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� Abstract: Background: Machine learning methods showed excellent predictive ability in a wide 
range of fields. For the survival of head and neck squamous cell carcinoma (HNSC), its multi-omics 
influence is crucial. This study attempts to establish a variety of machine learning multi-omics models 
to predict the survival of HNSC and find the most suitable machine learning prediction method.  
Methods: The HNSC clinical data and multi-omics data were downloaded from the TCGA database. 
The important variables were screened by the LASSO algorithm. We used a total of 12 supervised ma-
chine learning models to predict the outcome of HNSC survival and compared the results. In vitro 
qPCR was performed to verify core genes predicted by the random forest algorithm.  
Results: For omics of HNSC, the results of the twelve models showed that the performance of multi-
omics was better than each single-omic alone. Results were presented, which showed that the Bayesi-
an network(BN) model (area under the curve [AUC] 0.8250, F1 score=0.7917) and random forest(RF) 
model (area under the curve [AUC] 0.8002,F1 score=0.7839) played good prediction performance in 
HNSC multi-omics data. The results of in vitro qPCR were consistent with the RF algorithm.  
Conclusion: Machine learning methods could better forecast the survival outcome of HNSC. Mean-
while, this study found that the BN model and the RF model were the most superior. Moreover, the 
forecast result of multi-omics was better than single-omic alone in HNSC. 
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1. INTRODUCTION 

 Cancer is a major public health problem and causes 1 in 
6 deaths around the world [1]. Head and neck squamous cell 
carcinoma (HNSC), which arises from multiple anatomic 
subsites in the head and neck region, is the seventh most 
common cancer worldwide. There is marked heterogeneity 
of tumors arising from the mucosal epithelium of the upper 
aerodigestive tract [2, 3]. The risk factors for the develop-
ment of cancers of the oral cavity, oropharynx, hypophar-
ynx, and larynx include tobacco exposure and alcohol de-
pendence, and infection with oncogenic viruses is associated 
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with cancers developing in the nasopharynx, palatine, and 
lingual tonsils of the oropharynx [4]. The high level of het-
erogeneity in HNSC, along with the complex etiological 
factors, makes the prognosis prediction deeply challenging. 
In the treatment of HNSC, a multispecialty team to evaluate 
the treatment choice is very important since the head and 
neck cancers differ from the patients’ statement, molecular 
change, and other environmental factors, such as alcohol 
and smoking. Tobacco smoking and alcohol drinking are 
used as all-cause mortality to diagnose HNSC [3, 5]. Sur-
gery, radiation, and chemotherapy in various combinations 
are utilized for the treatment of HNSC [6]. But all of these 
treatments are associated with toxicity which can lead to 
different degrees of late organ dysfunction or other serious 
adverse reactions [7]. The main method of evaluating cancer 
development and providing survival estimation prognosis 
prediction is the main method of evaluating cancer devel-
opment and survival estimation, mainly based on patients’ 
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clinical features and molecular profile [8]. Some studies [9, 
10] applied public databases such as TCGA and GEO da-
tasets to identify biomarkers associated with the prognosis 
of cancer patients and predict the clinical outcome. Ghafou-
ri-Fard Set al. [11] found the role of miRNA as prognostic 
biomarkers in HNSC. Although the single genomic analysis 
approaches have contributed towards the identification of 
cancer-specific mutations and molecular subtyping of tu-
mors [12], single-omic only considers the role of single mo-
lecular biological information. For HNSC, there was little 
study of multi-omics data to its survival. Therefore, we at-
tempted to apply multi-omics molecular biology infor-
mation to predict the survival of HNSC, at the same time, 
apply machine learning methods as a predictive tool.  
 Currently, many studies analyzed diseases not only from 
the level of gene expression alone but also from the multi-
omics level. Multi-omics (mRNA, miRNA, DNA methyla-
tion, and copy number variation) is part of the prognostic 
effect. Multi-omics integration analysis and deep learning 
are used to predict high-grade patient survival and prognosis 
risk biomarkers [8, 13, 14]. HNSC is involved in a variety 
of complex mechanisms at the molecular level in vivo, and it 
is difficult to understand the development of cancer from 
gene-level alone, thereby making assessments to the pa-
tients. Integrative analyses that use information across the 
multi-omics profiling modalities promise to deliver more 
comprehensive insights into the survival prediction of can-
cer [15]. In the field of precision oncology, genomics ap-
proaches analyses have helped reveal several key mecha-
nisms in cancer development, and several findings have 
been implemented in clinical oncology to help guide treat-
ment decisions [16]. Moreover, multi-omics approaches can 
dissect the cellular response to chemo-/ immunotherapy as 
well as discover molecular candidates with diagnos-
tic/prognostic value [17]. In summary, multi-omics integra-
tion models driven by multi-omics data may help overcome 
the chemo-/immunotherapy resistance phenotype of cancer 
cells, rendering them vulnerable to targeted therapies and 
ultimately improving the quality of life of patients [17].  
 With the development of artificial intelligence, machine 
learning (ML) methods have already achieved some success 
in the field of medical-related research. In particular, some 
prior approaches [18, 19] have shown that various ML tech-
niques could be used in an automated way to predict trends 
in various chemical and material systems. The classification 
of genomics data can be performed through machine learn-
ing algorithms to find significant features related to survival 
as well. Combined ML, which includes random forest (RF), 
K-nearest neighbor (KNN), and artificial neural networks 
(ANN), is used to identify prognostic biomarkers in colorec-
tal cancer; the performance of using RF is better [20]. 
Kaplan-Meier (KM), LASSO, and COX regression are per-
formed to analyze the effect of CA9 on the survival of 
tongue squamous cell carcinoma (TSCC) [21]. Multi-omics 
data integration through machine learning (autoencoder and 
XGboost model) to construct an accurate and robust cancer 
prognosis prediction could cause abnormal C-index values 
fluctuations due to the neglect of tumor purity and known 
clinical data that affect the occurrence and development of 
tumors [22]. Therefore, the survival prediction that inte-
grates multiple omics data and clinical data may acquire a 

