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Image segmentation plays an essential role in medical imaging analysis such as tumor
boundary extraction. Recently, deep learning techniques have dramatically improved
performance for image segmentation. However, an important factor preventing deep
neural networks from going further is the information loss during the information
propagation process. In this article, we present AX-Unet, a deep learning framework
incorporating a modified atrous spatial pyramid pooling module to learn the location
information and to extract multi-level contextual information to reduce information loss
during downsampling. We also introduce a special group convolution operation on the
feature map at each level to achieve information decoupling between channels. In
addition, we propose an explicit boundary-aware loss function to tackle the blurry
boundary problem. We evaluate our model on two public Pancreas-CT datasets, NIH
Pancreas-CT dataset, and the pancreas part in medical segmentation decathlon (MSD)
medical dataset. The experimental results validate that our model can outperform the
state-of-the-art methods in pancreas CT image segmentation. By comparing the
extracted feature output of our model, we find that the pancreatic region of normal
people and patients with pancreatic tumors shows significant differences. This could
provide a promising and reliable way to assist physicians for the screening of
pancreatic tumors.

Keywords: atrous spatial pyramid pooling, boundary-aware loss function, pancreas CT, image segmentation,
group convolution
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1 INTRODUCTION

According to the Report on Cancer from National Cancer
Institute in 2021, pancreatic cancer is the third leading cause
of cancer-related death in the United States (1). The
identification and analysis of pancreatic region play an
important role in the diagnosis of pancreatic tumors. As an
important and challenging problem in medical image analysis,
pancreas is one of the most challenging organs for automated
segmentation, which aim to assign semantic class labels to
different tomography image regions in a data-driven learning
fashion. Usually, such a learning problem encounters numerous
difficulties such as severe class imbalance, background clutter
with confusing distractions, and variable location and geometric
features. According to statistical analysis, pancreas occupies less
than 0.5% fraction of entire CT volume (2), which has a visually
blurry inter-class boundary with respect to other tissues.

In this article, we combine the advantages of deepLabV series,
Unet, and Xception networks to present a novel deep learning
framework AX-Unet for pancreas CT image segmentation to assist
physicians for the screening of pancreatic tumors. The whole AX-
Unet still preserves the encoder-decoder structure of Unet. In our
framework, we incorporate a modified atrous spatial pyramid
pooling (ASPP) module to learn the location information. The
modified ASPP can also extract multi-level contextual information
to reduce information loss during downsampling. We also
introduce a special group convolution operation on the feature
map at each level to decouple the information between channels,
achieving more complete information extraction. Finally, we
employ an explicit boundary-aware loss function to tackle the
blurry boundary problem. The experimental results on two public
datasets validated the superiority of the proposed AX-Unet model
to the states-of-the-art methods.

In summary, we propose a novel deep learning framework
AX-Unet for pancreas CT image segmentation. Our framework
has several advantages as follows.

1. In our framework, we introduce a special group convolution,
depth-wise separable convolution, to decouple the two types
of information based on the assumption that inter-channel
and intra-channel information are not correlated. This design
can achieve better performance with even less computation
than the normal convolution.

2. We restructure the ASPP module, and the extraction and
fusion of multi-level global contextual features is achieved by
multi-scale dilate convolution, which enables a better
handling of the large scale variance of the objects without
introducing additional operations. The efficacy of the
restructured ASPP is validated in our ablation studies on
foreground target localization.

3. We propose a loss function that can explicitly perceive the
boundary of the target and combine the focal loss and
generalized dice loss (GDL) to solve the problem of
category imbalance. The weighted sum of the above parts is
used as our final loss function, which can explicitly perceive
the boundary of the target.
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4. We segment a large number of external unlabeled pancreas
images using our trained model. The analysis of the
imagomics features of the pancreatic region shows a
significant difference between patients with pancreatic
tumors and normal people (p ≤ 0.05), which may provide a
promising and reliable way to assist physicians for the
screening of pancreatic tumors.
2 RELATED WORK

We are developing an artificial intelligence (AI) method for
medical application in this paper. In this section, we review some
previous works related to our work. We first make a brief review
of AI methods in medicine. Then, we focus on the research of the
AI task involved in this paper (i.e., image segmentation) and
review the related methods. Finally, most related to our study, we
review a few representative studies that applied AI methods to
medical image segmentation, especially, pancreas segmentation,
and compare them with our methods.
2.1 Artificial Intelligence in Medicine
In recent years, with the popularization of AI technology in
various fields, it has also made great progresses in the medical
field. The development of AI techniques has been promoting the
development of medicine, from the earliest AI methods, such as
expert systems (3, 4), to more advanced statistic machine learning
methods, such as support vector machine (5, 6), non-negative
matrix factorization (7–9), and local classification methods (10–
12). Recently, the deep learning techniques that have achieved
great success in computer vision and natural language processing
played an important role in the development of medicine and got
great development over the past few years. Xu et al. (13) used an
attention-based multilevel co-occurrence graph convolutional
long short-term memory (LSTM) to enhance multilevel feature
learning for action recognition. Fang et al. (14) proposed a dual-
channel neural network to reduce the high noise and disturbance,
which generally resides in the signal collected by wearable devices,
improving the accuracy of action recognition in the process
of surgical assistance and patient monitoring. Mao et al. (15–17)
also employed GCN and deep generative classifiers for disease
identification from chest x-rays and medication recommendation.
The diagnosis of tumors based on morphological features has also
found some applications, applying the morphological operators
get the legion part that is possible for doctors to detect accurately
where the tumor is located. Hu et al. (18) proposed an emotion-
aware cognitive system. A novel undisturbed mental state
assessment prototype was proposed by Giddwani et al. (19). The
recent pre-trained language models are also employed for disease
early prediction (20) and clinical records classification (21).

