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Abstract: We propose a scheme to implement the phonon antibunching and phonon blockade in a
circuit quantum acoustodynamical system containing two surface acoustic wave (SAW) resonators
coupled to a superconducting qubit. In the cases of driving only one SAW resonator and two
SAW resonators, we investigate the phonon statistics by numerically calculating the second-order
correlation function. It is found that, when only one SAW cavity is resonantly driven, the phonon
antibunching effect can be achieved even when the qubit–phonon coupling strength is smaller than
the decay rates of acoustic cavities. This result physically originates from the quantum interference
between super-Poissonian statistics and Poissonian statistics of phonons. In particular, when the two
SAW resonators are simultaneously driven under the mechanical resonant condition, the phonon
antibunching effect can be significantly enhanced, which ultimately allows for the generation of
a phonon blockade. Moreover, the obtained phonon blockade can be optimized by regulating the
intensity ratio of the two SAW driving fields. In addition, we also discuss in detail the effect of
system parameters on the phonon statistics. Our work provides an alternative way for manipulating
and controlling the nonclassical effects of SAW phonons. It may inspire the engineering of new
SAW-based phonon devices and extend their applications in quantum information processing.

Keywords: surface acoustic wave; acoustic cavity quantum electrodynamics; phonon blockade

1. Introduction

Exploring the quantum behaviors of mechanical systems at a macroscopic scale is
crucial not only for the fundamental research such as revealing the boundary between
classical and quantum physics [1–5], but also for the practical applications in quantum
information processing and quantum measurement [6–8]. On the one hand, with the
significant developments of micro- and nanomechanical fabricating technologies, mechan-
ical resonators with a wide range of frequencies could be experimentally cooled to their
quantum ground state [9–12]. This achievement makes it possible for manipulating and
controlling the mechanical resonators at the single phonon level. On the other hand, due to
their ability to respond sensitively to weak electric, magnetic, and optical signals, mechani-
cal resonators can be coupled to diverse quantum systems to form hybrid systems [13–17],
e.g., the radiation pressure coupling between photons and phonons in cavity optome-
chanics [18–21], mechanical resonators coupled to superconducting qubits [22–27], and
spins [28–38]. These coupled systems greatly facilitate the deep research of mechanical
quantum effects, including the nonclassical states of phonons [2–4,38–42], mechanical
squeezing, and entanglement [43–48] as well as phonon blockade [24–27,49–54].

However, most theoretical schemes and experimental implementation associated with
mechanical quantum effects involve a bulk harmonic mode of mechanical resonators,
including a drum mode of a membrane, or a flexural mode of a beam and a wire. Note that
surface acoustic waves (SAWs) [55], as alternative quantum acoustic modes, have attracted
considerable attention in past decades. SAWs are acoustic waves that propagate along
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the surface of a solid or an interface, which can be excited and probed by interdigitated
transducers on piezoelectric substrates. They have long been used to engineer compact
electric devices and applied into classical wireless communication [56]. In contrast to
photons, SAW phonons have several striking features. First, their propagating speed is
usually at a few km/s (five orders of magnitude slower than that of vacuum electromagnetic
waves), which means shorter wavelengths for the same frequency. This feature makes
acoustic phonons more advantageous in short distance quantum communication. For
example, it allows for manipulating many-wavelength signals and in-flight control of
SAWs [57]. Second, the typical frequency of SAWs is in the Gigahertz range, which closely
matches the transition frequency of an artificial atom. More importantly, due to their
high frequency, acoustic modes could be cooled to their quantum ground states by a
conventional cryogenic refrigerator. This greatly sparks the extensive research of quantum
acoustics [58] and the exploration of SAW-based applications in the quantum field [59–62].
In particular, recent experiments have demonstrated local probing of SAWs [63] and
propagating phonons coupled to an artificial atom in the quantum regime [64]. Traveling
acoustic waves have been used to observe electromagnetically induced transparency (EIT)
of a mechanical field [65] and route single phonon [57]. In addition to being propagating
phonons, SAWs can also be confined to acoustic cavities to form local acoustic modes.

High quality factor Fabry–Pérot SAW resonators (Q∼105) have been reported and
experimentally realized [66–69]. It has been demonstrated that a SAW resonator can be
strongly coupled to superconducting qubits through piezoelectric interactions [70–74],
which ultimately allows for the realization of the quantum regime of a two-dimensional
phonon cavity [73]. These developments open up the study of circuit quantum acoustody-
namics (QAD) [71,75–77]. Analogous to circuit quantum electrodynamics (QED) [78–80],
circuit QAD explores the interaction between SAW resonators (or acoustic waves) and arti-
ficial atoms, which paves a new direction for the exploration of phonon–matter interaction.
By exploiting the strong coupling between SAW resonators and superconducting qubits,
many achievements have been made, including the synthesis of mechanical Fock states and
a Fock state superposition [74], a generation of phonon-mediated quantum state transfer
and remote qubit entanglement [81], resolve phonon number states [82], and a potential
quantum acousto-optic transducer [83]. In addition, SAW resonators can also be coupled
to other quantum systems (e.g., quantum dots [84,85], the nitrogen-vacancy centers in
diamond [86,87] and trapped ions [88]), which could be utilized as universal quantum
transducers [88]. Moreover, the integration of SAW resonators with different physical
systems, including optical cavity and microwave resonators, could form hybrid piezo-
optomechanical systems, which has been harnessed to observe the enhanced anti-Stokes
scattering [89], realize single-photon quantum regime of artificial radiation pressure on
SAW phonons [90], and generate controllable optomechanically induced transparency [91].