robust and reliable prognostic prediction result. Fujino et al. 
[23] applied LASSO regression to predict the future visual 
field progression in glaucoma patients. A new algorithm 
based on LASSO called TG-LASSO was developed, which 
could predict clinical drug response of cancer patients and 
identify genes related to drug response, including known 
targets genes and pathways related to the drug action mech-
anisms [24]. Likewise, BN modeling has been used to de-
velop decision-support tools in various oncologic diagnoses 
[25]. Burghardt et al. [26] indicated that BN could explain 
the data set by defining the phenotype and pathogenicity of 
the given mutation position and the conditional probability 
of the residual substitution. Moreover, myypbc3 mutant 
disease was predicted via the neural/Bayesian network.  
Bellot et al. [27] used deep learning to do the performance 
about the genomic prediction of complex human traits.  
 In summary, a growing body of research has applied 
machine learning, including LASSO algorithm, cox regres-
sion, BN, and neural network to analyze tumor data of inte-
grated multi-omics. This study built up a combination of 
DNA methylation, a gene expression data analysis, a copy 
number variation, and a miRNA data analysis as a multi-
omics integration. The aim of this study was to use machine 
learning models to forecast the survival outcome of HNSC 
and compare the prediction performance in each omics. This 
comparison may be helpful in describing the hierarchal rela-
tionships between prognostic and outcome variables. 
Meanwhile, we aim to determine which machine learning 
model would be suitable for clinical use with decision curve 
analysis. Multiple machine learning methods including 
LASSO and BN combined model, naive bayesian (NB), 
logistic regression (LR), generalized linear model (GLM), 
K-nearest neighbor (KNN), decision tree (DT), RF, boot-
strap aggregating (bagging), Adaboost, gradient boosting 
decision tree (GBDT), neural networks (NN) and support 
vector machine (SVM), were used for prediction and their 
performances were compared. 

2. MATERIALS AND METHODS 

2.1. The Datasets Source and Data Pre-processing 

 RNA-sequencing data (IlluminaHiSeq_RNASeqV2; 
Level 3), miRNA-seq data (IlluminaHiSeq_miRNASeq; 
Level 3), DNA methylation data (HumanMethylation450; 
Level 3), copy number variation(CNV) data (Affymetrix 
SNP 6.0 array; Level 3), and corresponding clinical infor-
mation from HNSC were obtained from The Cancer Ge-
nome Atlas (TCGA) database (https://portal.gdc.cancer. 
gov/), in which the method of acquisition and application 
complied with the guidelines and policies. The clinical in-
formation of HNSC samples was downloaded as well. 
Meanwhile, the tumor samples of the multi-omics were se-
lected by filtering out the samples according to the nomen-
clature of TCGA sample IDs. 
 For the downloaded dataset, data pre-processing and 
dimensionality reduction were required. The gene expres-
sion data and miRNA expression data were identified by 
comparison with tumor tissues and normal tissues expres-
sion and using the edgeR, and DeSeq2 packages in R. 
Meanwhile, the chi-square test, and Kruskal-Wallis test was 
used to reduce the number of genes in order to obtain DEGs 
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in CNV data of HNSC. And for methylation data of HNSC, 
the limma package in R was used to filter DEGs. 
 Unless otherwise specified in the analysis of this paper, 
the programming language used is R (version 4.0.1). 