2.2 Image Segmentation
For the segmentation problem, many breakthroughs have been
made in recent years. He et al. (22) proposed spatial pyramid
pooling (SPP) to solve the fixed input size caused by the fully
June 2022 | Volume 12 | Article 894970
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connected layer and proposed the parallel extraction of multi-
level features of SPP layer, which makes different size inputs have
output with fixed dimension. PSPNet (23) applied multi-level
feature extraction to the field of semantic segmentation. In its
design of pyramid pooling module, four different sizes of pooling
are fused and then stitched by a bilinear interpolation and a 1 × 1
convolution. This structure is designed to aggregate contextual
information from different regions, thus improving the ability to
obtain global information. The DeepLabV series (24) proposed
by Google later introduced ASPP in later versions, which used
dilate convolution with different dilate factors to expand the
receptive field without losing resolution and to fuse multi-scale
context information. In addition, a 1×1 convolution and a global
pooling are added in parallel. In the latest deeplabV3+ (25), the
upsampling has been further refined, and better results have been
achieved in boundary segmentation. In addition, in this version,
Xception (26) was introduced as the backbone to perform feature
extraction. This model performs channel-by-channel
convolution by the assumption that the channel correlation is
decoupled. Isensee et al. (27) developed nnUnet, a method that
automatically configures preprocessing, network architecture,
training, and post-processing for any new task, rendering state-
of-the-art segmentation accessible to a broad audience by
requiring neither expert knowledge nor computing resources
beyond standard network training.

2.3 Medical Image Segmentation
Since Unet was proposed in 2015 (28), it has undergone many
versions of evolution, and its performance has been continuously
improved (29). Inspired by the successful application of Unet
architecture and its variants to various medical image
segmentations, Li et al. (30) proposed a novel hybrid densely
connected UNet for liver and tumor segmentation. Yu et al. (31)
used a salience transformation module repeatedly to convert the
segmentation probability map for small organ segmentation. The
above methods mainly use general segmentation approaches for
medical image segmentation, ignoring domain-specific
challenges. In the field of pancreatic segmentation, many
methods have also been proposed. Farag et al. (32) used a
convolutional neural network (CNN) model with dropout to
conduct a classification on pixel level. Cai et al. (33) added a
convolutional LSTM network to the output layer of CNN to
compute the segmentation on two-dimensional (2D) slices of the
pancreas. However, all of these methods merge the information
between 2D slices of CT images for segmentation, which may
miss some spatial information across slices. Man et al. (34)
proposed a coarse-to-fine classifier on image patches and
regions via CNN. Zhang et al. (35) proposed a new efficient
SegNet network, which is composed of basic encoder, slim
decoder, and efficient context block. Although these methods
integrate spatial information to a certain extent, there is still
room for improvement in boundary segmentation decisions.
Ribalta Lorenzo et al. (36) proposed a two-step multi-modal
Unet–based architecture with unsupervised pre-training and
surface loss component for brain tumor segmentation which
allows model to seamlessly benefit from all magnetic resonance
modalities during the delineation. Shi et al. (37) presented a new
Frontiers in Oncology | www.frontiersin.org 3
semi-supervised segmentation model CoraNet based on
uncertainty estimation and separate self-training strategy. The
definition of uncertainty directly relies on the classification
output without requiring any predefined boundary-aware
assumption. Different from previous methods, our framework
extracts more complete spatial and channel features, introduces
multi-level and multi-scale feature extraction, and explicitly
evaluates the segmentation loss of boundaries, achieving
excellent results on multiple public datasets.

3 METHODS

In this article, we propose an improved version of Unet-based
backbone network, AX-Unet, incorporating a restructured ASPP
module, depth-wise convolutions, and residual blocks. We also
propose a hybrid loss function that is explicitly aware of
the boundary.