Here, we propose a scheme for exploring the phonon antibunching effect and phonon
blockade in a circuit quantum acoustodynamical system containing two SAW resonators.
Specifically, we consider a system consisting of a superconducting transmon qubit coupled
to two SAW resonators. It is found that, when only one SAW resonator is driven, an
unexpectedly strong phonon antibunching effect with sub-Poissonian statistics is generated
under the mechanical resonant driving even though the qubit–phonon coupling strength
is smaller than the decay rates of acoustic cavities. This phenomenon can be physically
explained from the combined effect of super-Poissonian statistics and Poissonian statistics,
similar to that in quantum-dot-cavity QED for photons [92–94]. Comparing with the case of
only driving one SAW resonator, when the two SAW resonators are both resonantly driven,
the sub-Poissonian statistics of phonons can be significantly enhanced and a phonon block-
ade occurs. Moreover, by adjusting the driving strength ratio of the two SAW resonators, an
optimal phonon antibunching and phonon blockade can be obtained. Our work provides
a powerful platform, i.e., a circuit quantum acoustodynamical system to reveal phonon
nonclassical effects, which may inspire the development of SAW-based single-phonon
quantum devices and their applications in quantum information processing.
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Note that phonon blockade, as a typical quantum effect, has been studied in many
previous works, such as in quadratically coupled optomechanical systems [49–52] and
qubit- and spin-mechanical resonator coupled systems [24–27,53,54]. These systems mainly
focus on the localized mechanical modes of micro- and nanomechanical resonators. On
the contrary, our work is based on the acoustic modes in surface acoustic waves. In
terms of SAWs in acoustic cavities, a recent work in Ref. [95] proposed an effective N-
type quantum system to realize vacuum-induced SAW phonon blockade. This work
utilizes a hybrid quantum system consisting of a superconducting qubit coupled to a SAW
resonator (or waveguide) and a microwave resonator. By employing the vacuum field of
the microwave resonator, a giant self-Kerr phononic nonlinearity is induced to cause the
SAW phonon blockade. Our work is quite different from this work. First, we consider
the coupling between a superconducting qubit and two SAW resonators, which does not
involve a microwave resonator. Second, in the case of mechanical resonant driving, the
generation of the SAW phonon blockade in our proposal is due to the quantum interference
between Poissonian statistics and super-Poissonian statistics of phonons, instead of a strong
mechanical nonlinearity. In addition, the work in Ref. [96] studies the two-acoustic-cavity
interaction, which is mediated by auxiliary transmons.

It shows that, by considering the transmon as a quantum two-level qubit and a three-
level qutrit, one could observe the quantum state transfer between two SAW resonators and
correlated phonon pairs. In stark contrast to these, our work is based on the SAW phonon–
qubit coupling and concentrates on the nonclassical effects of SAW modes. Note that the
works in Refs. [93,94] studied the sub-Poissonian light generation and the optimal photon
antibunching in a quantum-dot-bimodal-cavity coupled system. The achieved nonclassical
statistics of photons essentially originate from the quantum interference between a coherent
state and a super-Poissonian state for the single-mode driving regime. For the case of
two-mode driving, the photon antibunching effect of the additional driven cavity mode
is also associated with the combined effect of the direct driving and the quantum-dot-
cavity coupling. These works indeed inspire our research for the nonclassical effects of
SAW phonons, which exploit similar physical mechanisms. However, first, it should
be pointed out that our work is based on SAW phonons in acoustic cavities, which is
very different from the previous works [93,94] focusing on photons. Second, utilizing the
related physical mechanism in [93,94] to study the nonclassical effects of SAW phonons is
currently not explored. Finally, when we discuss the influences of system parameters, it is
found that the phonon antibunching effect is sensitive to the thermal phonon occupation
numbers. However, SAW phonons have the feature of high frequencies, which provides
an inherent advantage for suppressing the adverse effects of thermal noise, especially in
practical experiments. Overall, our work provides an alternative approach for achieving
the nonclassical effects of SAW phonons in a circuit quantum acoustodynamical system. It
may deepen the understanding of phonon–matter interactions and inspire the engineering
of SAW-based phonon quantum devices as well as their potential applications.

