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High-risk human papillomavirus (hrHPV) infection and integration were considered as
essential onset factors for the development of cervical cancer. However, the mechanism
on how hrHPV integration influences the host genome structure remains not fully
understood. In this study, we performed in situ high-throughput chromosome
conformation capture (Hi-C) sequencing, chromatin immunoprecipitation and
sequencing (ChIP-seq), and RNA-sequencing (RNA-seq) in two cervical cells, 1) NHEK
normal human epidermal keratinocyte; and 2) HPV16-integrated SiHa tumorigenic cervical
cancer cells. Our results reveal that the HPV-LINC00393 integrated chromosome 13
exhibited significant genomic variation and differential gene expression, which was verified
by calibrated CTCF and H3K27ac ChIP-Seq chromatin restructuring. Importantly, HPV16
integration led to differential responses in topologically associated domain (TAD)
boundaries, with a decrease in the tumor suppressor KLF12 expression downstream of
LINC00393. Overall, this study provides significant insight into the understanding of
HPV16 integration induced 3D structural changes and their contributions on
tumorigenesis, which supplements the theory basis for the cervical carcinogenic
mechanism of HPV16 integration.

Keywords: cervical cancer, HPV integration, Hi-C, TAD boundary, gene expression
INTRODUCTION

Cervical cancer is the second most common type of cancer in women worldwide with nearly
604,000 new cases diagnosed and 342,000 deaths in 2020 (Sung et al., 2021). High-risk human
papillomaviruses (hrHPVs) such as HPV16, 18, and 31 were recognized as the essential factors to
trigger tumorigenesis (Xia et al., 2017). Of these hrHPVs, HPV16 is responsible for approximately
50% of cervical cancer cases (Franceschi, 2021). Mechanically, the integration of HPV is considered
to be a crucial event in promoting cervical carcinogenesis via alternating the transcription (Jeon and
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Lambert, 1995; Pett and Coleman, 2007) and chromosome
instability of the host (Akagi et al., 2014). On one hand, the
integration-targeted cellular genes in combination with the
invariably retained and expressed oncoproteins E6/E7 can
disrupt cervical epithelial cells cycle to immortalize cells and
thus inducing the development of cervical cancer (Malanchi
et al., 2002; Zhang et al., 2016; McBride and Warburton, 2017;
Yeo-Teh et al., 2018). On the other hand, the integration of HPV
may also cause chromosome instability and induce gene
rearrangement and copy number variation (Duensing and
Münger, 2004; PETT et al., 2004).

Although molecular mechanisms underlying acquired
cervical cancer are extensively studied, how the 3D chromatin
landscape responds to the integration of hrHPV is still not fully
understood. For this reason, high-throughput chromosome
conformation capture (Hi-C) technology has been developed
to describe chromosome 3D structure. Hi-C could separate
chromosomes into two different compartments via principal
component analysis (Lieberman-Aiden et al. , 2009).
Compartment A represented transcriptional activation, while
compartment B represented transcriptional inhibition. With
the advance of Hi-C resolution, newly regions called
topologically associating domains (TADs) (Dixon et al., 2012)
were identified, which occur preferentially within defined and
stable regions of the genome and are conserved among various
tissues (Pope et al., 2014). TADs are separated by insulating
proteins like the CCCTC-binding factor (CTCF) and which build
a framework for contacts of regulatory TAD boundary and gene
expression (Seitan et al., 2013; Zuin et al., 2014). The general
activity within a given TAD can be influenced by its epigenomic
state. Moreover, genes are most often regulated by enhancers
located within the same TAD. To study these chromatin
interactions, the combination of multiple capture assays such
as Hi-C, assay of transposase accessible chromatin sequencing
(ATAC-seq) (Wang et al., 2020), whole-genome sequencing
(WGS) (Adeel et al., 2021), RNA sequencing (RNA-seq) and/
or chromatin immunoprecipitation sequencing (ChIP-seq)
(Zhang et al., 2020) has been developed.