3.1 Architecture
As shown in Figure 1, our model adopts a U-shaped encoder-
decoder structure, which improves the basic Unet architecture in
severalways. First,we replace thenormal convolutions in the encoder
and decoder except the first layer with group convolution, so that in
the encoding process of each level, the inter-channel and intra-
channel correlation information is independently extracted (38, 39).
On the basis of this structure, the overlay of adjacent slices containing
the foreground is used as the input of our model; in this way, we can
independently extract thedetaileddifferencesbetweenadjacent slices,
which is helpful for more accurate segmentation. Therefore, in
essence, the channels should be treated differently; it is better not to
map them together. Second, we have added a residual structure (40)
between adjacent convolution blocks, which can reduce the semantic
information loss in downsampling. Third, after the encoding stage,
we set up a bottleneck layer using ASPP (41), which plays an
important role in extracting multi-level contextual information to
reduce information loss during downsampling. By performing
convolution operations on the feature maps obtained in the
encoding stage in parallel with different dilated rates, the context of
the image is captured at multiple scales to obtain more accurate
foreground position information (42).

Because the pancreas has a small area in computed
tomography images which is flexible and changeable,
traditional methods may fail to find the presence of the
pancreas when receiving a challenging input. The extraction of
multi-level contextual semantic information is important for
small and changeable target. In the decoding phase, we restore
the feature maps to the original resolution of the input image
layer by layer through group deconvolution (43) and reduce the
number of feature maps to 2 through 1×1 convolution.

3.2 Depth-Wise Separable Convolution
We use a special group convolution, depth-wise separable
convolution, instead of the normal convolution in the encoder.
The normal convolution operation is a joint mapping of channel
correlation information and spatial information in the channel
(44). These two kinds of information are coupled, but the two
June 2022 | Volume 12 | Article 894970
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correlations are decoupled in Inception by depth-wise
convolution (45, 46). In the assumption of Inception, the two
correlations are independent (47), mapping them separately can
achieve better results. Because our input is in the form of
numerous of slices, the independent mapping of information
between channels is more reasonable. We use the extreme case of
Inception, i.e., Xception in our framework, that is, the number of
groups in the group convolution is equal to the number of input
channels, which means inter-channel correlation and intra-
channel spatial correlation are completely decoupled. The
input feature map is linearly transformed channel by channel
through a 1×1 convolution; the obtained feature map is fed to a
number of 3×3 convolutions. Because the number of groups in
our grouped convolution is equal to the number of input
channels, all filters in this convolution process have a
convolution kernel of 3×3, i.e., each channel of input feature
map is only convolved by one kernel with size of 3×3×1. The
outputs of these filters are stacked to construct the output
feature map.

In terms of parameter comparison, assuming the number of
input feature map is M, the number of output feature map is N,
and the normal convolution kernel size is 3, the normal
convolution has the number of parameters Nn = 3×3×M×N,
and the depth-wise separable convolution has the number of
parameters from two parts, i.e., Ng = Ndepth−wise + Npoint−wise = 3 ×
Frontiers in Oncology | www.frontiersin.org 4
3× M + 1 × 1 × M × N. Compared the depth-wise separable
convolution with the normal convolution, the amount of
parameters in our framework is reduced (48, 49), and the
expressive ability of the network has been improved. In our
framework, we use double convolutions for dowmsampling, in
every double convolution block, we replace the first normal
convolution with depth-wise separable structure Xception
shown in Figure 1. Therefore, in each downsampling process,
the convolution kernels with the same number of input channels
are used to achieve information decoupling, and then, a normal
convolution is used to double the number of feature maps. After
calculation, if ordinary convolution is used completely, a total of
1,040,768 3×3 convolution kernels are needed in the entire
downsampling process, whereas our improved structure only
needs 700,544 3×3 convolution kernels.

3.3 ASPP Module
The pancreas images usually have blurry boundaries and are easy
to be confused with surrounding soft tissues, especially, it
occupies a relatively small region in a CT image with
complicated background and usually less than 1.5% in a 2D
image. This makes it even hard to decide whether the pancreas
exists in the image. Most existing models cannot extract enough
information about the position of the pancreas, which is largely
related to the global context of the image. In our framework, we
FIGURE 1 | An overview of our framework. When an original image is input, first, it goes through an encoder with four downsampling blocks consisting of a group
convolution (xception) and a max pooling, yielding a small feature map; then the small feature map goes through our modified ASPP module with dilated convolution
to achieve multi-scale feature parallel extraction; and then the multi-scaled feature maps go through a decoder with group decovolution operations to achieve a
feature map with the same shape of the original input image for pixel-wise classification. Finally, in the test process, the output feature map implies a segmentation
for evaluation; in the training process, comparing the output feature map and the original input annotation to calculated the loss by the designed hybrid loss function
for model training.
June 2022 | Volume 12 | Article 894970
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use an ASPP module that contains atrous convolution to
improve the information extraction ability. The ASPP module
is inspired by the spatial pyramid and uses multiple parallel
atrous convolution layers with different sampling rates. The
context in the feature map is captured at multiple scales at the
same time. In the scenario where the medical image itself does
not contain complex background, noise and other information,
we believe that the deep and shallow features of the medical
image are all important, so the fusion of different levels of
features can achieve better decision-making.