2.2. Machine Learning 

2.2.1. Least Absolute Shrinkage and Selection Operator 

 The least absolute shrinkage and selection operator 
(LASSO) is a regression-based algorithm that permits a 
large number of covariates in the model and penalizes the 
absolute value of the regression coefficient [28]. It is a line-
ar regression method that uses L1 regularization, which can 
achieve the purpose of sparseness and feature selection. The 
LASSO regression is applied to data dimensionality reduc-
tion and feature selection due to its outstanding feature ex-
traction and robust cancer prognosis [29]. Formula 1 de-
scribed the representation method of the minimum residual 
sum of squares of the LASSO algorithm. 
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2.2.2. Bayesian Network 

 Bayesian network (BN) is a multi-layered network of 
connections between clinical factors in a multi-omics data 
set that provides a multivariate mapping of complex data 
[30]. BN is a directed acyclic graph. Its nodes represent 
some random variables (Fig. 1). Some of these random vari-
ables are observable, and some are unobservable. Mean-
while, BN is a probabilistic graph model with a clear and 
transparent representation of the causal relationship between 
variables. Importantly, because the BN uses the posterior 
information of the data sets itself, it protects against over-
interpretation of the data. Survival predictions based on BN 
models have been developed for a number of tumors to im-
prove prognostic estimates and guide clinical decision-
making for appropriate treatment [31, 32]. The BNs is one 
of the deep learning model methods, which also has the 
deep learning model’s advantages. BNs with proper external 
validation could be useful as clinical decision support tools 
and provide clinicians and patients with information ger-
mane to the treatment of HNSC. 
 

 
Fig. (1). A simple BN network diagram. 

2.2.3. Naive Bayesian 

 Naive bayesian (NB) is one of the most widely used 
classification algorithms. NB is a method based on Bayes' 
theorem and assumes that the feature conditions are inde-

pendent of each other. First, through the given training set, 
we need to take the independence between feature words as 
the premise and learn the joint probability distribution from 
input to output. Then based on the learned model, we would 
input X to find the output Y that maximizes the posterior 
probability. 

2.2.4. Logistic Regression 

 Logistic regression(LR) is a probability-based pattern 
recognition algorithm. LR is based on linear regression the-
ory, but it introduces nonlinear factors through the sigmoid 
function, which could easily handle 0/1 classification prob-
lems. In practical applications, LR could be said to be one of 
the most widely used machine learning algorithms. 

2.2.5. Generalized Linear Model 

 The generalized linear model (GLM) is based on the 
exponential distribution family, and the prototype of the 
exponential distribution family is Formula 2. 

���� �� � ���� � ����������� � �����                             (2) 
Where η is a natural parameter, it may be a vector. T(y) is 
called a sufficient statistic. 

2.2.6. K-Nearest Neighbor 

 The K-nearest neighbor(KNN) classification algorithm 
is one of the simplest data mining technology methods. The 
core idea of the KNN algorithm is that if most of the K 
nearest neighbors of a sample in the feature space belong to 
a certain category, the sample also belongs to this category 
and has the characteristics of the samples in this category. 

2.2.7. Decision Tree 

 A decision tree (DT) is a basic classification and regres-
sion method composed of nodes and directed edges. The DT 
reflected the mapping relationship between features and tags 
as well. DT learning is a process of recursively selecting the 
optimal feature and segmenting the training data according 
to the feature so that each sub-data set has the best classifi-
cation process. 

2.2.8. Random Forest 

 Random forest (RF) is an integrated learning method 
based on decision trees. At the same time, RF is also an im-
provement to the bagging algorithm. The process of RF is 
shown in Fig. (2). 

2.2.9. Bootstrap Aggregating 

 Bootstrap aggregating (bagging) is an ensemble method 
that reduces generalization error by combining several mod-
els. The core idea is to train several different models sepa-
rately and then let all models vote on the output of the test 
example. This is an example of a conventional strategy in 
machine learning known as model averaging. 