Up to date, several studies have characterized the structural
variations of HPV-driven cervical cancer within certain
integration hot spots (Cao et al., 2020), or by examining the
genome-wide interactions using more unbiased approaches
(Adeel et al., 2021; Groves et al., 2021). Investigating
chromatin structure in cancer has the potential to identify
candidate biomarkers, since the organization of the chromatin
is often disturbed in cancer (Barutcu et al., 2015). Despite the
contributions of previous studies, differences in genome-wide
chromatin structure between normal epithelial cells and
tumorigenic cervical cancer cells still need to be explored. In
the present study, in order to characterize different scales of
genome organization during cervical cancer development, we
have used NHEK normal human epidermal keratinocyte and
SiHa tumorigenic cervical cancer cells and performed genome-
wide Hi-C, ChIP-seq as well as RNA-seq to identify structural
variations, specifically TAD boundaries. We interpreted a
correlation among chromatin structure, epigenetic landscape,
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gene expression, and HPV-LINC00393 integrated loci in SiHa
cells. The results will help us to get a better insight into HPV-
LINC00393 integration in cervical carcinogenesis.
METHODS

Cell Culture
Human cervical cell lines SiHa (ATCC HTB-35) and Ect1/E6E7
(ATCC CRL-2614) were obtained from the American Type
Culture Collection (ATCC). Normal human epidermal
keratinocytes (NHEK) were purchased from PromoCell (C-
123003; Germany). All the cells were authenticated by short
tandem repeat (STR) tests. SiHa/NHEK and Ect1/E6E7 were
grown in MEM and EMEM (MEM plus NEAA) supplemented
with 10% fetal bovine serum (Gibco, NY, USA), and 1%
penicillin/streptomycin (Gibco, NY, USA). Cells were grown in
a humidified 5% CO2 incubator at 37°C.

RNA Extraction, RNA-seq, and
Data Analysis
Total RNA was extracted using mirVana™miRNA Isolation Kit
(AM1561, Ambion®). RNA sequencing (RNA-seq) was
performed by Annoroad Gene Technology Co., Ltd. (Beijing,
China) (Li et al., 2019). For each sample, 3 mg of total RNA were
used as initial material to generate sequencing libraries using the
NEBNext® Ultra™ Directional RNA Library Prep Kit according
to the manufacturer’s recommendations. After the library was
constructed, a series of processes were performed to ensure the
quality of the library. Then, paired-end sequencing was
performed on a single lane of Illumina HiSeq X Ten platform
(Illumina, San Diego, CA, USA), with PE150 setting, producing
250 bp reads per end, according to manufacturer’s instructions.

After removing contaminated reads for adapters and low-
quality reads, Bowtie2 (v2.2.6) was used for building the genome
index, and clean data and was then aligned to the reference
genome using HISAT2 v2.1.0. The Integrative Genomics Viewer
(IGV) was used to view the mapping result (heatmap, histogram,
and scatter plot). Reads count for each gene in each sample were
counted by HTSeq v0.6.0, and FPKM (Fragments Per Kilobase
Millon Mapped Reads) was then calculated to estimate the
expression level of genes in each sample. DESeq2 v1.6.3 was
designed for differential gene expression analysis between two
samples with biological replicates under the theoretical basis that
obeys the hypothesis of the negative binomial distribution for the
value of count. DESeq2 was used to estimate the expression level
of each gene in per sample by the linear regression, and then
calculate the p-value with Wald test. Genes with q ≤ 0.05 and |
log2_ratio| ≥ 1 were considered differentially expressed genes
(DEGs). The Gene Ontology (GO) enrichment of DEGs was
implemented by the hypergeometric test, in which the p value is
calculated and adjusted as q value, and the data background is
genes in the whole genome. GO terms with q < 0.05 were
considered to be significantly enriched. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment of
DEGs was implemented by the hypergeometric test, in which the
December 2021 | Volume 11 | Article 785169
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p value was adjusted by multiple comparisons as q value. KEGG
terms with q < 0.05 were considered to be significantly enriched.