The system we consider consists of two SAW resonators coupled to a superconduct-
ing qubit. For a SAW resonator, two IDTs are introduced to excite and probe the SAW,
respectively, and placed between two Bragg mirrors, displaying an acoustic Fabry–Pérot
cavity. However, the proposed ’resonator’ asymmetric geometry (left–right) that introduces
IDTs on both axes will determine significant wave reflection on the propagation surface,
which should produce a lot of noise and oscillation band enlargement. Note that, first,
the periodicity λIDT of the IDTs determines the acoustic wavelength and the resonant
frequency is given by ω = 2πv0/λIDT , where v0 is the SAW propagation speed. Many
Fabry–Pérot standing modes are localized in the mirror stop band. However, resonances
are only produced in the band where the mirrors strongly reflect. In addition, the SAW res-
onator can be designed to support a single SAW resonance in the mirror stop band [56,74].
Second, each of the device has a finite frequency bandwidth determined by its geometry.
One can calculate frequency characteristics of different circuit elements and measure the
acoustic response [73,80]. By performing the measurement of transmission amplitude or
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reflection coefficient versus the frequency of the acoustic resonator, one could observe
resonances of different modes. In addition, the coupling strength between SAW modes
and the qubit depends on the spatial overlap of a mode and qubit-IDT fingers [72]. The
phonon–qubit coupling can be strongest by positioning the electrodes of the qubit-IDT
at the antinode of standing acoustic wave in the resonator. When the qubit is tuned into
resonance with the acoustic mode, one can investigate the anticrossing spectrum, which is
used to measure the coupling strength. The energy splitting of avoided anticrossing does
not appear in other modes. This is due to other modes corresponding to standing acoustic
wave with nodes the qubit electrode locations.

This paper is organized as follows: In Section 2, we describe a circuit quantum
acoustodynamical system consisting of a superconducting qubit coupled to two SAW
resonators, and derive the corresponding Hamiltonian. In Section 3, we first analyze the
generation of the phonon antibunching effect when only one SAW resonator is resonantly
driven, and explain the origination of this phenomenon. Then, we present the case of
simultaneously driving two SAW resonators. It is shown that the phonon antibunching
effect can be significantly enhanced and the phonon blockade is generated. Furthermore,
an optimal phonon blockade is obtained by adjusting the driving strength ratio between
the driving fields for the two SAW resonators. We numerically investigate the phonon
statistics characterized by the second-order correlation function, and discuss in detail the
influence of system parameters on the phonon blockade effect. The work is summarized
and conclusions are given in Section 4.

2. Theoretical Model

We consider a circuit quantum acoustodynamical system consisting of a supercon-
ducting qubit coupled to two SAW resonators. As shown in Figure 1, a SAW resonator is
fabricated on piezoelectric substrates and defined by a pair of Bragg mirrors, forming an
acoustic Fabry–Pérot cavity. Each acoustic cavity contains two interdigitated transducers
(IDTs). These IDTs, situated inside the acoustic resonators, are formed by periodic arrays of
identical electrodes, which can be used to excite and probe the SAW. A transmon qubit is
located in the middle of the SAW resonator and coupled to the SAW mode via another IDT
through the piezoelectric substrates. In addition, the transmon qubit lies in the intersection
region of these two perpendicular SAW resonators so that the transmon qubit could be
coupled to both of acoustic resonators [96]. The system Hamiltonian reads (h̄ = 1)

Bragg mirror Bragg mirrorIDT IDT

IDT

IDT

Transmon

Figure 1. Schematic illustration of the proposed circuit quantum acoustodynamical system consisting
of a superconducting transmon qubit coupled to two SAW resonators. Each SAW resonator is defined
by a pair of Bragg mirrors and contains two identical interdigitated transducers (IDTs). These IDTs,
situated inside the acoustic resonators, are formed by periodic arrays of identical electrodes, which
can be used to excite and probe the SAW. A transmon qubit is located in the middle of a SAW
resonator and coupled to the SAW mode via an IDT through the piezoelectric substrates. In addition,
the transmon qubit lies in the intersection region of these two perpendicular SAW resonators so that
the transmon qubit could be coupled to both of the acoustic resonators.
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H = ω1b†
1b1 + ω2b†

2b2 + ωqσ+σ− + g1(b†
1σ− + b1σ+)

+g2(b†
2σ− + b2σ+), (1)

where bi (b†
i ) is the annihilation (creation) operator of the acoustic mode in the i(i = 1, 2)

SAW resonator. The first two terms in Equation (1) represent the free Hamiltonian of the
two SAW resonators with resonant frequency ωi. The third term is the Hamiltonian of the
superconducting qubit with frequency ωq. The last two terms describe the piezoelectric
coupling between the SAW modes and the qubit with the coupling strength gi. For simplic-
ity, we assume that the frequencies of the two acoustic cavities and the qubit are the same,
i.e., ω1 = ω2 = ωq, and the SAW-qubit coupling strengths are the same, i.e., g1 = g2 = g.