2.2.10. Adaboost 

 Adaboost is an iterative algorithm whose core idea is to 
train different classifiers (weak classifiers) for the same 
training set and then combine these weak classifiers to form 
a stronger final classifier (strong classifier). 
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Fig. (2). The process of RF. 

2.2.11. Gradient Boosting Decision Tree 

 Gradient boosting decision tree (GBDT) is also an en-
semble method. The main idea of GBDT is that each time a 
model is established, the gradient descent direction of the 
model loss function is established before. The loss function 
is to evaluate the performance of the model (generally, the 
degree of fit and regularity); the smaller the loss function, 
the better the performance. So the best way to improve the 
performance of the model is to make the loss function de-
scend along the gradient direction. 

2.2.12. Neural Networks 

 Neural networks (NN) is a two-stage regression or clas-
sification model, which is a complex network system 
formed by a large number of simple processing units (called 
neurons) widely connected to each other. It is a highly com-
plex nonlinear dynamic learning system.The network dia-
gram is shown in Fig. (3). 

2.2.13. Support Vector Machine 

 Support vector machine (SVM) is a generalized linear 
classifier that classifies data binary in a supervised learning 
manner, and its decision boundary is the maximum-margin 
hyperplane that solves the learning sample. SVM could per-
form nonlinear classification through the kernel method and 
is a classifier with sparsity and robustness. 

2.2.14. Evaluation Index of Performance: AUC, F1 Score 

 Since the accuracy rate cannot fully evaluate the perfor-
mance of the models, this study considered other evaluation 
indicators, namely the AUC value and F1score. AUC value 
and F1score are the performance indicator to measure the 

pros and cons of machine learning. The F1 score takes into 
account both the precision rate and the recall rate. AUC is 
the abbreviation of the area under the ROC curve. As the 
name implies, the value of AUC is the size of the area under 
the ROC curve. The definitions of AUC value and F1 value 
are given below: 

AUC value:��������� � ��

�
; ������������ � ��

�����
;  

 The ROC curve is drawn by two variables. The abscissa 
is 1-specificity, and the ordinate is sensitivity. 

 F1 score: �����	��� � ��

�����
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 The meaning of these characters is shown here: TP rep-
resented the actual number of positive samples predicted as 
positive samples, TN represented the actual number of nega-
tive samples predicted as negative samples, FP represented 
actually negative samples were predicted to be the number 
of positive samples, and FN represented the actual positive 
samples were predicted to be the number of negative sam-
ples. 
 

 
Fig. (3). The single hidden layer neural network diagram. (A higher 
resolution / colour version of this figure is available in the electronic 
copy of the article). 

2.3. Survival Prediction Process 

 By preprocessing the downloaded TCGA clinical data 
and omics data, the 490 HNSC samples shared by multi-
omics were obtained. Likewise, DEGs were also obtained 
separately from each single-omic through preprocessing. 
 After the data preprocessing, the Lasso algorithm was 
used to select important variables for the survival outcome 
of HNSC from mRNA data, miRNA data, DNA methylation 
data, and CNV data. Random forest was used to calculate 
the ratio of each screened important variable. The random 
forest algorithm was used to calculate the ratio of each 
screened important variable. The four single omics were 
integrated, and machine learning models were used to pre-
dict HNSC survival outcomes. Likewise, using single-omic 
data as model input was also performed to predict survival 
outcomes. Among them, the 490 HNSC samples were ran-
domly divided into 3 groups, of which 2/3 were used as the 
training set, and 1/3 were used as the test set. All mentioned 
models were operated 10 times. 
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 The test results were measured and compared with per-
formance indicators to find out which machine learning al-
gorithms were effective and which omics were the most 
accurate for predicting HNSC survival. The flowchart for 
the main process of the study is presented in Fig. (4). 

 
Fig. (4). The main process of the research. 

2.4. In vitro Experimental 

2.4.1. Cell Lines and Culture 

 A normal human immortalized keratinocytes (Hacat) cell 
line and three HNSC cell lines (Cal-27, SCC-9, and FaDu) 
were used in the present study. All cell lines were obtained 
from the Cell Bank of the Chinese Academy of Sciences. 
Hacat, Cal-27, and FaDu cell lines were cultured in Dulbec-

co's Modified Eagle Medium(DMEM), and SCC-9 was cul-
tured in Dulbecco's Modified Eagle Medium/Nutrient Mix-
ture F-12(DMEM/F12) in 5% CO2 at 37°C. All media was 
supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin-streptomycin. All cell culture reagents were pur-
chased from Gibco, Thermo Fisher Scientific company. 