As illustrated in Figure 1, the ASPP module that we use
mainly includes the following parts:

1. A 1×1 convolutional layer and three 3×3 atrous convolutions.
When the dilated rate is close to the feature map size, filters
will no longer capture the global context and will be
degenerated into a simple 1×1 convolution with only the
filter center working. Hence, here, we scale the dilated ratio of
the original module to (2, 4, 6).

2. A global average pooling layer obtains the image-level
feature, and then sends it to a 1×1 convolution layer
(output with 256 channels); the output is bilinearly
interpolated to be the same shape with the input.

3. The four kinds of feature maps from the above two steps are
concatenated together in the channel dimension and then are
sent to a 1×1 convolution for fusion to obtain a new feature
map with 256 channels.

To a certain extent, the ASPP module solves the defect that
the traditional Unet may have in characterizing information, can
better extract multi-level position information, and has stronger
characterization and learning capabilities to detect and locate the
pancreas. In addition, if the dilate rate is close to or even exceeds
the size of the input feature map, then it will degenerate into 1×1
convolution, and a too large dilate rate will not be conducive to
pixel-level output, so we use a smaller dilate rate of (2, 4, 6).

3.4 Hybird Loss Function
Because the region to be segmented only occupies a small part of
the entire image, this imbalance of foreground and background
will cause sub-optimal performance (50). In addition, the
pancreas as a soft tissue, the shape is variable. On the basis of
the above characteristics, we proposed a hybrid loss function to
update model parameters for the pancreas study tasks where
category imbalance, boundary perception, and shape perception
commonly exist. Our loss function consists of the following
three parts.

• Generalized dice loss:
The use of ordinary dice loss is very unfavorable for small

targets. The model will be overfiting (the output is all
background) because once the small target has a part pixel
prediction errors, it will result in large changes in dice
coefficient, which will lead to dramatic changes in gradients.
Therefore, GDL imposes a weight in each segmented category so
as to balance the contribution of various target areas (including
background) to loss.
Frontiers in Oncology | www.frontiersin.org 5
Loss(GDL)  =  1 −
1
m

2om
j=1wioN

i=1yijy
pred
ij

om
j=1wjoN

i=1 yij + ypredij

� � (1)

where wi is valued by

wi =
1

oN
i=1yij

� �2 (2)

• Focal loss:
Focal loss is designed to solve the serious imbalance in the

proportion of positive and negative samples in target detection.
Focal loss is optimized on the basis of the cross-entropy loss as
Equation (3), where y > 0 reduces the loss of easy-to-classify
samples (ypred!0 or ypred!1) and pays more attention to
difficult, misclassified samples (ypred around 0.5). In addition,
the balance factor a is added to balance the uneven ratio of
positive and negative samples. Here, we go to set a to 0.25, that
is, we think negative samples are easier to distinguish.

Focal Loss

=  
−a 1 − ypred

� �g
log ypred for y  =  1

− 1 − að Þ(ypred)g log  1 − ypred
� �

for y  =  0

( )
(3)

• Counter-aware loss (CAL):
Pixels located at the boundary between background and

foreground are so ambiguous that it is difficult to determine
their labels even for experienced people. From the perspective of
features, these vectors extracted from motley image pixels fall
near the hyperplanes, acting as hard examples. As general
networks only apply pixel-wise binary classification, target
boundaries and interior pixels are processed indiscriminately
using the cross-entropy loss function, so they usually predict
broad outline of target objects, inferior in precision. Here, we
designed a loss function based on a fixed edge extraction filter
operator. The result of each iteration and the label are convolved
separately. After processing, MSSS-IM (Multi-Scale-Structural
Similarity Index), which measures the similarity of the image
structure, is used as a loss function. This kind of explicit
boundary extraction solves the problem of fuzzy boundary
i n f o rma t i on and c an b e t t e r r e t u rn t h e l o s s o f
boundary information.

There are many operators in edge extraction, such as Prewitt
operator, Sobel operator, and Prewitt operator. They have
different emphases and tendencies in boundary extraction. For
example, Sobel operator detects edges according to the
phenomenon of reaching extreme values at edges, which has a
smoothing effect on noise. The effect of Roberts operator in
detecting horizontal and vertical edges is better than that of
oblique edges, and the positioning accuracy is high, but it is
sensitive to noise. We choose to use the Sobel operator, which
contains two sets of 3×3 matrices, which are horizontal and
vertical templates, so that they can do plane convolution with our
original label and segmentation output at the same time, and
June 2022 | Volume 12 | Article 894970
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then, the horizontal and vertical brightness difference
approximations can be obtained, respectively.

