. The hinge
domain is located between the DNA binding domain and ligand binding domain and is a
short region with low conservation that functions in the modulation of DNA binding.

NRs usually function as ligand-dependent transcription factors but there are several
of them, known as orphan nuclear receptors, that do not have any endogenous or syn-
thetic ligands yet discovered. Ligands are nonpolar molecules that diffuse through cell
membranes to bind to nuclear receptors at their ligand binding domain. NRs recognize
specific DNA-response elements in the promoters and enhancers of their target genes and
respond to ligands by altering their recruitment of different proteins such as coactivators
and corepressors which will then change the expression of the regulated genes. Most NRs
will function as dimers but there is a subset that function as monomers, and this includes
many of the orphan members. Even without the binding of their ligands, NRs will bind
their response elements and have an active role in regulation of their genes, and this is
known as the basal level of expression. This basal level of expression can be regulated
through the introduction of various synthetic ligands such as agonists, antagonists, inverse
agonists, and partial agonists. Presence or absence of specific ligands affects the NR’s ability
to recruit different transcriptional proteins by altering the gene expression.

Due to the vast amount of knowledge regarding a ligand’s effect on NRs, there has
been much focus on the development of small-molecule synthetic ligands that can either
have the same effect as endogenous ligands or the opposite effect. Synthetic ligands
that mimic endogenous ligands are known as agonists, and ones that have the opposite
effect are known as antagonists. For most NRs, agonists will bind to the ligand-binding
domain causing conformational changes that recruit coactivator proteins which cause an
increase in transcription of the NR’s target genes, whereas an antagonist binds the ligand
binding domain and will prevent conformational changes such as the changes that the
agonist causes to prevent coactivator recruitment, therefore preventing upregulation of gene
expression. Inverse agonists are also explored which result in a conformational change that
will reduce the basal levels of activity. This inverse agonist induces a conformational change
that recruits a corepressor which then leads to the silencing of target genes. The defining
characteristics of a ligand are not as definitive as there are partial agonists which will bind
to the ligand binding domain and cause a partial activation of target gene transcription.

Here, we describe the roles that several NRs play in the liver physiology, metabolism,
inflammation, and potential therapeutic strategies, including those that are currently in
clinical trials, for the treatment of NAFLD.

2. Nuclear Receptor Targets for NAFLD
2.1. FXR

The farnesoid X receptor (FXR) is a bile acid receptor that regulates triglyceride
metabolism via modulation of hepatic lipogenesis. FXR is highly expressed in the liver,
intestine, and kidney. Bile acids modulate lipid metabolism and can cross the plasma
membrane through simple diffusion or facilitated transport where it then binds to the LBD
of FXR. FXR heterodimerizes with RXR and binds to inverted repeats with 1 nucleotide
separating (IR1) [36]. Natural ligands of FXR include chenodeoxycholic acid (CDCA) and
cholic acid (CA) [36]. Binding to natural ligand facilitates coactivator recruitment and
upregulation of transcription. Synthetic ligands have also been designed targeting FXR
including GW4064, which is commonly used as a positive control in many studies [36,37].
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Recent research has shown that FXR is a major modulator of insulin sensitivity and lipid
metabolism in animal models [15].

FXR is a master regulator of bile acid metabolism, lipid metabolism, and hepatic
glucose metabolism. In patients with NAFLD, triglycerides accumulate in the liver leading
to steatosis from increased de novo lipogenesis and fatty acid uptake in addition to reduced
fatty acid oxidation and very-low-density lipoprotein (VLDL) export [36]. Activation of
FXR in hepatocytes is protective against steatosis by decreasing lipogenesis and increasing
fatty acid oxidation. FXR upregulates fibroblast growth factor 19 (FGF19) upon activa-
tion, which downstream leads to suppression of bile acid synthesis. The suppression of
bile acid synthesis occurs by downregulation of cytochrome P450 family 7 subfamily A
member 1 (CYP7A1) which is the rate-limiting step in bile acid synthesis from cholesterol
(Figure 3). Lipogenesis is modulated through decreased expression of sterol regulatory ele-
ment binding protein 1 (SREBP1c) upon activation of FXR which induces small heterodimer
partner (SHP) [37]. Hepatic glucose metabolism is also modulated through FXR activation
by reducing levels of peroxisome proliferator-activated receptor gamma coactivator 1 al-
pha (PGC1α), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase
(G6Pase) [38]. PGC1α is activated by cAMP response element-binding protein (CREB), then
acts as a coactivator for nuclear receptors glucocorticoid receptor (GR) and hepatic nuclear
factor 4 (HNF4) that are involved in gluconeogenesis. FXR and SHP are known to bind to
the promoter of the PEPCK gene to regulate glucose metabolism [39].
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Figure 3. Activation of FXR by natural or synthetic ligands decreases bile acid production and
increases lipid and glucose metabolism. For the bile acid pathway, FGF19 is upregulated and CYP7A1
downregulated, which in turn causes a decrease of bile acid synthesis. Activation of FXR also increases
SHP, which decreases SREBP1c, PEPCK, and G6Pase, causing an increase in lipid metabolism and
glucose metabolism. Figure created with BioRender (accessed on 7 February 2022).

Humans with NASH been found to have elevated levels of bile acid production, which,
in turn, can cause progression of inflammation and fibrosis by inducing oxidative stress.
Rats fed a high fat diet have increased CYP7A1 and bile acid production, showing the
potential of modulating FXR as a therapeutic for this disease [40]. FXR knock out mice
not only have increased bile acid production, but also a NASH phenotype of steatosis,
inflammation, and fibrosis. Alternatively, activating FXR has been shown to be protective
against inflammation through NF-kB pathway and monocyte chemoattractant protein-1
(MCP-1) [41]. It has also been shown that activation of FXR-SHP regulatory pathway helps
inhibit the progression of fibrosis by inhibiting hepatic stellate cells [42].