High-Throughput Chromosome
Conformation Capture (Hi-C) Sequencing
Hi-C sequencing (Hi-C-seq) was performed by Annoroad Gene
Technology Co., Ltd. (Beijing, China). Cells were first crosslinked
and then were lysed under ice condition to the extracted DNA.
After quantification, the final sequencing library was diluted to 1
ng/ml. StepOnePlus™ Real-Time PCR system was used for qPCR
to accurately quantify the concentration of the library. The
TruSeq PE Cluster Kit v3-cbot-HS (Illumia) reagent was used
to generate clusters on the cBot. After that, the library was
sequenced on Illumina HiSeq X Ten platform with
PE150 setting.

For mapping and interaction identification, Bowtie2 (v2.2.6)
was used to map the sequenced reads to the Arabidopsis TAIR10
genome. Multiple mapped reads, unmapped paired-end reads,
singleton reads, and PCR duplications were filtered by Hi-C Pro
pipeline. The uniquely valid paired-end reads were kept for
downstream analysis. ICE methods (Yaffe and Tanay, 2011)
were used to remove different biases after building the raw
contact matrices. For compartment A/B identification, the
matrix2 compartment module of the cworld software was used
to detect the compartment under 40 kb resolution contact
matrix. Interaction distances which were below 1 MB were
filtered. The lowess-smoothed average method was used to
calculate the expected scores of the intra- and interaction
matrix. The observed/expected ratio was log2 transformed. The
patterns of chromosomal interactions were calculated at each
pair of bins by using Pearson correlation, and then using this
correlated matrix to do the principal component analysis. The
first principal component’s eigenvalue was plotted that positive
values are referred to as compartment A, which means “open
chromatin”, and negative values are referred to as compartment
B, also means “closed chromatin”. The gene density was defined
by calculating each bin’s gene number (Lieberman-Aiden
et al., 2009).

ChIP-seq and Data Analysis
ChIP sequencing (ChIP-seq) was performed by Annoroad Gene
Technology Co., Ltd. (Beijing, China). Cells were crosslinked
with 1% formaldehyde for 10 min at room temperature and
quenched with 125 mM glycine. The fragmented chromatin
fragments were pre-cleared and then immunoprecipitated with
Protein A + G Magnetic beads coupled with anti-H3K27ac
(ab4729, Abcam, USA) antibody. After reverse crosslinking,
ChIP and input DNA fragments were end-repaired and A-
tailed using the NEBNext End Repair/dA-Tailing Module
(E7442, NEB) followed by adaptor ligation with the NEBNext
Ultra Ligation Module (E7445, NEB). The DNA libraries were
amplified for 15 cycles and sequenced using Illumina NovaSeq
6000 with single-end 1 × 75 as the sequencing mode.

Raw reads were filtered to obtain high-quality clean reads by
removing sequencing adapters, short reads (length <35 bp) and
low quality reads using Cutadapt (v1.9.1) (Martin, 2011) and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Trimmomatic (v0.35) (Bolger et al., 2014). Then FastQC (Kyi
et al., 2018) was used to ensure high reads quality. The clean
reads were mapped to the human genome (hg19) using the
Bowtie2 (v2.2.6) (Langmead and Salzberg, 2012) software. Peak
detection was performed using the MACS (v2.1.1) (Zhang et al.,
2008) peak finding algorithm with 0.01 set as the p value cutoff.
Annotation of peak sites to gene features was performed using
the ChIPseeker R package (Yu et al., 2015).

Bioinformatic Analysis
The protein–protein interaction (PPI) network was constructed
using Search Tool for the Retrieval of Interacting Genes
(STRING) (https://www.string-db.org/) and visualized with the
Cytoscape software (Shannon et al., 2003). A combined score of
>0.9 was retained in the further analysis. The Gene Expression
Profiling Interactive Analysis (GEPIA) was used to assess the
expression of KLF12 in the three major gynecological tumors
(cervical cancer, endometrial cancer, and ovarian cancer) of the
TCGA data (Tang et al., 2017). The threshold Fold-change and p
value were set at 1.5 and 0.05 respectively to get the expression
boxplot. The Human Protein Atlas database (HPA) (https://
www.proteinatlas.org) was used to analyze protein expression of
KLF12 between normal and cervical cancer tissues (Uhlén et al.,
2015; Tebani et al., 2020).