The specific two convolution operator parameters are shown
in the following matrix:

Gx  =

−1 0 1

−2 0 2

−1 0 1

2
664

3
775
3�3

Gy =  

1 2 1

1 0 0

−1 −2 −1

2
664

3
775
3�3

Through the calculation of convolution and gradient, we get the
edge of the predicted label and the original label, respectively,
and then calculate loss through the cross-entropy loss function as
part of the previous loss.

Our final loss function is the weighted sum of the above three
loss functions as in Equation (4).w1, w2, and w3 are tuned for
different segmentation tasks. For all the pixels that are truly
located in the pancreas region, we believe that the pixel values at
the border are more indistinguishable, under this scene, we tune
the weights of the three loss functions through grid search in
range [0.2, 0.8] with step 0.2, try different combinations of
weights, and finally find that, when a relatively large weight is
given to CAL, the value of distance decreases significantly and
dice score has also been improved to a certain extent, which
proves the effectiveness of the perceptual boundary method we
designed. However, when too large weight is given to the CAL,
there will be many samples’ target foreground cannot be found.
We think this is caused by the fact that CAL itself cannot handle
the problem of extreme class imbalance of samples, so focal loss
and Dice loss are still required to a certain extent. Finally, we
determined through experiments that GDL, focal loss, and CAL
were given 0.2, 0.2, and 0.6, respectively, based on the validation
performance.

Final Loss 

=  w1 � CAL + w2 � Focal loss + w3 � GDL (4)

where w1, w2, and w3 represent the weights of the three
loss functions.
4 EXPERIMENTS AND RESULTS

4.1 Datasets
Following previous work of pancreas segmentation, two different
abdominal CT datasets are used:

• As one of the largest and most authoritative Open Source
Dataset in pancreas segmentation, the NIH pancreas
segmentation dataset sourced from TCIA (The Cancer
Imaging Archive) provides an easy and fair way for method
Frontiers in Oncology | www.frontiersin.org 6
comparisons (51). The dataset contains 82 contrast-enhanced
abdominal CT volumes. The resolution of each CT scan is 512
× 512 × L, where L have a range of 181 to 466 which is the
number of sampling slices along the long axis of the body. The
dataset contains a total of 19,327 slices from the 82 subjects,
and the slice thickness varies from 0.5 to 1.0 mm. Only the CT
slices containing the pancreas are used as input to the system.
We followed the standard four-fold cross-validation, where
the dataset is split to four folds, each fold contains images of
20 subjects, and the proposed model was trained on 3 folds
and tested on the remaining fold.

• The Medical Segmentation Decathlon (52) is a challenge to
test the generalizability of machine learning algorithms when
applied to 10 different semantic segmentation tasks. In
addition, we use the pancreas part in modality of portal
venous phase CT from Memorial Sloan Kettering Cancer
Center. We used the official training-test splits where 281
subjects are in training set and 139 subjects are in test set.
4.2 Evaluation Metric
The performance of our approach on pancreas segmentation was
evaluated in terms of dice similarity coefficient (DSC)

DSC Z,Yð Þ  =  
2� Z ∩  Yj j
Zj j  +  Yj j (5)

where Z is the predicted segmentation and Y is the ground truth.
We reported the maximum, minimum, and average values of
DSC score over all testing cases in the NIH dataset and MSD
dataset (52).

Moreover, we also use Jaccard coefficient, recall, and precision
as auxiliary metric:

Jaccard U ,Vð Þ  =  
U ∩  Vj j
U ∪  Vj j (6)

Where U and V represent the real pancreatic area and the
predicted pancreatic area (pixel level), respectively.

Precision  =  
TP

TP + FP
(7)

Recall  =  
TP

TP + FN
(8)

In addition, for the metric of the segmentation problem,
although Dice and others can well reflect the difference
between the segmentation effect and the actual situation, its
defect is insensitivity to differences in target boundaries, and the
focus is mainly on the inside of the mask, while the Hausdorff
distance (HD) as a measure of shape similarity, can be a good
complement to Dice. In a 2D plane, HD refers to the maximum
of all distances from one set to the nearest point between another
set. Given two finite set of points A = {a1,…ap} and B = {b1,…bp},
the HD between them is defined as follows:
June 2022 | Volume 12 | Article 894970
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H A,Bð Þ = max h A,Bð Þ,   h B,Að Þf g (9)

where h(A,B) = max a ∈ Amax b ∈ B ∈ a − b ∈, h(B,A) =
max b ∈ Bmax a ∈ A ∈ b − a ∈, ║ ║ is a distance norm
defined on point set A and point set B. We use the Euclidean
distance representation directly.

4.3 Implementation Details
We implement our approach base on PaddlePaddle platform on
a server equipped with V100 Tesla GPU with 32-GB memory.
We use four-fold cross-validation for training and use min max
normalization to scale the pixel values of the original image to [0,
1] and performed independently on the training and test sets. We
found that RMS optimizer has a faster convergence speed than
the Adam optimizer. Although adaptively reducing the learning
rate, RMS optimizer can still get convergence on a smaller
number of iterations. Thus, we used RMS as our optimizer.
Our complete source code is available at Github https://github.
com/zhangyuhong02/AX-Unet.git. We list our hyperparameters
and system settings in Table 1.