As previously mentioned, GW4064 is a potent synthetic non-steroidal FXR agonist
(Figure 4). Through many experiments by different groups, it has been shown that GW4064
reduces hepatic lipid accumulation, steatosis, and improves hyperglycemia and hyperinsu-
linemia [36]. However, this ligand has poor bioavailability, which halted its potential as a
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clinical candidate. Obeticholic acid is an FXR agonist that is currently being studied for
treatment of NAFLD. In phase 2 clinical trials, obeticholic acid showed improvements in
liver inflammation and fibrosis. Additionally, obeticholic acid decreased NAFLD activity
score (NAS) scores by ≥2 points without worsening fibrosis in patients [43]. These trials
observed worsening dyslipidemia—increased LDL—in some patients that can be managed
by co-administrating statins but raises some concerns [6].
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Cilofexor (GS-9674) is a potent FXR agonist (EC50 = 43 nM) (Figure 4) with a potential
for the treatment of NASH due to its anti-inflammatory and anti-fibrotic effects. A phase 2
study to evaluate the safety and efficacy of Cilofexor (NCT02854605) was completed recently.
The study showed that Cilofexor was well tolerated when dosed orally at 30 and 100 mg for
24 weeks. After 24 weeks, significant reduction in serum gamma-glutamyltransferase, serum
bile acids, and hepatic steatosis was observed in patients with NASH. For NASH patients
who received the 100 mg dose of Cilofexor, 39% showed ≥30% decline in magnetic resonance
imaging-proton density fat fraction (MRI-PDFF), while only 14% of patients who received
the 30 mg dose showed the same level of MRI-PDFF reduction [44]. Additionally, Cilofexor
(GS-9674) is under evaluation in phase 2 clinical trials for treatment of NASH (NCT02781584)
in combination with Firsocostat (GS-0976) and Selonsertib (GS-4997) [45–48].

Firsocostat (GS-0976) (Figure 4) is an acetyl-CoA carboxylase (ACC) inhibitor with
potential to reduce hepatic steatosis and improve insulin sensitivity [49]. In preclinical
studies, combination of Cilofexor and Firsocostat was more effective than using Cilofexor as
monotherapy for the treatment of NASH. Twenty patients received both Cilofexor (30 mg)
and Firsocostat (20 mg) orally for 12 weeks. They showed improvement in hepatic steatosis,
liver stiffness, alanine aminotransferase, γ-glutamyltransferase, and serum markers of
hepatic fibrosis. The combination therapy was safe and led to reduction in hepatic proton
density fat fraction (PDFF) and hepatic de novo lipogenesis (DNL) [47,50].
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Selonsertib (GS-4997) is a selective inhibitor of apoptosis signal-regulating kinase-1
(ASK1) with potential anti-fibrotic and anti-inflammatory activities [51]. This drug failed
previously in phase 3 studies on NASH patients with fibrosis (stage 3) and cirrhosis (stage
4). Selonsertib is currently in phase 2 study in combination with Cilofexor and Firsocostat
(NCT03449446). This study is underway on 395 patients with severe fibrosis or compensated
cirrhosis due to NASH.

Tropifexor (LJN452) is potent non-bile acid FXR agonist that was advanced into phase
2 human clinical trials in patients with NASH [NCT02855164] and PBC [NCT02516605] [52].
In healthy volunteers, Tropifexor was found to be safe and well tolerated. TERN-101
(LY2562175) is another potent non-bile acid FXR agonist with remarkable lipid modulating
properties. This drug effectively lowers both LDL and triglycerides while raising HDL [53].
Moreover, LY2562175 possess good PK properties and has advanced into phase 2 clinical
trial for the treatment of NASH. EDP-305 is a second-generation non-steroid FXR agonist
used for the treatment of NASH. ARGON-1 phase 2a study of EDP-305 (NCT03421431)
was completed and showed significant reduction in ALT and liver fat content at 2.5 mg
dose. The major side effects reported from this trial were pruritus, headaches, dizziness,
and GI-related symptoms. The results of these clinical trials are summarized in Table 1.

Table 1. Summary of NR compounds in NAFLD and NASH studies. Up arrow (↑) indicates an
increase while a down arrow (↓) indicates a decrease.

FXR

Cilofexor (phase 2) FXR agonist ↓ Serum bile acids
↓ Hepatic Steatosis

Cilofexor + Firsocostat (phase 2) FXR agonist + ACC inhibitor
↓ Hepatic Steatosis
↓ Liver Stiffness
↓ ALT

Cilofexor + Firsocostat +
Selonsertib (phase 2)

FXR agonist + ACC inhibitor +
ASK1 inhibitor Currently ongoing and awaiting results

TERN-101/LY2562175 (phase 2) FXR agonist
↓ LDL
↓ TGs
↑ HDL

EDP-305 (phase 2a) FXR agonist

↓ Hepatic steatosis
↓ ALT
Side effects including pruritus, headaches, and GI
issues were reported

GW4064 FXR agonist
↓ Hepatic steatosis
↓ Hyperglycemia
Poor bioavailability

Obeticholic Acid (phase 2) FXR agonist

↓ Hepatic inflammation
↓ Fibrosis
Observed increases in LDL in some patients but
can be co-treated with statins

PPAR

Thiazolidinediones (TZDs), (FDA
approved for diabetes; phase 2 for
NASH)

PPARγ agonist

↑ Insulin sensitivity
↑ Peripheral glucose clearance
↓ Hepatic steatosis
↓ FFA

Seladelpar (phase 2) PPARδ agonist
↓ ALT
↓ LDL
Terminated due to increased liver damage

Saroglitazar (phase 2 for NAFLD;
phase 3 for NASH) PPARα/δ agonist

↓ Hepatic steatosis
↓ Liver enzymes
Approved in India for use in NASH

Lanifibranor (phase 3) Pan-PPAR agonist ↓ Hepatic inflammation

GW501516 PPARδ agonist
↑ Insulin sensitivity
↓ Hepatic steatosis
Induced cancer in preclinical models
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Table 1. Cont.

LXR

T0901317 LXRα/β agonist

↓ Cellular cholesterol
↑ Cholesterol Efflux
↑ Hepatic lipogenesis
Initially in clinical trials for atherosclerosis but
removed due to increased hepatic steatosis

GW3965 LXRα/β agonist

↑ Glucokinase expression
↓ Gluconeogenesis
↓ Inflammation
↑ Plasma and liver TGs

LXR-632 (phase 1) LXRα/β agonist
↑ Anti-atherogenic properties
Terminated post-phase 1 due to
treatment-emergent adverse events

CS-8080 (phase 1) LXRα/β agonist
Clinical trials were terminated due to undisclosed
reasons for these compounds.BMS-779788 (phase 1) LXRα/β agonist

BMS-852927 (phase 1) LXRα/β agonist

AHRO-001 (phase 1) LXRα/β agonist ↑ HDL
↑ Anti-atherogenic properties

SR9238 Liver-specific LXRα/β inverse
agonist

↓ Hepatic steatosis
↓ Hepatic inflammation

SR9243 LXRα/β inverse agonist
↓ Hepatic steatosis
↓ Hepatic inflammation
Targets Warburg effect in cancer cells

ROR
SR1078 RORα/γ agonist ↑ FGF21 expression

↑ G6Pase expression

SR1001 RORα/γ inverse agonist ↓ Th17 cell-driven hepatic inflammation

REV-ERB

GSK4112 Rev-erbα/β agonist No in vivo activity

SR8278 Rev-erbα/β antagonist
Not tested in NAFLD but drives muscle
regeneration and improves glucose regulation via
increased osteocyte turnover