Including the dissipation caused by the system–bath coupling, the dissipative dynam-
ics of the hybrid SAW-qubit system are described by the master equation

ρ̇ = −i[Htot, ρ] + κ(nth + 1)D[b1]ρ + κnthD[b†
1 ]ρ

+κ(nth + 1)D[b2]ρ + κnthD[b†
2 ]ρ + γD[σ−]ρ, (2)

where D[o]ρ = oρo† − 1
2 (o

†oρ + ρo†o) is the standard Lindblad superoperator, κ and γ are
the decay rates of the two acoustic cavities and the qubit, respectively, and nth is the ther-
mal phonon occupation number with nth = [exp(h̄ωi/kBT)− 1]−1, where kB is Boltzmann
constant and T is the temperature of the thermal reservoir. Note that, for simplicity, in
Equation (2), we have assumed that the decay rates of two acoustic resonators are the same
(i.e., κ) and the thermal phonon occupation numbers are the same (i.e., nth). Based on Equa-
tion (2), the statistical properties of the phonons are investigated by numerically calculating
the correlation function. The presence of IDTs and measurement port leads to external
losses, which contributes to the external quality factor of SAW resonators. By performing
measurements, the expression of the complex reflection coefficient is both related with the
external quality factor and the internal quality factor (intrinsic to the resonators) [66–68].
Note that high quality factor (Qi) Fabry–Pérot SAW resonators have been reported and
experimentally realized [66–69]. In the current manuscript, we mainly focus on how the
phonon nonclassical effect is achieved and the influence of system dissipations. Thus, we
did not study the effect of different dissipation components separately, but considered the
overall dissipation.

To exhibit the quantum behavior of the phonons, we investigate the statistical proper-
ties of the phonons, which can be characterized by the equal-time second-order correlation
function in the steady state

g(2)bi
(0) = Limt→∞

〈b†
i b†

i bibi〉(t)
〈b†

i bi〉2(t)
. (3)

When g(2)bi
(0) < 1 (g(2)bi

(0) → 0), it indicates that the phonon antibunching effect
(phonon blockade) with the sub-Poissonian statistics occurs. In the following, we will
present how the phonon antibunching and phonon blockade can be achieved by driving
SAW resonators.

3. Results
3.1. The Phonon Antibunching When Only One SAW Resonator Is Driven

To observe the phonon statistical properties, we first consider a weak probe field
(with frequency ωl and strength εbi

) applied into one of two SAW resonators (e.g., the
i = 1 resonator) and the corresponding Hamiltonian is Hp1 = εb1(b

†
1e−iωl t + b1eiωl t). In a
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frame rotating with frequency ωl for the acoustic modes and the qubit system, the total
Hamiltonian can be written as

Htot = ∆(b†
1b1 + b†

2b2 + σ+σ−) + g1(b†
1σ− + b1σ+)

+g2(b†
2σ− + b2σ+) + εb1(b

†
1 + b1), (4)

where the detuning is ∆ = ωi −ωl = ωq −ωl . As mentioned above, Refs. [93,94] studied
the photon nonclassical statistics in a quantum-dot-bimodal-cavity system. The physical
mechanism we exploits in the SAW phonon–qubit coupled system is similar to that in
Refs. [93,94] for photons. Thus, it should be made clear that the relevant analysis and
discussions for achieving the SAW phonon antibunching effect are not a totally novel result.

In Figure 2, we calculate the steady-state equal-time second-order correlation function
g(2)b1

(0) of the SAW mode b1 versus the driving detuning ∆/κ by numerically solving the
master equation in Equation (2) with the total Hamiltonian Htot. It is shown that, when
the coupling strength is strong, e.g., g/κ = 2, the phonon antibunching effect appears
only around the detuning ∆ ≈ ±

√
2g, which corresponds to the single-phonon resonant

condition for the polariton of the coupled system. However, when the value of g/κ
gradually decreases, a significant phonon antibunching effect is generated at the resonant
driving ∆ = 0. Specifically, compared to the case of g/κ = 2, when g/κ = 1, one still
observes the phonon antibunching effect at ∆ ≈ ±

√
2g even though this effect becomes

weaker. Unexpectedly, sub-Poissonian statistics with g(2)b1
(0) < 1 are observed around

the detuning ∆ = 0. Note that there are two dips with a minimum of g(2)b1
(0), which is

associated with the two-phonon blockade. With g/κ decreasing to even the weak coupling
regime (e.g., g/κ = 0.5 and g/κ = 0.3), the sub-Poissonian characteristics is much stronger
at the detuning ∆ = 0. It is this regime for the two acoustic resonators-qubit system that
we will focus on in this paper.

-4 -3 -2 -1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 2. Steady-state equal-time second-order correlation function g(2)b1
(0) of the SAW mode b1

versus the mechanical driving detuning ∆/κ for different coupling strengths g/κ. The system
parameters we take are γ = 0.05κ, εb1

= 0.05κ, nth = 0.