2.4.2. Quantitative Real-time PCR(qPCR) Assay 

 Cells were seeded at a density of 105 cells per well in a 
6-well plate and cultured overnight. Total RNA was extract-
ed from cultured cells using TRIzol reagent (Invitrogen). 
Complementary DNA (cDNA) was synthesized using Tran-
scriptor First Strand cDNA Synthesis Kit (Roche), in ac-
cordance with the manufacturer's instructions. Quantitative 
reverse-transcription PCR was performed with Fast Start 
Essential DNA Green Master (Roche) and special primer 
sequences (Table 1). Relative mRNA expression was quanti-
fied by the comparative Ct (ΔCt) method and normalized to 
the internal control gene, ACTB. 

3. RESULTS 

3.1. The Datasets Source and Data Pre-processing 

 The HNSC multi-omics data downloaded by TCGA in-
cluded mRNA expression data, miRNA expression data, 
DNA methylation data, CNV data, and 528 clinical data 
containing clinical information. The multi-omics samples 
downloaded from TCGA were screened and compared, and 
490 tumor samples that the multi-omics shared were ob-
tained (Fig. 5). We obtained 299 mRNA genes, 62 miRNA 
genes, 40 CNV genes, and 299 DNA methylation genes 
from data preprocessing. Fig. (6) shows the 40 top genes 
from the four single-omic data after DEGs. 

3.2. Machine Learning Results 

 The parameter settings of the machine learning method 
used are shown in Table 2. 
 Before utilizing the machine learning model to predict 
the survival outcome of HNSC, the LASSO algorithm was 
applied to select core genes in each single-omic. The LAS-
SO algorithm took each single-omic data as the model input 
and took the event data of the clinical information as the 
model output. The results of each single-omics core gene 
obtained through the LASSO algorithm are shown in Table 
3. Core genes that LASSO selected were integrated.  

Table 1. Primers sequences. 

Gene Primer Forward (5’→3’) Primer Reverse (5’→3’) 

AQP5 GCCACCTTGTCGGAATCTACT CCTTTGATGATGGCCACACG 

ACTN3 GCCCGATCGAGATGATGATGG GGCAGTGAAGGTTTTCCGCT 

TAC1 GGGACTGTCCGTCGCAAAAT ACAGGGCCACTTGTTTTTCA 

ZFR2 ATGGCTACCTACCAGGACAGT GTATCCCGAGGACAAGGTGC 

MMP11 GATCGACTTCGCCAGGTACT CAGTGGGTAGCGAAAGGTGT 

ACTB TCACCATGGATGATGATATCGC ATAGGAATCCTTCTGACCCATGC 
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Fig. (5). The screened out of the shared tumor samples from 
TCGA. (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 

 The data of each single-omic core gene selected from the 
LASSO algorithm were performed by the six machine learn-
ing models. The machine learning models took each single-
omic core gene obtained from the LASSO algorithm as the 
model input and took the event data of the clinical infor-
mation as the model output. Fig. (7) shows the results. A 
comparison of Fig. (7) reveals that among the HNSC omics 
model predictions, the prediction effect of mRNA was the 
best. The BN model (area under the curve [AUC] 0.7687, 
F1 score=0.7290) and RF model (area under the curve 
[AUC] 0.7307, F1 score=0.7327) had high predictive capac-
ity, which was superior to that of other machine learning 
models. Besides, these 12 machine learning models showed 
the worst performance in survival outcome prediction in 
CNV data. In addition, it was worth noting that we found 
that GBDT made a similar predictive performance in every 
single omics data. In recent years, studies have shown that 
the GBDT model was rarely used for the prediction of ge-
nomic data. This could be most likely the reason for the low 
sensitivity of GBDT to genome-type data. Overall, the pre-
diction performance of BN([AUC] 0.7687&F1 score=0. 
7290 in mRNA, [AUC] 0.6341 & F1 score=0.6634 in miR-
NA, [AUC] 0.6325 & F1 score=0.6602 in methylation, 
[AUC] 0.5980 & F1 score=0.6411 in CNV) and RF([AUC] 
0.7307 & F1 score=0.7327 in mRNA, [AUC] 0.6329 & F1 
score=0.6298 in miRNA, [AUC] 0.6263 & F1 score=0.6701 
in methylation, [AUC] 0.5253 & F1 score=0.6345 in CNV) 
in the four omics showed the best. Meanwhile, the predic-
tive performance of miRNA data and methylation data were 
average, with AUC and F1 score less than 0.7. For the pre-
diction performance results of CNV, it may have little effect 
on the survival outcome of HNSC. 