SR9009 Rev-erbα/β agonist

↓ Plasma cholesterol
↓ Hepatic fibrosis
↑ Lean muscle mass
↓ Fat mass
↓ Activation and expression of NLRP3
inflammasome

ERR

XCT790 ERRα inverse agonist Anti-diabetic activity in rodents

GSK4716 ERRβ/γ agonist ↑Mitochondrial function in myotubes

GSK5182 ERRγ inverse agonist ↓ Plasma glucose in obese mice

2.2. PPARs

Peroxisome proliferator-activated receptors (PPARs) exist in three isoforms (alpha,
beta/delta, gamma), all of which require heterodimerization with the retinoid x receptor
(RXR) to bind to DNA response element characterized by a direct repeat of an AGGTCA
“half site” with 1 nucleotide separating the half sites (DR1) [54]. They share 60–70% amino
acid sequence identity in their LBDs and have larger ligand-binding pockets than most
NRs (Figure 5) [55,56]. PPARα is expressed in the liver and skeletal muscle while PPARδ is
ubiquitously expressed [57,58]. PPARγ is expressed predominantly in adipocytes but is
also found in other tissues, including the liver [59]. The natural ligands for this NRs are
believed to be unsaturated fatty acids [60]. Upon binding of a natural ligand, transcriptional
coactivators are recruited, and transcription activated. Many synthetic ligands have been
designed targeting PPARs including GW501516 (specific agonist for PPARδ), GW7647
(specific agonists for PPARα), and thiazolidinediones (TZDs) that specifically target PPARγ
(Figure 6).
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Figure 5. Homology of the PPAR receptors. (A) Schematic showing the general structure of nuclear
receptors. The N-terminal A/B region contains the ligand-independent activation of function-1
region, which is highly variable among the nuclear receptors. The DNA-binding domain consists of
two zinc fingers that can recognize and bind specific sequences of DNA or response elements. This
region is highly conserved among the nuclear receptors. The highly variable hinge region connects the
DNA-binding domain to the ligand-binding domain, a hydrophobic region consisting of alpha helices
that bind natural or synthetic ligands to induce transcriptional regulation of target genes. In most
nuclear receptors, the ligand-binding domain contains the ligand-dependent activation of function-2
region, which is important in the recruitment of co-activators. At the C-terminal, there is often a
highly variable region present which aids in the stabilization and recruitment of co-activators. (B) The
three PPAR isoforms share amino acid sequence homology of the DNA-binding and ligand-binding
domains. Figure created with BioRender (accessed on 7 February 2022).

PPARα being the most abundant isoform in the liver has been a logical target for the
treatment of NAFLD. PPARα is involved in regulating lipid metabolism, inflammation
through regulation of NF-kB, and gluconeogenesis and autophagy during starvation [61–63].
Several PPARα selective agonists have been evaluated in clinical trials including clofibrate,
fenofibrate, and gemfibrozil, but have not been successful in improving histological markers
of steatosis and inflammation [9].

Seladelpar (MBX-8025), is a PPARδ agonist that was evaluated in phase 2 clinical
trials for NASH and PSC. Despite early promising results of this drug in reducing ALT
and LDL, the trials were terminated due to observed liver damage in NASH patients [63].
Saroglitazar (Lipaglym) is a dual PPARα and PPARγ agonist that was approved for use
in India for treating diabetic dyslipidemia in Type II diabetics. This drug is currently in
multiple clinical trials in USA for the treatment of NAFLD (phase 2) and NASH (phase
3) [64–66]. Saroglitazar was approved in India on March of 2020 for the treatment of NASH,
which make it the first approved drug for NASH in the world. In phase 3 trials in India,
the drug reduced both liver fat and liver enzymes (Figure 6).

Elafibranor, a dual PPARα/δ agonist, had a successful phase 2b clinical trial showing
improvements in defined endpoints such as decreased liver enzymes, plasma lipids, glucose
homeostasis, and systemic inflammation (Figure 6) [62]. Unfortunately, in the Genfit phase
3 trial for NASH, it was found that elafibranor was not as efficacious as previously thought,
showing only about a 19% response rate in patients as compared to placebo [63].

PPARδ is the least explored isoform of the three PPARs but has great therapeutic
potential for treatment of NASH/metabolic disease due to its role in regulating lipids,
glucose homeostasis, and fatty acid synthesis [9]. Many studies have been performed with
the potent agonist GW501516 in vivo NASH models showing improved insulin sensitivity
and steatosis. Although GW501516 is a potent agonist that shows improvements in NAFLD,
further clinical development was terminated from cancer development in preclinical mod-
els [54]. Currently, PPARδ selective agonists are being explored by Mitobridge, Boston, MA,
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and are currently in clinical trials 1 and 2 for kidney disease, fatty acids oxidation disorders,
and Duchenne’s muscular dystrophy.
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There is a clear need for therapeutics for the treatment of NAFLD. Researchers have
recently tapped into the NR superfamily to explore therapeutic capabilities for the treatment
of NAFLD. For example, NAFLD is often diagnosed in addition to obesity and insulin
resistance/Type 2 diabetes mellitus (T2DM). The prevalence of NAFLD in patients with
T2DM is over 70%. A well-known target for the treatment of T2DM is PPARγ, by utilizing
the thiazolidinediones (TZDs) family of therapeutics. TZDs typically act by decreasing
insulin resistance via activating the PPARγ pathway. This upregulation of PPARγ leads
to increased glucose uptake by peripheral tissues as well as lowered hepatic production
of glucose. Several clinical studies in both diabetic and non-diabetic patients on TZD
therapies suggested that TZDs hold utility in the treatment of NAFLD and NASH. The TZDs
rosiglitazone and pioglitazone were tested in nine separate clinical trials of T2DM patients.
The trials demonstrated that TZDs increase peripheral glucose clearance and improved
insulin sensitivity while also appearing to significantly reduce hepatic fat accumulation
and free fatty acid (FFA) concentration (Figure 6).

Lanifibranor is a pan-PPAR agonist and phase 2 clinical study (NCT03008070) to
evaluate this drug for the treatment of NASH was completed recently. The drug reduced
inflammation and did not worsen fibrosis in NASH patients. Phase 3 clinical studies of



Metabolites 2022, 12, 238 11 of 28

Lanifibranor is predicted to start in late 2020 or early 2021 [67]. Pemafibrate (K-877) is
a potent and selective PPARα modulator that was approved in Japan for the treatment
of hyperlipidemia [68]. This drug has passed phase 2 clinical trials (NCT03350165) to
evaluate its efficacy and safety in patients with NAFLD and showed significant efficacy in
the reduction of steatohepatitis that parallels animal data from earlier studies (Figure 6) [63].
The results of these clinical trials have been summarized in Table 1. With significant roles
in lipid and glucose disorders, the PPAR receptors have proven to be a rich target for
drug discovery. It is likely that some combination of PPAR therapeutic will be a standard
treatment for NAFLD.