To fully illustrate the dependence of the sub-Poissonian phonon statistics on the
coupling strength g, the acoustic decay rate κ and the driving detuning ∆, in Figure 3, we
plot g(2)b1

(0) versus the ratio g/κ and the driving detuning ∆/κ. In this figure, the white
solid line, the white dashed line, and the black dotted line correspond to the cases of
g(2)b1

(0) = 0.1, 0.4, 0.482, respectively. It can be seen that, when g is comparable to κ (i.e.,
g/κ ∼ 1) or even in the weak-coupling regime (i.e., g/κ < 1), a notable effect of phonon
antibunching occurs around the detuning ∆ = 0 with the optimal coupling g/κ ≈ 0.3. This



Micromachines 2022, 13, 591 7 of 17

parameter regime is different from that for the conventional quantum effects of phonons
and cannot be explained by the the anharmonic nature of the coupled system.

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

-1  

-0.5

0   

0.5 

1   

Figure 3. Steady-state equal-time second-order correlation function g(2)b1
(0) of the SAW mode b1

versus the mechanical driving detuning ∆/κ and the coupling strength g/κ. The system parameters
are the same as in Figure 2. Here, the white solid line, the white dashed line, and the black dotted

line correspond to the cases of g(2)b1
(0) = 0.1, g(2)b1

(0) = 0.4, and g(2)b1
(0) = 0.482, respectively.

To understand the origin of this abnormal quantum phenomenon, we introduce
a mode basis α = (b1 + b2)/

√
2, β = (b1 − b2)/

√
2. Then, in terms of α and β, the

Hamiltonian in Equation (4) can be written as Htot = H1 + H2, where

H1 = ∆(α†α + σ+σ−)+
√

2g(α†σ− + ασ+)+
εb1√

2
(α† + α),

H2 = ∆β†β+
εb1√

2
(β† + β). (5)

The Hamiltonian H1 describes a single acoustic cavity–qubit coupled system. The
Hamiltonian H2 represents a driven empty cavity without the qubit coupling. Both acoustic
cavities are resonantly driven with the same driving strength εb1 /

√
2. In the transformed

basis, one can have b1 = (α + β)/
√

2. Therefore, the statistical character of mode b1 is
equivalent to the combination of mode α and β. As shown in Figure 4b, we plot the
steady-state equal-time second-order correlation function g(2)(0) of modes α, β and b1
versus the driving detuning ∆/κ. On the one hand, for the coupled acoustic cavity (α), the
correlation function is g(2)(0) � 1 at the resonant driving ∆ = 0, which clearly presents
the super-Poissonian phonon statistics. This is due to phonon-induced tunneling, which
is similar to that in quantum-dot-cavity QED for photons [92]. On the other hand, for the
empty acoustic cavity (β), Poissonian statistics are presented with g(2)(0) = 1. Combining
these two aspects, the output of mode b1 shows sub-Poissonian statistics with g(2)(0) < 1
at the detuning ∆ = 0. Actually, this unexpected antibunching effect has been studied
for photons in a quantum-dot-bimodal-cavity system and explained from the perspective
of super-Poissonian light and coherent light [93,94]. In addition, in Figure 4a, we plot
the second-order correlation function g(2)b1

(0) versus the ratio g/κ for different driving
strengths εb1 /κ in the case of mechanical resonance ∆ = 0. It can be seen that, at a certain

optimal coupling gopt/κ < 1, g(2)b1
(0) could have a minimum value, which indicates a

strong phonon antibunching effect. This is consistent with the results obtained in Figure 3.
Furthermore, comparing the three cases of εb1 /κ = 0.01, 0.05, and 0.1, one could find that,
when the driving strength εb1 /κ decreases, the phonon antibunching effect is enhanced
and the corresponding optimal coupling is slightly different.
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Figure 4. (a) Steady-state equal-time second-order correlation function g(2)b1
(0) of the SAW mode b1

versus the coupling strength g/κ with different driving strengths εb1
/κ in the mechanical resonant

case ∆ = 0; (b) steady-state equal-time second-order correlation function g(2)(0) of modes α, β, and
b1 versus the mechanical driving detuning ∆/κ. The system parameters are the same as in Figure 2
except for (b) g = 0.3κ.

In the discussion above, we do not consider the effect of the thermal phonon occupa-
tion number nth (i.e., nth = 0). To fully illustrate how the phonon statistics are influenced by
the thermal phonon number, in Figure 5, we plot the steady-state equal-time second-order
correlation function g(2)b1

(0) of the SAW mode b1 versus the coupling strength g/κ with
different thermal phonon occupation numbers nth. It is shown that, when the thermal
phonon occupation number nth increases from 10−5 to 2× 10−4, the minimum value of
g(2)b1

(0) is increased, and the curve is gradually moving up. It means that the increase of the
thermal phonon number will destroy the generation of the phonon nonclassical effect. To
fully demonstrate this, we present g(2)b1

(0) as a function of the thermal phonon occupation
number nth (see the inset of Figure 5). It can be seen that the thermal noise has a significant
effect on the phonon antibunching characteristics. When nth = 10−4, there still exists a
strong phonon antibunching with the optimal g(2)b1

(0) ≈ 0.51. When nth reaches 6× 10−4,
the phonon antibunching effect will disappear. Therefore, it is necessary to suppress the
thermal noise to observe the phonon nonclassical effect of the SAW mode.