Because the method that we proposed achieves a variety of
improvements in multiple levels of the network structure such as
loss function, deep supervision and the form of deep supervision,
we compare with the state-of-the-art methods in terms of
Frontiers in Oncology | www.frontiersin.org 7
multiple improvement direction control variables and the
combined effects of each improvement structure.

We performed some basic processing on the original image.
We performed 2.2 times contrast enhancement (the best
performance can be obtained through hyperparameter grid
search). Figure 2 shows our comparative data enhancement effect.

4.4 Results
In this section, we compare our proposedmethod with the state-of-
the-art methods for image segmentation. Table 2 shows the
segmentation performance on NIH and MSD datasets in terms
of DSC, Jaccard, precision, and recall. From Table 2, our
framework can outperform the other state-of-the-art methods by
a wide margin in terms of DSC, Jaccard, precision, and recall. The
mean HD between out segmentation and the ground truth is 4.68,
with a standard deviation 1.76. Figure 3 shows three examples of
our segmentation results. We initialized different training
parameters and conducted 15 independent repeated experiments
on the NIH dataset and recorded the dice score for each trained
model. The mean dice score is 87.67, and the standard deviation is
3.8. We compared our results on NIH dataset with state-of-the-art
methods through one sample t test, as shown in Table 3. From
Table 3, our proposed method has statistically significant
improvements (p < 0.0001) compared with other methods.

4.4.1 Ablation Experiment
To demonstrate the effectiveness of our group convolution and
other structures, we conducted an ablation experiment to
evaluate the effects of each part in our framework, residual
structure, depth-separable convolution module, and ASPP
module on the segmentation results. We conduct experiments
using separate additional structures or different combinations of
the proposed structures and perform the four-fold cross-
validation on the same NIH dataset, and we repeated the
experiments with different initializations for 10 times. The
results are shown in Figure 4 and Table 4.

It can be seen that the depth-wise separable convolution
achieves the greatest performance improvement when using
TABLE 1 | Hyperparameters and device parameters.

Parameter Value

Initial learning rate 0.001
Batch size 32
Epochs 150
Optimizer RMS
Learning rate decay fixed size
convolution kernel size 3×3
PaddlePaddle 2.1.2+cu101
CUDA 10.1
python 3.7
GPU TeslaV100 × 4
RAM 128GB
FIGURE 2 | Original image and contrast-enhanced image.
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only a single part, which validates the effectiveness depth-wise on
the two correlation decoupling operations. Although the
introduction of ASPP module alone did not achieve better
Frontiers in Oncology | www.frontiersin.org 8
results, the combination with depth-wise separable convolution
achieved very good results. Combining all the proposed modules
can achieve the best performance.

4.4.2 3D Rebuilding
To better demonstrate our segmentation effect, besides the
segmentation results in Figure 3, we also show an example of
the 3D rebuilding results based on our segmentation in Figure 5.
From Figure 5, the rebuilding results based on our segmentation
are similar with that from the ground truth, which validates the
efficacy of our model.
TABLE 2 | The average four-fold performance on two public dataset (the performance of our method is described by mean ± std).

Method DSC (%) Jaccard (%) Recall (%) Precision (%)

NIH dataset
Bottom-up (32) 70.7 57.9 71.6 74.4
Fixed-point (53) 82.4 – – –

3D Coarse-to-Fine (54) 84.6 – – –

Holistically nested (55) 81.3 68.9 – –

RSTN (31) 84.5 – – –

Recurrent Contextual Learning (39) 83.3 71.8 84.5 82.8
Vnet (56) 80.1 – – –

Attention Unet (57) 83.1 – – –

DenseASPP (40) 85.4 – – –

(46) 84.10 72.86 85.3 83.6
Cascaded FCN (23) 85.9 75.7 85.2 87.6
AX-Unet (Ours) 87.7 ± 3.8 78.2 ± 5.3 90.9 ± 2.2 92.9 ± 6.1
MSD dataset
Unet-64 70.7 – – –

Unet-16 67.1 – – –

Attention Unet (57) 66.0 – – –

MoNet (58) 74.0 68.9 – –

nn-Unet (27) 80.0 – – –

AX-Unet (Ours) 85.9 ± 5.1 77.9 ± 3.4 86.3 ± 5.1 93.1 ± 6.9
June 2022 | Volume 12 |
FIGURE 3 | Comparison of segmentation for three examples by the baseline model (Unet) and the AX-Unet, along with the original image and ground truth. In each
row, from left to right, the images correspond to the original image, ground-truth segmentation, the baseline segmentation by Unet, and segmentation by our AX-
Unet model, respectively. It can be clearly observed that the proposed model has better segmentation effect of the boundary than the baseline.
TABLE 3 | t-value and p-value for our method by one sample t-test.