Public Genomic Data Analysis
CTCF ChIP-seq datasets for NHEK and SiHa cells were
downloaded from the NCBI Gene Expression Omnibus (GEO;
accession number: GSM733740 for NHEK, and GSE143026 for
SiHa) (ENCODE Project Consortium, 2012; Edgar et al., 2002).
RESULTS

HPV16 Integration on LINC000393 of
Chromosome 13 in Cervical Cancer
The genes loci on the chromosomes of both SiHa and HPV16
were analyzed according to the UCSC database (http://genome.
ucsc.edu/). There is a fragment of HPV16 (coordinates from
3384 to 7906/1–3132, length 7,654 bp) integrated on
chromosome 13 at genomic coordinates 7378870–74087558 in
the human genome (Figure 1A). Parts of the HPV16 E2 gene,
along with the complete E4, E5, L2, L1, E6, E7, and E1 genes,
were integrated into the genome of the SiHa cells. A
microhomologous “AGTC” fragment was present upstream
and a microhomologous “TATT” fragment was present
downstream of the HPV integration. The 3’ integration locus
of HPV16 is located on the second intron of LINC00393 gene,
which is a high frequency integration site for HPV16 (Qiu et al.,
2021), while the 5’ integration site is located on the
intragenic region.

As a result, HPV16 integration leads to a recurrent pattern of
DNA amplifications, with two insertional breakpoints directly
flanked a twice-amplified segment (Figure 1B) (Akagi et al.,
2014). This structural alteration is mostly represented by the
rearrangements adjacent to the integration sites that leave the
December 2021 | Volume 11 | Article 785169
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two HPV16 integration fragments sharing the same
transcriptional orientation of LINC00393. Therefore, the analysis
validated the integration status and pattern of HPV16 in SiHa cells
and showed the alterations in the chromosomal structure.
HPV-LINC00393 Integration Altered Local
3D Genome Structure in Cervical Cancer
To get a better understanding of the structural variations caused
by HPV16 integration, we compared the Hi-C-seq data of the
cervical cancer SiHa and normal human epidermal keratinocyte
NHEK cells. After filtering out the same compartments (AA, BB)
and the different (AB, BA) linkers, approximately 90.8 million
for NHEK and 153.7 million for SiHa reads were obtained
(Table S1). The numbers of valid reads for NHEK and SiHa
were 35,391,673 and 47,448,435, respectively. The visualized
overall heatmap revealed higher order genomic organization
(Figure 2A). The SiHa heatmap was consistent with that of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
NHEK cells, except for some obvious differential organizations,
which were possibly caused by cervical cancer itself. Next, we
checked the A/B compartments and found that 71.2% of the total
genome remained conserved between NHEK and SiHa cells, with
only 13.1 and 15.7% of the annotated genome changing from A
to B or B to A compartments, respectively. We also observed the
A/B compartment switching at a high proportion in
chromosomes such as chromosomes 2, 3, 6, and 9 (Figure 2B).

To investigate the differential interactions near the HPV16-
LINC00393 locus, we compared the 3D structures of
chromosome 13 in SiHa and NHEK cells. It showed that some
genomic regions exhibited differential variations, especially
around the integration locus (Figure 2C). Further comparison
at a resolution of 1 MB disclosed several changes in the
compartments composition in SiHa cells. Moreover, SiHa cells
exhibited a higher degree of chromatin openness, which may
facilitate gene transcriptional regulation (Figure 2D). A/B
compartments analysis showed that 77.3% of the annotated
A