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

10
-6

10
-4

10
-2

10
0

10
2

0

1

2

Figure 5. Steady-state equal-time second-order correlation function g(2)b1
(0) of the SAW mode b1

versus the coupling strength g/κ with different thermal phonon occupation numbers nth. The

inset shows g(2)b1
(0) versus the thermal phonon occupation number nth. The figure is plotted in the

mechanical resonant case ∆ = 0. The system parameters are the same as in Figure 2 except for
g = 0.3κ for the inset.

3.2. Enhanced Phonon Antibunching When the Two SAW Resonators Are Both Driven

In this section, we will discuss the situation where the two SAW resonators are both
driven. That is, in addition to driving the i = 1 resonator, we consider another probe field
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(with frequency ωl and strength εb2 ) applied into the i = 2 resonator and the corresponding
Hamiltonian is Hp2 = εb2(b

†
2e−iωl t + b2eiωl t). In a frame rotating with frequency ωl , the

total Hamiltonian of the coupled system becomes

H′tot = Htot + εb2(b
†
2 + b2), (6)

and we calculate the steady-state equal-time second-order correlation function g(2)bi
(0)(i =

1, 2) by numerically solving the master equation in Equation (2), but with the Hamiltonian
H′tot.

As shown in Figure 6, we plot the correlation function g(2)bi
(0) and phonon number

Nbi
= 〈b†

i bi〉 of the SAW modes b1, b2 versus the driving detuning ∆/κ for different driving
strengths εb2 . It can be seen from Figure 6a,b that, when the i = 2 resonator is not driven (i.e.,
εb2 = 0), the phonon antibunching effect for mode b1 can be generated around the detuning
∆ = 0, as discussed above. For the mode b2, it also shows antibunching characteristics
around ∆ = 0. However, this characteristic can only originate from the interaction with
the qubit. Therefore, the sub-Poissonian character of mode b2 is similar to that generated
by resonant excitation of a qubit or an effective two-level system [93]. Differently, when
the driving strength is applied, e.g., εb2 = 0.5εb1 , the values of the correlation function

for modes b1 and b2 become much smaller at ∆ = 0 with g(2)bi
(0) � 1. It indicates that

the phonon antibunching effect can be significantly enhanced by simultaneously driving
two acoustic resonators instead of one resonator. However, when the driving strength
further increases, e.g., εb2 = 0.6εb1 , the value of g(2)bi

(0) increases instead at ∆ = 0. That is,
the antibunching effect of phonons is weakened. These results suggest that, to obtain an
enhanced phonon antibunching effect, only driving the two SAW resonators is not enough.
Importantly, it needs to control the two driving strengths εb2 and εb1 so that the enhanced
result is optimal.
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Figure 6. (a,b) Steady-state equal-time second-order correlation function g(2)bi
(0) and (c,d) the phonon

number Nbi
of the SAW modes b1 and b2 versus the driving detuning ∆/κ with different driving

strengths εb2 . Here, the black solid line, the red dashed line, and the blue dotted line correspond to
the cases of εb2 = 0, εb2 = 0.5εb1

, and εb2 = 0.6εb1
, respectively. The system parameters are the same

as in Figure 2, except for g = κ.
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To further study how the statistical characteristics of phonons are influenced by the
driving strengths, we define the ratio of two driving strengths as R = εb2 /εb1 . In Figure 7,
the steady-state equal-time second-order correlation function g(2)(0) and the phonon
number N of the two SAW modes b1 and b2 are plotted as a function of the ratio R in the
mechanical resonant case ∆ = 0. It is found that, with the ratio R increasing, the values
of g(2)(0) first decrease and then increase. Thus, the curves of the correlation function
have a dip with a minimum of g(2)(0) for both modes, as shown in Figure 7a,c,e. This
clearly illustrates that, by adjusting the ratio of the driving strengths, one can obtain an
optimal phonon antibunching effect with g(2)(0) � 1. Moreover, the value of g(2)bi

(0) at
the optimal driving ratio Ropt is much smaller than that in the case of R = 0. Note that,
for modes b1 and b2, the corresponding optimal driving ratio Ropt is only slightly different.
Furthermore, the minimum g(2)(0) of mode b2 is more than one order of magnitude smaller
than that of mode b1. For example, in Figure 7e, the minimum value of the correlation
function for mode b2 is g(2)b2