 The integrated core genes were selected again by the 
LASSO algorithm, and then the 36 multi-omics genes that 
affect the occurrence of HNSC could be obtained (Fig. 8A). 
The 36 core genes that secondary selected were calculated 
to calculate the contribution of each gene (Fig. 8B).  

 The 36 genes that were secondarily screened by LASSO 
were integrated. Meanwhile, the integrated multi-omics was 
used as the input of machine learning, and the event data of 
the clinical information were used as the output to predict 
the survival outcome of HNSC. Fig. (9) presents the results 
of machine learning methods performed in multi-omics. In 
Fig. (7), the multi-omics performed the best when compared 
to each single-omic. The F1 score of the 12 machine 
learning models in multi-omics was 0.7917 on BN, 0.7839 
on RF, 0.6989 on NN, 0.6502on DT, 0.6061 on GLM, 
0.7647 on SVM, 0.7653 on LR, 0.7405 on Bagging, 0.4394 
on NB, 0.7196 on KNN, 0.7729 on Adaboost and 0.6797 on 
GBDT. The AUC of the 12 machine learning models in 
multi-omics were 0.8250 on BN, 0.8002on RF, 0.7207on 
NN, 0.5588 on DT, 0.6675 on GLM , 0.6826 on SVM, 
0.7041 on LR, 0.6200 on Bagging, 0.5371 on NB, 0.6909 on 
KNN, 0.6910 on Adaboost and 0.7342 on GBDT. Except for 
the machine learning performance in DT and NB, the multi-
omics data had the best forecast of HNSC survival outcome. 
Furthermore, BN and RF played the best predictive effect, 
whether it was the result of single-omic or multi-omics. 
Overall, these results suggested that the application of multi-
omics data to predict the survival outcome of HNSC was 
better than the application of single-omic data alone. 
Likewise, the prediction performance of the BN model was 
better than other machine learning models as well. Together 
these results provide important insights that applying the 
LASSO algorithm to select the contributing variables and 
BN model to multi-omics data to predict the survival 
outcome may improve performance. 

3.3. qPCR Results 

 Through the LASSO algorithm, we selected 5 genes to 
verify in vitro; we detected their mRNA expression levels in 
a normal Hacat cell line and three HNSC cell lines. Cells 
were cultured and detected via RT-qPCR. The mRNA ex-
pression levels of AQP5, ACTN3, TAC1, ZFR2, and MMP11 
were evaluated (Fig. 10). We found that the mRNA expres-
sion of MMP11 and ZFR2 was significantly increased; 
meanwhile, the mRNA expression of the three genes AQP5, 
ACTN3, and TAC1 was significantly decreased in the HNSC 
cell line. These findings were consistent with our model 
prediction of gene expression levels in HNSC. 

4. DISCUSSION 

 Although HNSC’s recent advances have brought sub-
stantial outcomes, it is still cancer with poor long-term sur-
vival due to the lack of specific therapeutic targets to predict 
its survival outcome [2]. Therefore, it is crucial to identify a 
robust method to predict the survival outcome of HNSC to 
evaluate its development and provide the survival estima-
tion. 
 This study set out to assess the application of 12 super-
vised machine learning models in multi-omics integration 
data to predict the survival outcome in HNSC. The obvious 
finding to emerge from the analysis was that the multi-
omics prediction shows good performance compared with 
each single-omic data prediction effect. The prediction accu-
racy of multi-omics integrated data was better than that of 
single-omics prediction alone in general. Furthermore, the
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Fig. (6). The results of DEGs in TCGA. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
Table 2. Parameter in machine learning models. 

Method Parameter 

Bayesian Networks, BN Hill Climbing, maximum likelihood estimation method 

Random Forest, RF Select the number of trees corresponding to the smallest OOB error, mtry=sqrt(M), where M is the total 
number of features 

Adaboost mfinal = 100, control 

Bootstrap aggregating, bagging i in 1:20, mfinal = i 

Naive Bayesian, NB method="class", minsplit=1, cpfor pruning 

K-Nearest Neighbor, KNN distance = 1, kernel = "triangular" 

Logistic Regression, LR family = “binomia”, type = "response" 

Gradient Boosting Decision Tree, GBDT distribution = "bernoulli", n.trees = 1000,interaction.depth = 7,shrinkage = 0.01,cv.folds = 10 

Neural Networks, NN linout=F, size=10, decay=0.001, iteration ordinal number=1000,The hidden node n2 and the input node n1 
in the three-layer NNET were related by n2=2n1+1 

Generalized Linear Model, GLM family = "binomial", eliminate variables with p<0.05 

Decision Tree, DT method=class, parms=default 

Support Vector Machine, SVM method="C-classification", kernel="radial", cost=10�gamma=0.1 
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Table 3. Single-omiccore genes selected by LASSO algorithm. 