2.3. LXRs

Liver X receptors (LXRs) are a group of ligand-activated transcription factors that
occur in two isoforms LXRα (NR1H3) and LXRβ (NR1H2). Both isoforms were discovered
during the 1990s and function as transcriptional regulators of cholesterol metabolism, de
novo lipogenesis, and gluconeogenesis [69,70] and have similar homology to PPARs, FXR,
and RXRs, and even share some functional activity. LXRα is highly expressed in liver,
kidney, intestines, fat tissues, macrophages, lung, and spleen, whereas LXRβ is ubiqui-
tously expressed. LXR regulates activity of target genes by forming obligate heterodimers
with RXR and that LXR-RXR heterodimer binds to the LXR response element (LXRE) in
the regulatory regions of the DNA. Upon binding of a ligand, a conformational change
in the protein occurs and recruits co-activators which displaces the co-repressor that is
usually bound to the dimers in the absence of an agonist/endogenous ligand, causing
the recruitment of transcriptional machinery and downstream activation of target genes
(Figure 7). LXR was an orphan nuclear receptor until in 1996, when Mangelsdorf and
colleagues successfully de-orphanized the receptor. They discovered a specific group of
endogenous oxysterols that were shown to activate transcription through LXRα. A GAL4-
LXRα and GAL4-responsive luciferase reporter cotransfection system was used along
with concentrated lipid extracts, that was prepared from a variety of tissues to identify
potential LXRα ligands [69,71,72]. After conducting multiple sequence comparisons and
phylogenetic analyses of the DBD (DNA-binding domain) and the LBD (ligand-binding
domain), LXR was described as RLD-1 initially, a novel member of the thyroid/retinoid
hormone receptor subfamily that heterodimerizes with RXR that recognizes a conserved
direct repeat 4 (DR-4) response element, usually a variant of the idealized sequence AG-
GTCANNNNAGGTCA on the DNA [34,73–75]. Several co-transfection studies showed
that this RLD-1/RXR/DR4 binding is constitutively active, and RLD-1 does not compete
for RXR, which suggested that LXR (RLD-1) was different from RARs. Co-transfection
studies revealed that transactivation of this LXR-RXR heterodimer was selectively induced
by the addition of retinoic acids as well as by 9-cis-retinoic acid, which led Rainer and
group to believe that LXR selectively activated the DR4 response element in the presence of
RXR [74].

Oxysterols, which are oxygenated derivatives of cholesterol (22-(R)-hydroxycholesterol,
27-hydroxycholesterol and cholestenoic acid), have been identified as the endogenous
ligands of LXR [69]. The oxysterols that activate LXRα are found endogenously at the
rate-limiting steps of three major biological pathways: steroid hormone biosynthesis, bile
acid synthesis, and the conversion of lanosterol to cholesterol [71,72,76,77]. This led to the
discovery that LXR was indeed an important master regulator of sterol regulatory element
binding protein 1 (SREBP1) and therefore played a major role in cholesterol sensing and
fatty acid metabolism [78,79]. This was an important discovery since manipulation of this
receptor could be used to treat a variety of cholesterol-related diseases, including atheroscle-
rosis and other cardiovascular-related disorders. In 2003, the Burris group identified the
first non-oxysterol natural product ligand of LXR, an indole alkoid fungal metabolite ex-
tracted from Penicilium paxili, paxiline [80]. Radioligand binding assays and scintillation
proximity assays were employed to identify binding of paxiline to LXR. Paxiline was iden-
tified to be an efficacious natural ligand that was able to bind specifically to both LXRα and
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β. The alpha screens determined that the binding of paxiline led to the recruitment of the
co-activator to the LXR-RXR heterodimer and activates LXR-mediated gene transcription
of SREBP and ATP-binding cassette subfamily A member 1 (ABCA1) [80,81]. Unfortunately,
paxiline is known to be a very potent antagonist to calcium-activated potassium channels.
The drug showed toxicity in vivo due to its tremorgenic myotoxin property and was not
further pursued.
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Figure 7. Mechanism of action of the LXR receptors. LXR heterodimerizes with RXR and recognizes
specific DNA sequences (LXRE) within the promoter of its target genes. While there is some basal
level of activity, upon agonist binding (natural or synthetic), a conformational change occurs that
causes the recruitment of co-activators and allows for transcription of the target gene to occur. Genes
involved in lipogenesis, cholesterol biosynthesis, gluconeogenesis, and inflammation are all regulated
by LXRs, making this nuclear receptor a potential therapeutic target for NAFLD. Figure created
with BioRender (accessed on 7 February 2022).

LXR’s downstream target genes play a major role in lipid metabolism by regulating up-
take, transport, absorption, and excretion of cholesterol and lipids in a tissue-specific man-
ner. In the liver, LXR helps in the conversion of cholesterol into bile acids via CYP7A1 [70].
LXR-mediated activation of target genes, such as SREBP1c [82], fatty acid synthase (FAS),
carbohydrate response-element binding protein (ChREBP), acetyl CoA carboxylase (ACC)
and stearoyl CoA desaturase 1 (SCD1), leads to increased lipogenesis [83,84]. Mice with
disrupted LXRα expression displayed defective expression of SREPB1c, ACC, SCD1, and
FAS, which demonstrated that LXR plays an important role in the lipogenic pathway. Based
on the role LXR plays in cholesterol sensing and regulation of hepatic lipogenesis, it has
been validated as a potential therapeutic target for fatty liver diseases.