(0) = 0.0005, which is almost approaching 0. This indicates
that the sub-Poissonian statistical statistics of phonons are significantly enhanced and the
phonon blockade effect is generated. In addition, Figure 7a,c,e also show the second-order
correlation function g(2)(0) for different coupling strengths g/κ. It can be seen that, for an
appropriate coupling strength, there always exists an optimal driving ratio Ropt, where a
strong phonon antibunching and even phonon blockade can be obtained. In addition, one
could find that, when the coupling strength changes, the corresponding optimal value Ropt
has a little shift.
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Figure 7. (a,c,e) Steady-state equal-time second-order correlation function g(2)(0), and (b,d,f) the
phonon number N of the two SAW modes b1 and b2 versus the ratio R of two driving strengths in the
mechanical resonant case ∆ = 0. Here, the black solid line and the red dashed line correspond to the
cases of modes b1 and b2, respectively. The system parameters are the same as in Figure 2 except for
(a,b) g = κ, (c,d) g = 0.5κ, and (e,f) g = 0.3κ.
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In order to better explain the physics behind the figures in the case of simultane-
ously driving two acoustic resonators, we will start with the introduced mode basis α, β
(see the previous section). When the driving field εb2 is applied into the i = 2 SAW res-
onator, in terms of α and β, the total Hamiltonian in Equation (6) can be transformed
into H′tot = H′1 + H′2, where H′1 = ∆(α†α + σ+σ−) +

√
2g(α†σ− + ασ+) + Eα(α† + α), and

H′2 = ∆β†β + Eβ(β† + β). Here, Eα = (1 + R)εb1 /
√

2 and Eβ = (1− R)εb1 /
√

2 denote
the effective driving strengths for the phonon–qubit coupled cavity (α) and the empty
acoustic cavity (β), respectively, which are different from that in the case of driving only
acoustic resonator. When R = 0, the driving strengths of both acoustic cavities are the same
(see Equation (5)). In the presence of the driving field εb2 , the driving strengths of both
acoustic cavities are different. As mentioned above, the statistical property of mode b1 can
be regarded as the combination of super-Poissonian phonon statistics for the mode α and
Poissonian phonon statistics for the mode β. Even though the ratio R has a minor effect on
the statistical properties of modes α and β, it does provide an opportunity to adjust both
statistical components. This ultimately allows for the generation of an optimal phonon
antibunching effect, as shown in Figures 6a,c and 7a,c,e. For mode b2, the optimal strategy
is achieved by regulating the combined ratio between direct driving of mode b2 and phonon
exchange via the qubit–phonon coupling, and only the former component is associated
with the ratio R. However, the contribution of modes α and β to the statistical feature of
mode b1 is simultaneously regulated via the driving ratio R. This difference leads to the
different dependence of the second-order correlation function g(2)bi

(0) of the SAW modes b1

and b2 on the system parameters. For example, in Figure 7a,c,e, the values of g(2)bi
(0) and

the corresponding optimal ratio Ropt for the modes b1 and b2 are slightly different. The
following text will also discuss this phenomenon in detail. In addition, in Figure 6b,d, one
can find that, when the ratio R of two driving strengths increases, the phonon number N of
the two SAW modes b1 and b2 decreases in the mechanical resonant case ∆ = 0. This result
can be investigated more clearly in Figure 7b,d,f. From the perspective of modes α and β,
when the driving ratio R increases, the phonon number of mode β deceases. This can be
easily obtained by the driven strength Eβ for the empty acoustic cavity (β). On the other
hand, when the driving ratio R changes, the phonon number of mode α almost stays at 0.
Therefore, with R increasing, the phonon numbers of both modes b1 and b2 decrease.

As the driving strength ratio εb2 /εb1 is crucial to the generation of nonclassical proper-
ties of phonons, the influence of the driving strength εb1 also needs to be considered. As

shown in Figure 8a,b, we plot the equal-time second-order correlation function g(2)bi
(0) of

modes b1 and b2 versus the driving ratio R for different driving strengths εb1 /κ in the me-
chanical resonant case ∆ = 0. It can be seen that, when the driving strength εb1 /κ increases,

the minimum value of g(2)bi
(0) increases and the curves become wider and shallower. It

reveals that, for obtaining a strong phonon antibunching and phonon blockade effect, a
relatively weak driving strength for the mode b1 should be favorable. However, one could
find that the change of the driving intensity εb1 /κ has a little influence on the optimal
driving ratio Ropt. In addition, by comparing Figure 8a,b, it can be seen that the effect of
the driving εb1 on the optimal Ropt of mode b2 is relatively weaker. This is because the
driving εb1 for mode b1 does not directly driving mode b2. In order to further clarify the
dependence of the phonon nonclassical characters on the inherent parameter condition, in
Figure 8c,d, we illustrate the correlation function g(2)bi

(0) as a function of the driving ratio
R for different qubit decay rates γ/κ. Note that, when the qubit decay rate ranges from
γ = 0.05κ to γ = 2κ, the optimal driving ratio has a significant shift, which is clearer in
Figure 8c than that in Figure 8d. However, the corresponding minimum value of g(2)bi

(0)
only changes a little, especially for the mode b1. On the other hand, one can find that, even
though the qubit decay rate is larger than the decay of acoustic resonators (e.g.,γ = 2κ),
there still exists a strong phonon antibunching effect with g(2)(0) < 1 and even phonon
blockade with g(2)(0)→ 0. This illustrates that the qubit decay rate γ has a weak influence
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on the nonclassical characteristics of phonons. This is useful for relaxing the parameter
condition of observing the phonon quantum effects, and thus provides an advantage for
the experimental feasibility.
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Figure 8. Steady-state equal-time second-order correlation function g(2)bi
(0) of the SAW mode b1 and

b2 versus the ratio R of two driving strengths (a,b) for different driving strengths εb1
/κ and (c,d) for

different qubit decay rates γ/κ. These results are all obtained in the mechanical resonant case ∆ = 0.
The system parameters are g = κ, nth = 0, (a,b) γ = 0.05κ, (c,d) εb1

= 0.05κ.