Data Type Number of Genes Gene Name 

mRNA 21 CST4,MSTN,ADH4,ACTN3,SLC13A2,TMEM210,MUC19,TAC1,METTL21C,AQP5,ADIPOQ,KCN
J16,CKM,DYNAP,GPRC6A,C14orf180,HOXB9,CGB5,ZFR2,PTX4,COX7B2 

miRNA 7 hsa-mir-378c,hsa-mir-411,hsa-mir-375,hsa-mir-499a,hsa-mir-503,hsa-mir-301a,hsa-mir-4776 

Methylation 11 RP11-266E6.3,AC007906.1,RP11-24M17.4,LRRC34,AC133644.2 
RNU2-37P,TCF24,CTD-2540M10.1,SLITRK1,AC093787.1,HIST1H4A 

Copy number  
variation, CNV 

4 FGF19,MMP11,PLIN1,HOXD13 

 

 
Fig. (7). Comparison of single-omic prediction results applied by the machine learning models. (A, C, E, F) showed the ROC curve. 
(B,D,F,H) showed the F1 score. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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(A) 

 
(B) 

 
Fig. (8). The secondary selected results through LASSO. (A). To determine the penalty value at the lowest point of between lines deter-
mines. (B) Showed the contribution of variables. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle). 

 

 
Fig. (9). The results of the machine learning models prediction in multi-omics. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
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Fig. (10). The mRNA expression of 5genes. (A)AQP5 expression;(B)ACTN3expression; (C)TAC1 expression; (D)ZFR2 expression; 
(E)MMP11 expression. The results were presented as mean ± SEM. *p< 0.05, **p<0.01,and ***p< 0.001 as compared with the Hacat cell 
line group. 

prediction effect of mRNA in six machine learning models 
was better than other single-omic, namely miRNA, methyla-
tion, and CNV. The result may partly be explained by the 
mRNAs playing a key role in the development of HNSC 
related pathways and protein expression. And the reason 
why the multi-omics integration data produced the best pre-
diction performance is probably due to the multi-omics data 
integrating the molecular level information from each sin-
gle-omic data in HNSC. The findings suggested that multi-
omics data could more accurately reflect the relationship 
between molecular level and HNSC survival outcome than 
single-omics data. We can infer that integrating more data 
related to HNSC survival outcomes can get better prediction 
performance. 

 In addition, by comparing the performance metrics with 
other machine learning models, as shown in Fig. (7) and 
Fig. (9), the results found that the prediction efficiency of 
the BN model and the RF model was better than that of oth-
er machine learning models. Moreover, in all types of data, 
the BN model and the RF model played the best predictive 
effect among the 12 machine learning models. In the inte-
grated multi-omics data, the AUC and the F1 score of the 
BN model were 0.8250 and 0.7917. Meanwhile, AUC and 
the F1 score of the RF model were 0.8002 and 0.7839. The-
se results suggested that the BN model and the RF model 
could be suitable models for survival outcomes in HNSC. In 
terms of overall performance, the BN model and the RF 
model performed the best in predicting HNSC survival out-
comes. The results indicated that the BN model and the RF 

model might be the most robust models to use in predicting 
overall survival from omics data. In summary, the BN mod-
el and the RF model were more suitable for HNSC survival 
prediction, especially in HNSC data that combined with 
multiple omics.  

 The current study found that the Cox proportional haz-
ards regression was widely used to predict survival, and the 
prediction results were reliable [33, 34]. In general, there-
fore, it seems that the Cox proportional hazards regression 
could be used to compare the performance with the previ-
ously mentioned models to further confirm the predictive 
performance of BN in HNSC (Fig. 11). Surprisingly, the 
0.82 C-index value in the Cox proportional hazard regres-
sion indicated that the performance of the Cox proportional 
hazard regression was consistent with BN. The weight val-
ues that represented the influencing factors of multi-omics 
genes on the overall HNSC event in the last column of Fig. 
(11) were different from the results predicted by the LASSO 
algorithm in Fig. (8). For the inconsistent result, the im-
portance of core genes was calculated again by RF (Fig. 12). 
This finding was unexpected and suggested that the cox 
model and the BN model may have the same prediction of 
survival results, but the cox model and the LASSO regres-
sion model may have inconsistent results in the variable 
screening. This disappointing result might be explained by 
the fact that different model parameters cannot be ruled out. 
To further verify the results we found, cross-validation with 
other data sources and further experiments in vitro were 
performed. 
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Fig. (11). The prediction results inCox proportional hazard regression. 