Methods t-value p-value

RSTN (31) 9.2338 4.02 × 10-7

3D Coarse-to-Fine (54) 8.9403 8.92 × 10-7

DenseASPP (40) 6.5921 1.28 × 10-5

Cascaded FCN (23) 5.1245 0.0001
Article 894970

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. AX-Unet for Pancreatic Tumor Diagnosis
4.5 Activation Map
Besides giving the segmentation results, the network can also
output the activation maps of each layer, which could show a
clear decision making process and give a clear medical evidence.
Analyzing the activation map in the forward propagation process
of the neural network can help to understand the decision making
process of the model, thereby helping clinicians to achieve
procedural diagnosis and more accurate treatment selection.

We extract the feature maps after each pooling in the
downsampling process, take the average and maximum values
Frontiers in Oncology | www.frontiersin.org 9
of the feature maps in different levels in the channel dimension,
and convert them into activation maps for visualization.

As shown in Figure 6, we extract the activate map after the
pooling operations in two ways. The first row represents the
activate map obtained by averaging the corresponding pixel
values of each channel of the feature map of the specified level.
The second row represents the activate map obtained by taking
the maximum value of the corresponding pixel value of each
channel. It can be clearly seen that the high-level feature maps
have low resolution but strong semantics during downsampling,
whereas the low-level feature maps have high resolution and rich
details. This illustrates the necessity of our fusion of feature maps
at different levels.
5 PATHOLOGICAL ANALYSIS OF
PANCREATIC TUMORS WITH OUR MODEL

As we introduced before, the diagnosis of tumors based on
morphological features has been used in brain tumors and
other fields. To test the segmentation performance of our
model in more complex scenarios and broaden its application
scenarios, we use the proposed model to extract imagomics
FIGURE 4 | Ablation experiment on different group of module proposed in our paper.
TABLE 4 | Results of ablation studies with different components.

Method Jaccard (%)

Residual block 69.7 ± 8.9**
ASPP module (2,4,6) 76.5 ± 4.9**
Resuidual+ASPP(2,4,6) 76.8 ± 6.4**
depth-separable conv 77.4 ± 4.3*
Residual block+Depth-separable conv 76.7 ± 6.2*
Depth-separable conv+ASPP(2,4,6) 77.8 ± 3.2*
all 78.2 ± 5.3
The performance of different substructures is described by mean ± std; the t-test was
used for significance analysis, in which the all group containing all structures was the
control group; ** indicated extremely significant difference (p < 0.01);* indicated significant
difference (p < 0.05).
FIGURE 5 | The results of 3D rebuilding. The left picture is the reconstruction of ground truth, and the right picture is the reconstruction of the segmentation output
of our model.
June 2022 | Volume 12 | Article 894970
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features for analysis. To further explore the relationship between
pancreatic tumors and imagomics features and to verify the
robustness of our model, we collected a large number of
unlabeled data and used our pre-trained model for few-shot
learning to identify pancreatic regions, followed by imagomics
feature extraction and significant difference analysis.

5.1 Data Collection and
Processing Methods
We collected pancreas image data from 49 patients from The First
Hospital of Lanzhou University, which contains 31 pancreatic
tumor patients and 13 normal subjects. The ages ranged from 18
to 76 years with a mean (std) of 46.8 (16.7). The CT scans have
resolutions of 512 × 512 with pixels. The slice thickness is between
1.5 and 2.5 mm. The CT imaging was created using Somatom
Sensation scanner with the following parameters: craniocaudal
abdominal scan (120-kVp tube voltage). We manually annotated
pancreas images of five individuals for the fine-tuned task and
used the best performing model on the NIH Dataset as our pre-
trained model. A medical student manually performed slice-by-
slice segmentation of the pancreas as ground truth, and these were
verified by an experienced radiologist.

5.2 Ethical Approval
Institutional Review Board (IRB) approval was obtained prior to
the collection of the dataset. The institutional review board of the
first hospital of Lanzhou university approved this study and
waived the need for informed consent.

5.3 Transfer Learning and
Feature Extraction
Through transfer learning, we fine-tuned the model trained on
the public dataset on a small number of labeled samples from our
dataset dataset. Then, we segmented the unlabeled data and
extract 10 representative texture features from the segmentation
results for pathological analysis of tumors. The features we
extract are entropy (10), energy (11), homogeneity of the gray
Frontiers in Oncology | www.frontiersin.org 10
level co-occurrence matrix (glcm) (12), glcm dissimilarity (13),
edge sharpness (Acu) (14), contrast (15), gray mean (59), glcm
contrast (GC), glcm mean, and glcm std (60).

Contrast reflects the definition of graphics and the depth of
texture, which can measure the distribution of pixel values and the
amount of local changes in the image. Energy is a measure of the
stability of image texture gray changes, which reflects the
uniformity of image gray distribution and texture thickness.
Entropy is used to measure the randomness (i.e., intensity
distribution) of image texture and characterize the complexity of
the image. In addition, other features are calculated based on the
gray level co-occurrence matrix, which can reflect the
comprehensive information of image gray level about direction,
adjacent interval, change amplitude, etc. The local model of the
image and the arrangement rules of the pixels are used for analysis.