Over the past few years, it has been shown that LXR is not only a major player in
lipid and cholesterol metabolism but is also involved in the inflammatory pathway. In
macrophages, LXR plays a significant role in regulating reverse cholesterol transport via
the ABCA1 and ADP-ribosylation factor-like 7 (ARL7) gene which subsequently promotes
the movement of cholesterol to the plasma membrane and efflux. Macrophages are known
to play an important role in host defense and regulation of inflammatory responses; how-
ever, they also play an important metabolic role [85–88]. They are not only involved in
phagocytic host defense against pathogens, but they are also involved in clearing apoptotic
cells and oxidized lipoproteins from the system. Atherosclerotic plaques are caused by an
inflammatory reaction to cholesterol-rich macrophages (foam cells) in the arteries. In these
hypercholesterolemic conditions, the accumulation of cholesterol drives the conversion of
macrophages into foam cells, causing the formation of atherosclerotic plaques [73,89]. To
deal with these elevated levels of cholesterol, LXRs reduce cellular cholesterol by activating
reverse cholesterol transport in peripheral cells by promoting cholesterol efflux via upreg-
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ulation of ABC transporters [73,75]. Therefore, compounds that activate or stimulate the
receptor have major potential in slowing down the progression of coronary heart disease.
A benzenesulfoamide, T0901317 [N-(2,2,2-Trifluoroethyl)-N-[4-2,2,2-trifluoro-1-hydroxy-1-
(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] (Figure 8), an LXR agonist, has been
widely studied and characterized.
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It was shown in 2002 that activating LXR had an atheroprotective effect on LDL recep-
tor deficient mice (LDLR−/−). This synthetic LXR ligand was shown to significantly reduce
atherosclerotic lesions in LDLR−/− mice [90]. On teasing apart the entire mechanism, it
was found that T0901317 increases the expression of ABCA1 in these mice and subsequently
increases reverse cholesterol transport. As discussed earlier, ABCA1 regulates cholesterol
absorption in the intestines. Patients with a mutation in their ABCA1 gene have a deficiency
in their high-density lipoprotein (HDL) and the condition is called Tangier disease. These
patients have low HDL and severely high plasma cholesterol levels. They are at a much
higher risk for atherosclerosis [14,91–97]. Therefore, pharmacologic activation of LXR with
T0901317 showed decrease in atherosclerotic lesions, plasma cholesterol, and triglycerides
in LDL receptor-deficient mice but on the other hand was also seen to induce high lev-
els of hepatic lipogenesis, leading to hepatic steatosis in both LDLr receptor-deficient,
diet-induced obese and diabetic (db/db) mice [91]. T0901317 has also been shown to
act “promiscuously” with respect to nuclear receptor binding. In a Gal4 nuclear receptor
profiling of T0901317, the compound showed promiscuity in binding with LXR, ROR, FXR,
and PXR [98–101].

In addition to the T0901317 compound, a more specific synthetic LXR agonist GW3965
has been shown to improve glucose tolerance in rodents [102,103]. In rodent models of
diet-induced obesity and insulin resistance, GW3965 (Figure 8) has been shown to regulate
genes involved in glucose metabolism in the liver and the adipose tissue. GW3965 was
revealed to inhibit gluconeogenesis in the liver and, in turn, increase the expression of
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glucokinase and the subsequent utilization of high glucose in the liver. In the adipose tissue,
GW3965 mediates activation of LXR and leads to the increased expression of the glucose
transporter, GLUT4, thereby increasing glucose uptake in the adipose tissue. GW3965
has also been shown to reciprocally regulate and reduce inflammation and increase lipid
metabolism. GW3965 reduces inflammation by inhibiting inflammatory gene expression in
mouse models of contact dermatitis and atherosclerosis [102,104].

The control of glucose metabolism is very closely tied with lipid metabolism. In white
adipose tissue, LXR regulates the expression of apolipoprotein D (ApoD) and thyroid
hormone-inducible hepatic protein (THRSP or also known as SPOT14), which are known to
promote catabolism of fatty acids via β-oxidation pathway in the mitochondria [105–107].
LXR also plays a major role in inducing the expression of GLUT4, which is an important
glucose transporter, thereby leading to increased glucose uptake in the adipose tissue.
Even though these LXR agonists show potential pharmacologic properties, they also raise
a couple of concerns. It is necessary to tease apart the promising effects of these LXR
agonists on glucose metabolism from the effects on SREBP-1c. The interdependence of
these two pathways would result in the suppression of gluconeogenesis, which would
imply induction of de novo lipogenesis. These high levels of triglycerides would counteract
the valuable effects of the glucose tolerance. Therefore, both T0901317 and GW3965 have,
therefore, been shown to increase plasma and liver triglycerides and lead to profound
hepatic steatosis, making these synthetic compounds unsuitable as a therapeutic agent.

Several LXR agonists were developed that went into clinical trials and ultimately
failed. LXR-623 (Figure 8), currently owned by Pfizer pharmaceuticals, was the first
published study of the effects of LXR ligands in humans [108]. LXR-623 entered phase 1
of the clinical trials for safety and majorly targeted at enhancing the reverse cholesterol
transport, thereby playing a major atheroprotective role. They assessed the effects of
their drug, administered orally on healthy participants. No deaths or severe adverse
effects were reported from this study but 55% of the participants of this study experienced
treatment-emergent adverse events (TEAE) that mostly included neurologic or psychiatric
disorders such as lightheadedness, decreased comprehension, confusion, palpitation, and
paresthesias. This project was terminated post-phase 1.

Compounds such as CS-8080 (company: Daichii Sankyo, Tokyo, Japan) and BMS-
779788 and BMS-852927, also known as XL-652 and XL-041, respectively (company: Exelixis
and Bristol-Myers Squibb, New York, NY, USA), were also designed to target LXR. These
compounds have also been known to enter phase 1 clinical trials, but all the studies were
terminated for undisclosed reasons. Hyodeoxycholic acid, currently AHRO-001 (company:
AtheroNova, Los Angeles, CA, USA), is a bile acid derivative that targets LXR. This
compound was shown to improve HDL function and have an atheroprotective effect on
LDLR−/− mice. Hyodeoxycholic acid (AHRO-001) is currently known to have successfully
completed the phase 1 clinical trials.

In 2013, a novel synthetic compound, SR9238 (Figure 8), which acts as an LXR inverse
agonist and is selective in the liver, was developed to target NAFLD [109]. SR9238 has
been shown to display nanomolar efficacy, with IC50 of 214 nM for LXRα and 43 nM
for LXRβ. The drug has shown significant selectivity to LXR and has not affected the
expression of any other nuclear receptor. The compound has been shown to significantly
suppress basal transcriptional activity of LXR and downregulate the expression of its target
genes, especially fatty acid synthase (FASn) and SREBP1c, which are majorly involved
in lipogenesis. An inverse agonist of LXR would suppress reverse cholesterol transport
via the suppression of ABCA1 expression. That would be detrimental and would place
patients with fatty liver disease at an added risk of developing atherosclerosis. Therefore,
synthesizing an inverse agonist that would be rapidly metabolized in the liver would
provide extended liver exposure but no exposure to the peripheral tissues. The presence
of an ester moiety on SR9238 contributes to its special ability of only targeting liver tissue
selectively. Pharmacokinetic studies have revealed no signs of SR9238 in the plasma, brain,
or skeletal muscle 2 h after administering 30 mg/kg of the drug intraperitoneally. SR9238
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is metabolized into its acid analogue SR10389 by the plasma lipases. This acid analogue
SR10389 has shown to have no effect on LXRα or LXRβ [109]. Liver-selective LXR inverse
agonist SR9238 has been demonstrated to significantly reduce hepatic steatosis and devel-
opment of NASH in obese, high-fat-diet-fed mice by suppressing hepatic lipogenesis, thus
making it a promising candidate as a therapeutic agent for the treatment of NAFLD [110].