B

FIGURE 1 | HPV16 integration in LINC00393 in SiHa cells. (A) An overview of HPV and the integration region. Purple lightning indicates the breakage of E2/
E4. Double helix represents non-coding region, arrow represents the coding region, vertical line represents the exon, horizontal line represents intron and
vertical dotted line represents the integration site. Gene model of HPV-LINC00393 integration (red ‘TATT’ and ‘ATGC’ indicate 5’ and 3’ micro-homologous
fragments). (B) Structural variation of the integration region. Connected by HPV, the human genome between ‘a’ and ‘b’ contains a third exon, the second
intron of LINC00393 and the desert gene are rearranged due to integration. The human genome, located between the two HPV genomes, lacks the C
segment and is connected by itself (the sequence is represented with a blank double helix). ‘a’ means the integration site of 5’; ‘b’ means the integration site
of 3’; ‘c’ means the lost gene segment during HPV16 integration.
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FIGURE 2 | HPV16-LINC00393 integration altered local 3D genome structure of SiHa cells. (A) Heatmaps of the genome-wide chromosomal profiles of two cell
lines (left: SiHa, right: NHEK) and their subtraction image (SiHa–NHEK). The red arrows show the structure alternations in SiHa. (B) Bubble diagrams showing
percentage of switched compartments. Sizes of bubbles indicate the number of changed compartment. (C) Heatmaps indicate contact correlation matrix for
chromosome 13. Left: NHEK; middle: SiHa; right: a reduced interaction matrix between SiHa and NHEK. (D) The compartment of the chromosome 13. NHEK lies at
the top and SiHa lies at the bottom. Compartment A is in orange and compartment B is in blue. (E) The pie chart indicates the compartment change in chromosome
13 of two cell lines. The proportion of compartment B in NHEK which is turned into compartment A in SiHa is shown in red and the opposite situation is in blue.
(F) The local comparison of TADs in SiHa and NHEK, including the comparison of heat maps, TAD boundaries and insulations. The short green vertical line shows
the TAD boundary of NHEK and the short red one shows the TAD boundary of SiHa. The long blue vertical line is the TAD boundary of NHEK, which is used as a
reference. The red (SiHa) and green (NHEK) wavy lines indicate the insulation scores of the two cells. The black and grey areas at the bottom represent the difference
between NHEK and SiHa insulation scores. The red box represents the five TAD boundaries near the integration area. (G) The five TADs near the integration area
shown in the red box of 2F. The blue box is the TAD boundaries in the integrated region. This TAD has a new TAD boundary and is divided into two smaller TADs in
SiHa. (H) The details of the blue box in 2G. The reference gene above the scale is from NCBI (Chr13, 73400000–746120000). A new TAD boundary appears in SiHa
shown by a blue vertical band. The genome integration sites of SiHa are triangulated in red. The TAD on the left has a tendency to split into two sub-TAD structures.
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chromosome 13 remained unchanged between the NHEK and
SiHa cells, with only 8.3 and 14.4% changing from A to B or B to
A compartments, respectively (Figure 2E).

TADs are important stable regulatory units, whose alterations
are closely related to tumor development (Valton and Dekker,
2016). To identify the different TAD boundaries between SiHa
and NHEK, TAD boundaries were detected at a resolution of 40
kb in each cell lines. The number (1,196 and 1,443 TAD
boundaries for SiHa and NHEK, respectively) and average size
of TAD boundaries were slightly different within the two cells
(Figure S1). Among the identified 2,332 TAD boundaries, 307
TAD boundaries were overlapped, 889 and 1,136 were unique to
SiHa and NHEK, respectively (Figure S2). Next, we
characterized the specific changes of TAD boundaries on
chromosome 13. It showed that HPV16-LINC00393
integration generated a longer chromosome, together with
alterations on TAD boundaries (Figure 2F). After comparing
the TAD boundaries around the integration site, a newly TAD
boundary was observed in SiHa, along with the loss of normal
interaction (Figure 2G). Further analysis suggested that HPV16-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
LINC00393 integration has induced the split of the TAD, which
thereby influenced the original interaction (Figure 2H).

HPV-LINC00393 Integration Altered TAD
Insulation and Enhancer–Promoter
Interaction
Because the TAD fusion was associated with CCCTC-binding factor
(CTCF) changes, we applied ChIP-seq to detect CTCF profiles in
SiHa and NHEK cells. As is shown, genome-wide CTCF
distribution did not differ significantly between the two cells
(Figure 3A). However, the binding locations of CTCF in SiHa
only matched approximately 27% of the TAD boundaries in NHEK
cells (Figure 3C). As for the HPV-LINC00393 integrated
chromosome 13, the number of CTCF was 3,214 and 5,635,
respectively, with 1,322 CTCF being shared between the two cells
(Figure 3E). The number of CTCF targeted genes located in the
seven different gene regions was also discrepant (Figure 3G and
Table S2). Furthermore, we confirmed that SiHa cells displayed
intense CTCF binding at the TAD boundary of LINC00393 locus,
with a weak binding found in the NHEK cells (Figure 3H).
A B D