 

 
 

Fig. (12). The feature of each core gene was obtained through a Random forest. 
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 Gene Ontology (GO) is a tool widely used to annotate the 
functional relationship between genes and gene products [35], 
which includes molecular functions (MF), biological path-
ways (BP), and cellular components (CC). To cross-validate 
the feature importance with the RF algorithm results, the GO 
functional enrichment was performed (Fig. 13). The function-
al enrichment pointed that HNSC mainly regulated the cyste-
ine-type endopeptidase inhibitor activity, cornification, nega-
tive regulation of proteolysis, antimicrobial humoral response, 
myosin complex, RNAi effector complex, respiratory chain 
complex, and mRNA binding in GO. Compared with the RF 
algorithm results, the selected genes from mRNA expression 
showed an important role in those pathways and revealed that 
the RF algorithm results made a good performance. In sum-
mary, the result of enrichment analysis was roughly similar to 
mentioned in the literature [36, 37], which demonstrated a 
partial overlap with the feature importance results obtained by 
the previous RF. 
 The results of in vitro verification of the core genes se-
lected by the random forest suggested that these genes could 
serve as therapeutic targets and poor prognostic factors for 
HNSC. At the same time, in the Cox proportional hazard 
regression and BN models, these genes indicated that they 
have a greater impact on the survival outcome of HNSC. 
Importantly, prior studies have noted TAC1wasa powerful 
epigenetic biomarker in HNSC [38]. Meanwhile, ZFR2, 

AQP5, and ACTN3 were found on the association between 
tumors such as cervical cancer, prostate cancer, acute mye-
loid leukemia, colorectal cancer, and breast cancer [39-43]. 
However, the MMP11 gene has not been studied in HNSC. 
The result of this study may suggest that MMP11could serve 
as a novel biomarker for the diagnosis in HNSC, while the 
matrix metalloproteases (MMP) family were related to pan-
cancer, especially with HNSC [44]. 
 These findings may be somewhat limited firstly by the 
lack of predicting the combination of other personal factors 
such as smoking condition and alcohol condition with multi-
omics data, and the lack of combined predictions of multi-
omics data and data that fully describe the prognosis of can-
cer, such as TMN stage, radiotherapy, and chemotherapy. 
Moreover, at the molecular level, we neglected to combine 
proteomics data with multi-omics to predict the survival 
outcome of HNSC. This may be one of the reasons that the 
AUC that describes the prediction performance was lower 
than 0.8. Secondly, this research verified only part of the 
screened core genes by in vitro experiments. Despite these 
flaws, these results further support the idea of applying 
LASSO and BN combined models to multi-omics integra-
tion data to predict the survival outcome. Furthermore, these 
results show that the use of machine learning methods, es-
pecially BN and RF methods, is robust and accurate in pre-
dicting the survival outcome of HNSC. 

 
Fig. (13). The result of gene ontology functional enrichment. (A higher resolution / colour version of this figure is available in the electronic copy 
of the article). 
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CONCLUSION 

 Applying multi-omics integration data to machine learn-
ing has important implications for predicting survival out-
comes. One of the strengths of this study is that it is the 
multi-omics integration data machine learning analysis to 
date. It applied the LASSO and 12 machine learning models 
across four HNSC single-omics types, including mRNA, 
miRNA, methylation, and CNV, to predict the affecting 
HNSC variables and survival outcome. This study set out to 
explore whether the LASSO and 12 supervised machine 
learning models based on multi-omics integrated data could 
be robust in predicting the survival outcome of HNSC. De-
spite some limitations, the findings of this study are still 
valuable. The machine learning models, especially the BN 
model and the RF model, are expected to become a practical 
prediction model for tumor survival and prognosis. The 
multi-omics integration data could bring more information 
about the molecular level to better predict survival out-
comes. Furthermore, better clinical services may bring new 
ideas to the precise prognosis and treatment of tumors. 
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