SR9243, another novel synthetic LXR inverse agonist, was developed based on the
structure of SR9238. Unlike SR9238, SR9243 is not liver-selective. SR9243 was developed
with the goal of targeting the Warburg effect and lipogenesis in cancer cells [111]. This
drug was shown to significantly downregulate LXR-mediated glycolysis and lipogenesis
selectively in a wide array of cancer cells. The compound also efficaciously induced cancer
cell death without being toxic to non-malignant cells. It was also capable of sensitizing
cancer cells to chemotherapeutic treatments. The drug was shown to have promising
therapeutic effect in the field of developing cancer therapeutics. Further development of
liver-specific LXR inverse agonists with enhanced pharmacokinetic and dynamic properties
may prove to be a promising therapeutic agent for the treatment of NAFLD.

2.4. RORs

RAR-related orphan receptors (ROR) are members of the NR superfamily that are
known to be involved in inflammatory and metabolic processes. The RORs represent a
subfamily of NRs that includes three members: RORα, RORβ, and RORγ. RORs bind to
the DNA as monomers to specific motifs known as ROR response element (RORE) and act
as transcriptional regulators. RORα is widely expressed in immune cells, skeletal muscles,
skin, lung, adipose tissue, brain, and liver [112–115]. RORβ mainly has expression in the
brain, retina, and pineal gland [116]. RORγ is highly expressed in the thymus, muscle,
testis, pancreas, prostate, heart, and liver [117]. RORs are constitutively active transcription
factors, but oxygenated sterols may function as high affinity ligands. The 7-oxygenated
sterols (7α-OHC, 7β-OHC, and 7-ketocholesterol) function as inverse agonists to both
RORα and RORγ, modulating the expression of RORα/γ-dependent target genes [118].
Several other endogenous ligands have been described in the last 10 years [119]. Our lab
and others have recently developed synthetic ROR ligands, both agonists and inverse
agonists. The inverse agonist, SR3335, was initially identified based on its ability to inhibit
the constitutive activity of RORα with little effect at RORγ and suppressed expression of
RORα target genes involved in hepatic gluconeogenesis, including G6Pase and PEPCK [120].
SR1078, an RORα/γ agonist stimulated expression of two ROR target genes, G6Pase and
fibroblast growth factor 21 (FGF21), in the liver. Pharmacokinetic studies revealed that
SR1078 displays reasonable plasma exposure and can be used both in vitro and in vivo [121].
SR1001, a first-in-class RORα/γ-specific inverse agonist directly binds to the LBD of
both RORα and RORγ, resulting in a conformational change that decreases affinity for
coactivators and increases affinity for corepressors and has been shown to decrease Th17
cells differentiation both in vitro and in vivo [122]. Several thiourea derivatives, including
JC1-40, have been identified as RORα agonists [123]. Huh et al. identified the well-known
cardiac glycoside digoxin, as an inhibitor of RORγ activity [124].

The role of RORα in liver metabolism and NAFLD is very controversial and several
studies and or mouse models have shown opposite results. The Stagger (RORαsg/sg) mice
(6.5 kb genomic deletion of RORα gene) developed a severe ataxia but also have impaired
glucose and lipid metabolism, inflammatory, and immune response [125,126]. RORαsg/sg

mice fed with high-fat diet are resistant to development of hepatic steatosis [125]. Whole-
body RORα-deficient mice have improved metabolic profiling, decreased obesity under
high-fat diet, and display an anti-inflammatory profile, with a decrease in plasma proin-
flammatory cytokines and lymphocytes CD4+ and CD8+ cell population in spleen [127].
Several groups have generated liver-specific RORα deletion with contradictory results.
Kim and colleagues have shown that liver-specific RORα deletion induces NASH in mice
under high-fat diet [128] but, on the other hand, Molinaro et al. report no increase in liver
steatosis in a different model of liver-specific RORα deletion under a Western diet [129].
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As NAFLD involve both hepatocytes and immune cells, liver-specific deletion of
RORα may not be the best model to study its role in the disease. Myeloid-specific RORα-
null mice are more susceptible to HFD-induced NASH due to decreased M2 polarization
of Kupffer cells, decreasing interleukin 10 (IL-10) and increasing tumor necrosis factor
alpha (TNFα) and interleukin 6 (IL-6) production, leading to lipid accumulation and
hepatocytes apoptosis. Moreover, treatment with RORα agonists promoted M2 polarization
and improved NASH symptoms in mice [130]. HFD-fed mice treated with RORα agonist
JC1 showed attenuation of hepatic steatosis due to activation of AMPK signaling in the
liver [131]. Several human datasets (GSE33814 and GSE89632) show a reduction of RORα
expression in NAFLD patients [132,133]. Proinflammatory genes (Arginase I and CD36)
are RORα target genes, and their expression are reduced in NAFLD patients [134]. On the
other hand, some of the RORα target genes involved in fatty acid oxidation, such as FASn
and Srebf1, are upregulated in NAFLD patients. As RORα regulates a variety of metabolic
and inflammatory components, continued research is needed to understand the role of this
receptor in NAFLD and whether it may be a valid therapeutic target.

Less is known about the role of RORγ in NAFLD/NASH. Several studies have high-
lighted the detrimental role of Th17/IL17 in NASH progression via modulation of hepatic
inflammation in mice [135,136]. As RORγ is a key factor involved in Th17 cell differ-
entiation, targeting RORγ with an inverse agonist may have benefits; however, these
studies have yet to be completed. NOD-like receptor protein 3 (NLRP3) inflammasome
activation occurs in NAFLD, and blocking its activity improves the pathology and fibrosis
in MCD-fed mice [137–139]. As RORγ inverse agonist SR1001 has been shown to de-
crease NLRP3-inflammasome activity [140], we can hypothesize that SR1001 may improve
NAFLD. The role of RORs in the development of NAFLD/NASH diseases seems to be
dependent on the cell type and the stage of the disease. Based on published data, ROR
modulators are promising compounds that can be optimized and assessed for their clinical
beneficial effects on NAFLD in patients.