E F G

I

H

C

FIGURE 3 | HPV integration altered TAD insulation and enhancer-promoter interaction. (A) Genome-wide distribution of CTCF in SiHa and NHEK. (B) Genome-wide
distribution of H3K27ac in SiHa and NHEK. (C) The binding locations of CTCF in SiHa and NHEK. (D) The binding locations of H3K27ac in SiHa and NHEK. (E) The
number of unique and shared CTCF between SiHa and NHEK. (F) The number of unique and shared H3K27ac between SiHa and NHEK. (G) The number of CTCF
and H3K27ac targeted genes located in different gene regions. (H, I) CTCF and H3K27ac ChIP-seq tracks for the chromosome 13 of SiHa and NHEK.
December 2021 | Volume 11 | Article 785169

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Xu et al. HPV16 Integration Induces Chromosome Alternations
Since histone epigenetic modifications can also disturb host 3D
genome structure, we then performed H3K27ac ChIP-seq in the
two cells. H3K27ac distribution was narrow in SiHa cells, indicating
reduced enhancer activity compared to NHEK cells (Figure 3B).
Meanwhile, the binding locations of H3K27ac in SiHa matched
approximately 40% of that in NHEK (Figure 3D). Using a q value
cutoff of 0.05, we found that approximately 48% of the H3K27ac
regions in SiHa and approximately 29% of the H3K27ac peaks in
NHEK were overlapped (Figure 3F). The number of H3K27ac
modified genes was decreased in the seven different gene regions of
SiHa cells (Figure 3G and Table S2). Furthermore, it showed that
SiHa cells exhibited weak H3K27ac binding at the TAD boundary
of the LINC00393 integration site, whereas an intense binding was
observed in the NHEK cells (Figure 3I).

Effect of HPV16-LINC00393 Integration on
Gene Expression
Chromatin translocation was reported to alter host gene
expression and lead to cancer development (Gryder et al.,
2021). To investigate the effect of translocation induced
changes of TAD boundary on the expression of surrounding
genes, we performed the transcriptome analysis of SiHa and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
normal cervical cell Ect1/E6E7. The overall distribution of the
differentially expressed genes (DEGs) was shown in Figures 4A–
C. Next, we investigated the effect of LINC00393 integration on
the expression of genes present on chromosome 13. A total of 74
genes were characterized as DEGs, with 37 downregulated and
37 upregulated (Figure 4D andd Table S3). The nearby regions
of LINC00393 such as KLF5, KLF12, TBC1D4, MYCBP2, and
SCEL showed downregulated expression, while COMMD6
appeared as an upregulated gene (Figure 4E). Further analysis
revealed that these DEGs were potentially involved in
tumorigenesis-related, DNA repair, and HPV infection
pathways (Figure 4F). Because transcription factor (TF) is an
important determinant responsible for transcriptional activation
of genes involved in tumorigenesis, we conducted TF analysis
based on the DEGs. As is shown, the most enriched TF belonged
to C2H2 type zinc finger (zf-C2H2) family (Figure 4G).

HPV16-LINC00393 Integration
Downregulated Tumor Suppressor
Gene KLF12
The tumor suppressor gene KLF12 is a member of zf-C2H2.
However, whether KLF12 plays a direct role in cervical cancer
A B