Next, we will discuss the influence of the thermal phonon occupation number nth on
the phonon nonclassical effect in the case of driving two SAW resonators. As presented in
Figure 9a,b, we show the equal-time second-order correlation function g(2)bi

(0) of modes
b1 and b2 versus the driving ratio R for different thermal phonon occupation numbers nth.
It can be seen that the presence of thermal phonon occupation number will significantly
weaken the phonon blockade effect. Moreover, the insets in Figure 9a,b present g(2)bi

(0) of
modes b1 and b2 versus the thermal phonon occupation number nth, respectively. Clearly,
the phonon quantum effect is sensitive to the thermal noise of the mechanical environment,
which is similar to the results discussed in Figure 5. Thus, to better obtain the desired
phonon nonclassical effect, it requires cooling the SAW resonators to low temperature.
Fortunately, due to the high frequency of SAW modes, the acoustic modes can be cooled to
their quantum ground state with the dilution refrigerator. For instance, at the base temper-
ature T = 16.5 mK, when the frequency of a SAW mode is ωi/(2π) = 4 GHz, the thermal
phonon number is nth ≈ 10−6. Therefore, the high frequency of SAW resonators provides
an advantage and a strong guarantee for observing the quantum effects of SAW phonons.
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Figure 9. Steady-state equal-time second-order correlation function g(2)bi
(0) of the SAW modes (a) b1

and (b) b2 versus the ratio R of two driving strengths with different thermal phonon occupation

numbers nth in the mechanical resonant case ∆ = 0. The insets of (a,b) show g(2)b1
(0) and g(2)b2

(0)
versus the thermal phonon occupation number nth, respectively. The system parameters are the same
as in Figure 2 except for g = κ and R = 0.5 for the insets.

Finally, let us discuss the applicability of the proposed system. In our proposal, we
exploit the piezoelectric coupling between two SAW resonators and a superconducting
transmon qubit to achieve the desired phonon antibunching effect and phonon blockade.
In principle, the same theoretical results also apply to other acoustic cavity-qubit systems,
such as those contain superconducting charge, flux, or phase qubits. Note that, in current ex-
periments, the type of superconducting qubits that has been successfully coupled to a SAW
cavity is the transmon [70–74]. Other qubits, e.g., quantum dots and the nitrogen-vacancy
centers in diamond, are generally coupled to a propagating SAW [84–87]. Nevertheless, we
believe that, with the further developments of experimental technologies, more fields will
be explored in quantum acoustics and breakthroughs will be made in the future.

4. Conclusions

In conclusion, we propose a scheme to achieve the phonon antibunching effect and
phonon blockade of SAW modes in a circuit quantum acoustodynamical system, which
consists of two SAW resonators coupled to a superconducting qubit. In the case of only
driving one SAW resonator, a strong phonon antibunching is generated under the mechan-
ical resonant condition even when the qubit–phonon coupling strength is smaller than
the decay rates of acoustic cavities. This result originates from the quantum interference
between super-Poissonian phonon statistics and Poissonian phonon statistics. In particular,
when the two SAW resonators are simultaneously driven, the phonon antibunching can be
significantly enhanced so that the phonon blockade appears. In addition, by controlling
the driving strength ratio between two mechanical driving fields, one could obtain an
optimal phonon blockade. This controllability provides an advantage for the manipulation
of quantum effects of SAW phonons. We characterize the phonon statistics by numerically
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calculating the second-order correlation function. Furthermore, the effect of system param-
eters on the phonon statistics is also discussed in detail. Our work provides a promising
approach to yield the typical quantum effects (i.e., phonon blockade) of SAW phonons.
It could deepen the study for the interaction of phonons and matter in circuit QAD and
extend the engineering of single phonon quantum devices based on SAWs as well as their
applications in quantum information processing.

Finally, let us discuss the range of parameters in terms of state-of-the-art technology.
Note that, in our proposal, to achieve the phonon antibunching effect and phonon block-
ade of SAW modes, the phonon–qubit coupling strength g is required to be comparable
with the SAW decay rate κ and larger than the qubit decay rate γ. In terms of the experi-
mental feasibility, the strong coupling regime (g� κ) for the coupled SAW-qubit system
has been demonstrated [72,81]. For example, the work in Ref. [72] shows the coupling
strength g∼6.5 MHz, which exceeds the cavity loss rate (∼200 kHz) and qubit linewidth
(∼1.1 MHz). The work in Ref. [81] reports a strong coupling system with g/2π∼2.5 MHz,
κ/2π∼133 kHz and γ/2π∼76 kHz.
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