2.5. REV-ERBs

Rev-erbα (NR1D1) was originally identified based on its canonical NR domain structure.
REV-ERBβ (NR1D2) was identified based on its homology to other NRs and has an over-
lapping pattern of expression with Rev-erbα. Rev-erbα has been shown to regulate lipid and
glucose metabolism via direct regulation of PEPCK, G6pase, ApoA1, Srebf1, etc. [141–144]. In
fact, Rev-erbα−/− mice display a dyslipidemic phenotype with elevated very-low-density
lipoprotein (VLDL) and triglycerides (TG). The Lazar and Evans’ groups have demonstrated
the metabolic effects of knocking out Rev-Erb in mouse models [143,145,146]. REV-ERBs
were identified as orphan NRs in the early 1990s, but only recently the natural ligand,
heme, was identified by the Burris group [147,148]. Both Rev-erbα and –β were originally
thought to be constitutive transcriptional repressors; however, the Burris group was the
first to demonstrate that this constitutive repression was dependent on the presence of
heme [147]. Without heme bound to the LBD, REV-ERBs are transcriptionally inactive.
Heme binds to the LBD reversibly with a Kd in the range of 1–2µM, which places it in
the range of intracellular levels. With the discovery that REV-ERBs can be regulated by
a ligand, several groups proceeded to design and characterize synthetic molecules that
have potential for modulating glucose and lipid metabolism, and potentially are useful for
the study of metabolic diseases. The first synthetic agonist (GSK4112) was described in
2008 and demonstrated modulation of circadian function in tissue culture; however, it has
no in vivo activity [149]. Burris and collaborators reported the first synthetic antagonist
(SR8278) [150] and agonists (SR9009 and SR9011) [151] that can be used as in vivo tool
compounds for the study of REV-ERB-regulated physiology (Figure 9).
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The REV-ERB receptors are circadian proteins that regulate the expression of the
molecular clock. The molecular clock is an anticipatory system that optimizes metabolic
processes and behavior to predict environmental changes related to nutritional availability.
In mammals, the molecular clock is driven by a transcriptional–translational feedback
system that robustly oscillates and repeats itself every 24 h. The transcriptional activators
CLOCK and BMAL1 form a heterodimer that binds to E-box motifs within the PER and CRY
genes. The induction of PER/CRY transcription results in a feedback loop that represses
BMAL1/CLOCK activity. The REV-ERBs and ROR provide further regulation by competi-
tively binding to RORE motifs within the promoter of BMAL1 and CLOCK, further adding
intricate feedforward/feedback loop to the molecular clock. Hepatic metabolism and
inflammation are innately connected to the molecular clock and, by extension, controlled
by the REV-ERBs (Figure 10) [34].
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metabolism and displays temporal rhythm that is coordinated by SREBP1 and Rev-erbα.
Proteolytic activation of SREBP1 is circadian and integrates diurnal lipogenic and choles-
terogenic gene transcription to sense changes in the nutritional state [154]. Rev-erbα also
indirectly regulates the cyclic activity of SREBP1 by the cyclic expression of Insig2 gene,
an SREBP1 sequester protein that is in the endoplasmic reticulum. This in turn interferes
with the proteolytic activation of SREBP1 in the Golgi [155]. Rev-erbα KO mice express
impaired secretion in the bile and feces with also a reduced bile acid synthesis rate. The
expression of the rate-limiting enzyme, cholesterol-7a-hydroxylase (CYP7A1), is lowered
in Rev-erbα KO mice, whereas hepatic overexpression of Rev-erbα by adenovirus rescued
the expression of CYP7A1 [142,155–158]. The specific deletion of Rev-erbα and Rev-erbβ
in the liver perturbs metabolic and cholesterol gene expression and promoted hepatic
steatosis [146], demonstrating that Rev-erbα regulates the synthesis of cholesterol to bile
acids and hepatic lipid metabolism (Figure 10).

The recent development of synthetic REV-ERB agonist SR9009 has provided beneficial
evidence of targeting the REV-ERBs to treat metabolic disease and obesity and was the
first pan REV-ERB agonist that could be used in vivo. SR9009 treatment in mice lowers
triglyceride levels in diet-induced obese mice by decreased lipogenesis and enhanced lipid
oxidation [151]. The REV-ERB agonist SR9009 also lowered plasma cholesterol levels in
wild-type C57BL/6 and LDLR KO mice and reduced a myriad of cholesterol and bile acid
synthesis genes [151,159,160]. Due to REV-ERB being directly involved in the physiological
processes in the development of NAFLD, REV-ERB activation in mice placed on a high-fat
and high-fructose diet suppressed the progression of fatty liver disease. SR9009 repressed
lipogenesis and inflammatory gene expression and, as a result, decreased the development
of the disease (Figure 10) [161]. Overall, the data not only suggest that targeting REV-ERB
is an effective strategy to lower LDL cholesterol levels, but it also can be utilized to combat
the progression of fatty liver disease in an obese state.

Accumulating evidence supports that targeting REV-ERB is a promising approach
for management of inflammatory diseases. Rev-erbα activation with a synthetic agonist is
shown to ameliorate ulcerative colitis, fulminant hepatitis, neuroinflammation, heart fail-
ure, myocardial infarction, experimental autoimmune encephalomyelitis, and pulmonary
inflammation. Low-grade hepatic inflammation is exhibited by high-fat diet and innate
immune cell infiltration. The nuclear glucocorticoid receptor (GR) is a major regulator of
metabolism and inflammatory response. Its ligand cortisol has been extensively studied and
synthetic derivatives have become one of the most successful classes of anti-inflammatory
drugs. GR exhibits a diurnal expression in the liver and becomes more sensitive to cortisol
during the light cycle. Rev-erbα and GR both physically interact with liver-specific hepato-
cyte nuclear transcription factors to regulate GR recruitment to the chromatin. The genetic
ablation of Rev-erbα inverted diurnal GR sensitivity to dexamethasone (dex) and protected
the liver from dex-induced lipid accumulation. This suggests that Rev-erbα is a direct link
to inflammation-driven metabolic dysregulation in the liver [162].

Recently, Rev-erbα has been shown to be a regulator of the multimeric protein complex,
the NLRP3 inflammasome. The NLRP3 complex induces the release of the proinflammatory
cytokines IL-1β and IL-18 and the dysfunction of NLRP3 inflammasome has been impli-
cated in a plethora of diseases [163]. Loss of Rev-erbα from primary macrophages displayed
altered expression patterns of NLRP3 and IL-1B and 1L-18 production levels. Rev-erbα KO
mice developed severe acute peritoneal inflammation and fulminant hepatitis induced by
a lipopolysaccharide (LPS) endotoxin. Mice treated with SR9009 developed less-severe
liver failure and had increased survival times when compared to their controls [164]. The
ablation of Rev-erbα induced the activation of the NLRP3 inflammasome in mice. Rev-erbα
inactivated the NLRP3 by suppressing the transcription of p65 and indirectly through the
NF-κB pathway. Pharmacological activation of REV-ERB with SR9009 attenuates dextran
sulfate sodium-induced colitis and the protected effects were lost by Nlrp3 and Rev-erbα
deletion in the mice [165]. Expanding further into cardiac tissue, activation of REV-ERB by
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only one day abates the activated NLRP3 inflammasome in the cardio-fibroblasts when mice
are subjected to ischemia-reperfusion, suggesting long-term benefits in cardiac repair [166].