D

E

F

G

C

FIGURE 4 | HPV16-LINC00393 integration altered gene expression in SiHa cells. (A) The distribution of differential expressed genes in each chromosome. (B) The
statistical graph showed the numbers of differential expressed gene in each chromosome. (C) The distribution of transcription changes in SiHa as compared with
Ect1/E6E7 by RNA-seq. (D) Volcano map showing the differentially expressed genes within the chromosome 13 between SiHa and Ect1/E6E7. (E) Integrated
analysis of HPV16-LINC00393 integration associated genes (left panel) and functional annotation (right panel). (F) KEGG enrichment analysis based on the
Metascape platform. (G) Analysis of differential transcription factor. The vertical axis shows the different transcription factor families and the horizontal one shows the
number of genes annotated to the transcription factor family.
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and whether its inhibition can promote cervical tumorigenesis
remains unclear. To address this, we used the STRING database
and mapped the protein–protein interaction network of KLF12
(Figure 5A). Among the top ten proteins that interact with
KLF12, CTBP1 was reported to be a key mediator for the
transcriptional inhibitory role of KLF12 (McConnell and Yang,
2010). We next used the GEPIA website based on the TCGA
database and analyzed the expression of KLF12 in the three
major gynecological tumors. Compared with the healthy women,
KLF12 expression was significantly downregulated in patients
with ovarian cancer, endometrial cancer, and cervical cancer
(Figure 5B). Furthermore, we used the HPA database to validate
KLF12 expression in cervical cancer and normal cervical
tissues. Decreased expression of KLF12 was observed in the
nucleus of both cervical squamous cell carcinoma tissue and
adenocarcinoma tissue (Figure 5C). These data indicate that
KLF12 may connect with cervical tumorigenesis and have the
potential to predict the onset of cervical cancer in HPV16-
LINC00393 integrated patients.
DISCUSSION

Cervical cancer has become one of the most popular cancers in
women (Sung et al., 2021) with HPV infection and integration as
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the main cause (Gryder et al., 2021). Previous studies have
mostly analyzed the impact of HPV integration on the one-
dimensional structure (Kadaja et al., 2009; Matovina et al., 2009)
rather than three-dimensional structure. It remains unclear how
such integration has influenced the host genome structure and
transcription regulation. For this purpose, our study combines
Hi-C-seq, ChIP-seq and RNA-seq to investigate the changes in
3D structure of HPV16 integrated SiHa cells. We found
that chromosome 13 exhibited significant genomic variation
and differential expression densities, with a correlation found
between 3D structural change and gene expression. Enrichment
analysis suggested that the dysregulated genes were mainly
involved in controlling cervical cancer-related pathways.
Therefore, this study advances our knowledge of the HPV16
integration on chromosome architecture changes and
cervical tumorigenesis.

Previous studies indicated that SiHa has two copies of HPV16
DNA (Diao et al., 2015) thereby theoretically possessing four
virus–human junctions, whereas the DNA sequencing results
showed there were only two virus–human junctions (Baker
et al., 1987; El Awady et al., 1987), suggesting the two integrated
HPV might have the same junction and partially overlapped with
each other at the integration site (Akagi et al., 2014). Importantly,
one of the integration sites was found located at the second exon of
LINC00393 on chromosome 13, which is likely to impact the
expression of the surrounding genes (Qiu et al., 2021). Due to
A B

C

FIGURE 5 | Multi-database analysis for the function and expression of KLF12. (A) The protein–protein interaction (PPI) network of KLF12 was mapped based on the
STRING database. The purple edges were described as experimentally determined known interactions, the light green edges meaning textmining and the black ones
meaning ‘co-expression’. The filled nodes mean their 3D structures are known or have been predicted, and the empty ones mean unknown. (B) The expression of
KLF12 in gynecological tumors were shown based on the GEPIA and TCGA database. (C) Immunohistochemical results of KLF12 in normal cervix and cervical
cancer from HPA database. *p < 0.05.
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LINC00393 being a high-frequency site for HPV integration (Hu
et al., 2015; Qiu et al., 2021) and no HPV episomes having been
found in SiHa (Friedl et al., 1970), this makes SiHa a reliable
research material for exploring the underlying pathogenicity
mechanism of HPV16 integration in cervical cancer development.

Compared with the normal epidermal keratinocyte NHEK, the
HPV16-integrated SiHa cells exhibitedmore 3D structure variations
following Hi-C-seq analysis. The findings were consistent with
those from Dixon et al., in which the variations might have been
caused through chromatin translocation (Dixon et al., 2018). The
newly generated TAD boundaries tend to divide the original ones
into different subTAD boundaries, with disordered internal
structures near the integration area. The result is also consistent
with previous studies that HPV integration that led to significant 3D
structural changes on the chromosome of the integration locus (Cao
et al., 2020). Although a lot of DEGs were down-regulated in SiHa
cells, much greater number of compartment A was detected, which
can be explained as more genes involved in compartment B or
structural changes in compartment A.