In Equations (10) to (15), S, E, GH, GD, Acu, and C represent
entropy, energy, homogeneity and dissimilarity of gray-level co-
occurrence matrix, sharpness of image edges, entropy, and contrast,
respectively, and Pij stands for the position of the current pixel.

Then, we checked the correlation of the extracted features
themselves and screened out the irrelevant features with
comparison differences. After comparative analysis, we
eliminated the energy and glcm dissimilarity that were highly
correlated with other features. As shown in Figure 7, we use the
Pearson correlation coefficient to measure the correlation
between variables and find that energy and glcm dissimilarity
are highly correlated with other features.

S   =  o
N−1

i,j=0
Pi,j −lnPi,j

� �
(10)

E  =   −o
i
 o

i
P2
i,j (11)

GH  =  o
N−1

i,j=0
 

Pi,j
1 +  i − jð Þ2 (12)
FIGURE 6 | Activation maps transformed from feature maps of different levels. The upper row is the average activation maps over channels, and the lower row is
the max activated maps over channels. From left to right, the activation maps are from the output of the first to the fourth downsampling block, respectively.
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GD =  o
N−1

i,j=0
Pi,j  i − jj j (13)

Acu  =  o
i
o
j

Pi,j − m
� �2 (14)

C  =  o
N−1

i,j=0
Pi,j  i − jð Þ2 (15)
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5.4 Results and Discussion
In this study, we have 31 pancreatic tumor patients and 13
normal subjects. After the features are extracted, we use the
Shapiro–Wilk test to check how likely the extracted features
follow a normal distribution. Feature distribution visualization
and the results of the Shapiro–Wilk test are shown in Figure 8.
Although most of the distributions have a p-value of the
Shapiro–Wilk test more than 0.05, it can be found that most of
the features’ distribution is skewed to some extent, and it is safe
to use a non-parametric test for significant difference analysis.
We performed a Mann–Whitney U rank test to test whether a
certain characteristic is significantly different between pancreatic
FIGURE 7 | Correlation matrix with Pearson correlation coefficient of the 10 features. E, entropy; GC, gray-level co-occurrence matrix contrast; GD, gray-level co-
occurrence matrix dissimilarity; GH, gray-level co-occurrence matrix homogeneity; S, entropy; GM, gray mean; GS, gray standard deviation; C, contrast; Acu,
sharpness of image edges.
FIGURE 8 | Feature distribution visualization. N represents the group of normal subjects, and T represents the group of pancreatic tumor patients. p value is the
results of Shapiro–Wilk test.
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tumor patients and normal subjects. After our calculation, it was
found that the entropy extracted from the segmented images was
significantly different between pancreatic tumor patients and
normal people (P ≤ 0.05). The box plot of entropy, energy, and
dissimilarity is shown in Figure 9. We believe that the feature
entropy extracted from the output segmentation of the model is
helpful for pancreas tumor diagnosis.

Entropy represents the feature of increased cellular
heterogeneity during the differentiation of normal tissue into
tumor tissue, which not only can reflect the difference in entropy
between the two tissues on CT images but also can predict tumor
recurrence and metastasis. For example, entropy can predict the
pathological grade in pancreatic neuroendocrine tumors; while
the entropy increases, the possibility of high-grade will increase.
In addition, in related studies (61), image features of peritumoral
tissue vary differently from pancreatic tumor, which may
demonstrate the possibility of entropy for predicting
recurrence of pancreas tumor and metastasis of small tumor
from other organs.

By constructing such an interdisciplinary pancreas
segmentation model, it can be applied to multiple topics in
clinical research. It may be applied to the detection of small
tumors and the relationship between pancreatic margins and
pancreatic fibrosis and to explore the relationship between tumor
or pancreatic tissue margins and important blood vessels, so as to
make more reasonable treatment choices, implement the concept
of precision surgery.
6 CONCLUSION

This paper proposes a novel deep learning framework AX-Unet
for image segmentation for pancreas CT images. Facing the
Frontiers in Oncology | www.frontiersin.org 12
challenging scene of pancreatic segmentation, we analyzed the
defects of the existing mainstream segmentation framework for
medical images and proposed a more sophisticated network
structure based on the encoder-decoder structure. We combine
the ASPP module with multi-scale feature extraction capabilities
and group convolutions that can decouple information. It can
show excellent results when facing small targets that are blurred by
the boundary of the pancreas and are easy to confuse the
surrounding tissues. Finally, we used the proposed segmentation
model to extract and analyze the radiomics features and found that
there were significant differences in entropy between normal and
pancreatic tumor patients, providing a promising and reliable way
to assist physicians for the screening of pancreatic tumors.
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