REV-ERB has demonstrated utility in treating neuroinflammation by the NF-κB path-
way. LPS-induced microglial activation-induced damage through NF-κB was attenuated
by SR9009 treatment by lowered IL-6 and TNFα secretion [167]. Transcriptomic analysis
from Rev-erbα KO hippocampus displayed an inflammatory expression signature. Rev-erbα
KO primary microglia exhibited enhanced NF-κB basal activity and exacerbated oxidative
damage in the hippocampal region by peripheral LPS injections. Activation of REV-ERBα
by SR9009 protected LPS-induced neuroinflammation of the neurons [168]. Providing evi-
dence of the expanding therapeutic potential of REV-ERB agonists in treating a collection
of inflammatory linked diseases from hepatic failure, colitis to neuroinflammation. Based
on the roles that REV-ERBs play in regulating both metabolism and inflammation, it is
possible that targeting REV-ERBs to suppress lipogenesis and/or inflammatory pathways,
that include NLRP3 and NF-κB, with selective agonists may be beneficial and provide
therapeutic utility for the treatment of NAFLD.

2.6. ERRs

The estrogen-receptor-related orphan receptors (ERRα, ERRβ, and ERRγ) were the
first orphan nuclear receptors to be identified [169]. As their name indicates, they are homol-
ogous to estrogen receptors (ERα and ERβ); however, their ligand-binding domain does not
bind endogenous ER ligands. While ERs require ligand binding to display transcriptional
activity, all three ERRs exhibit ligand-independent constitutive transcriptional activity [170].
Unlike ERs that function as obligate homodimers, ERRs function as monomers and bind to
a DNA response element that is distinct from the classical palindromic ER DNA response
elements [170]. ERRs are highly expressed in tissues with high energy demand such as the
skeletal muscle, heart, brain, adipose tissue, and liver [169,171,172]. A range of target genes
have been identified that includes enzymes and regulatory proteins in energy production
pathways involved in fatty acid oxidation, the tricarboxylic acid (TCA) cycle, mitochondrial
biogenesis, and oxidative phosphorylation (OXPHOS) [173,174].

Several cofactors have been identified for ERRs, such as nuclear respiratory factor 1
(NRF-1), members of the MEF2 family (myocyte enhancer factor 2) [175,176], or peroxisome
proliferator-activated receptor g coactivator-1 alpha or beta (PGC-1α or PGC-1β). ERRs
are constitutively active and no endogenous ligands have been characterized yet. Crystal
structures of ERRα LBD and other pharmacological studies have described several synthetic
ligands of ERRs. Since the first ERRα inverse agonist XCT790 was discovered [177], other
studies have described ERR synthetic ligands and their roles in vivo. For example, ERRα
inverse agonist (C29) displays an anti-diabetic activity in rodent models [178,179], GSK4716
(ERRβ/γ agonist) increases mitochondrial function in mouse myotubes in vitro [180].
GSK5182, an ERRγ inverse agonist, was demonstrated to have anti-hyperglycemic effect in
obese mice action via suppression of gluconeogenesis (Figure 11) [181].

Embryonic lethality in ERRβ-null mice [182] and death of ERRγ-null mice before
1 week of age [176] has severely limited our understanding of the role of these receptors in
metabolic regulation. In the liver, ERRα, ERRγ, and PGC1α are upregulated upon fasting
and have been shown to bind several target genes involved in mitochondria oxidation
and gluconeogenesis [181]. Several studies described the role of ERRs in regulation of
mitochondria biogenesis, electron transport chain (ETC), OXPHOS, fatty acid b-oxidation
(FAO), or glucose metabolism in liver [183,184]. Liver ChIP-seq data has shown ERRα as a
key regulator of TCA cycle and lipid metabolism [185]. ERRα induces the expression of
phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) gene
expression, whereas ERRγ inhibits their expression, providing a mechanism by which the
isoforms have opposing effects on gluconeogenesis [176,181–186]. ERRγ overexpression in
the liver induces gluconeogenic genes and increases serum glucose in fasted mice [107].
Surprisingly, ERRα contributes to the development of NAFLD in a context-dependent
manner. ERRα−/− mice display an unexpected phenotype of reduced body and fat mass



Metabolites 2022, 12, 238 20 of 28

and resistance to weight gain on a high-fat diet (HFD) and decreased intrahepatic lipid
accumulation [187]. While the expression of ERRα- and PGC-1α-encoding genes are upreg-
ulated in WT mice under HFD, this response is likely an adaptive response to mitochondrial
dysfunction [188]. Genetic (ERRα−/−) or pharmacological inhibition (synthetic inverse
agonist C29) exacerbates rapamycin-induced NAFLD in mice [185] and impairs the reversal
of fasting-induced NAFLD during refeeding [189]; activating ERRα appears more beneficial
to treat and reverse the instilled disease.
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Altogether, these data clearly define ERR as a potential target for NAFLD. Very few
ERR agonists have been described, and no data is currently available to really address the
efficiency of the ERRs to protect or prevent NAFLD.

3. Conclusions and Perspectives

Metabolic syndrome exhibits a collection of diseases that include high blood pressure,
insulin resistance, obesity, and elevated LDL cholesterol and triglycerides. Although diffi-
cult to diagnose, NAFLD has been found to be an additional comorbidity that exacerbates
the metabolic syndrome and, if left unchecked, will produce devastation to the patient’s
health. Remarkable progress has been made in the discovery and improvement of synthetic
ligands for the metabolic NRs ERRs, REV-ERBs, RORs, FXR, PPARs, and LXR, and all
have supplied undeniable therapeutic evidence in obesity models. It is worth noting that
this review only focused on a few of the NRs that play a role in the metabolic and/or
inflammatory regulation of liver disease. Other receptors, such as the pregnane X receptor
(PXR), estrogen receptor (ER), constitutive androstane receptor (CAR), and others, may
also hold therapeutic potential in these diseases. Further evaluation of the NRs and their
ligands in NASH models will provide further insights for drug discovery and physiological
relevance of these receptors in fatty liver diseases.

In the past years, the reported NR ligands have been tested in animal models of
metabolic disease, and recently some NR ligands have been pursued with clinical success.
The advancement towards improved diagnostic technology and an understanding the etiol-
ogy of NAFLD has provided new strategies to treat the disease. With the advancement with
metabolic NR ligands and a stronger understanding of their regulation of liver physiology,
exciting new strategies to treat NAFLD are presented. The exponential increase in NAFLD
cases worldwide clearly indicates that new strategies are needed to blunt the trajectory.
Only by exhaustively exploring all therapeutic options, including NR pharmacology, will
NAFLD be controlled with a sequential profound improvement to worldwide health.
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