Our study found a newly generated TAD boundary in the
LINC00393-integrated site of SiHa cells after integrated analysis
of Hi-C and ChIP data. TADs are highly conserved domains
across the genome separated by insulators such as CTCF which
restricts the action of regulatory elements and genes. Meanwhile,
the changes of H3K27ac can modulate between enhancer and
promoter for the interactions and disrupt host TAD structure to
rewire the regulatory landscape of genes (Melo et al., 2020). As a
result, the genes that are near the overlap of CTCF and H3K27ac
peaks have dysregulated expression. As expected in our study,
the SiHa cells displayed an intense CTCF while having weak
H3K27ac bindings at the TAD boundary of the LINC000393
integration site and changed the expression of the neighboring
gene such as KLF12. The results imply that the generated TAD
boundary might have introduced new CTCF modifications and
thus obstructing the enhancer–promoter interaction.

It is interesting to note that the transcriptional regulatory (TF)
protein of C2H2 zinc finger (zf-C2H2) was the most enriched TF
among the differentially expressed TFs in SiHa cells (Liu et al.,
2020). Zf-C2H2 proteins are human virus transcriptional regulators
and can bind to DNA, RNA, and proteins. KLF12, the downstream
gene of LINC00393 integration locus, is a member of the zf-C2H2
family. KLF12 normally serves as a transcriptional repressor
through its interaction with the C-terminal binding protein
(CtBP) (McConnell and Yang, 2010). In our study, it is found
that KLF12 was mainly distributed in the nucleus with a reduced
expression in cervical tumor tissues according to HPA database.
Besides, the expression of KLF12 was also decreased in ovarian
cancer and endometrial cancer, suggesting its role as a biomarker for
gynecological tumor monitoring.

KLF12 has been reported as an important TF that participates
in the tumorigenesis of various cancers. In some cases, KLF12
was overexpressed and served as a tumor suppressor, for
example, in bladder cancer (Tang et al., 2021) and lung cancer
(Godin-Heymann et al., 2016). In other cases, KLF12 expression
was correlated positively with disease severity such as in
colorectal cancer (Bai et al., 2021), lung cancer (Mao et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
2020), ovarian cancer (Mak et al., 2017), and endometrial cancer
(Ding et al., 2019), indicating its tumor-promoting effect. In the
present study, both the expressions of KLF12 in SiHa cells and
tumor tissues based on the HPA database were significantly
down-regulated compared with those in normal control cells or
clinical samples. In addition, the decreased expression of KLF12
is attributed to the 3D structural changes in HPV-integrated
chromosome 13, which can partially explain the carcinogenic
mechanism for HPV integration. Nevertheless, our results
support the former point of view.

Our study has some limitations. Firstly, the interaction
matrices were binned at a resolution of 40 kb to identify TAD
boundaries, while the loop structure only available at a resolution
of 5 kb, according to the technological development of Hi-C.
Thus, still higher resolution is needed for deep analysis to find
out better results. Secondly, although a new TAD boundary was
formed due to HPV16-LINC00393 integration, it still needs to be
verified by using clinical samples that have the same integration
loci. Thirdly, this study has used two cells for the controls, the
one is the NHEK normal human epidermal keratinocyte for Hi-
C-seq, and the second is the Ect1/E6E7 cervical normal cell for
RNA-seq. Despite of the same origin from ectoderm for the two
cells, their distribution in the human body is different. Hence,
there may be some deviations in the final accuracy of the 3D
genome structure.

In summary, our study applied multi-omics sequencing
analysis and demonstrated that HPV16-LINC00393 integration
altered the 3D chromatin landscape and led to the enrichment of
genome variations and gene expression changes in SiHa cell
lines. The correlation between gene expression and TAD
boundary change, enhancer–promoter interaction change, and
also ectopic CTCF binding was also elucidated. These findings
shed light on the important role of the 3D genome structure in
cervical carcinogenesis when investigating the effects of
HPV16 integration.
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