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Abstract: Recently, the estimation of bone maturation using deep learning has been actively con-
ducted. However, many studies have considered hand–wrist radiographs, while a few studies have
focused on estimating cervical vertebral maturation (CVM) using lateral cephalograms. This study
proposes the use of deep learning models for estimating CVM from lateral cephalograms. As the
second, third, and fourth cervical vertebral regions (denoted as C2, C3, and C4, respectively) are
considerably smaller than the whole image, we propose a stepwise segmentation-based model that
focuses on the C2–C4 regions. We propose three convolutional neural network-based classification
models: a one-step model with only CVM classification, a two-step model with region of interest
(ROI) detection and CVM classification, and a three-step model with ROI detection, cervical segmen-
tation, and CVM classification. Our dataset contains 600 lateral cephalogram images, comprising six
classes with 100 images each. The three-step segmentation-based model produced the best accuracy
(62.5%) compared to the models that were not segmentation-based.

Keywords: bone maturation; cervical vertebrae maturation; deep learning; lateral cephalogram

1. Introduction

Bone maturation is used to diagnose metabolic disorders in pediatric endocrinology
and to distinguish sexual maturation characteristics, chronological age, and dental devel-
opment [1]. Determining the maturation and subsequent evaluation of growth potential
during preadolescence or adolescence is important. The most standard method used to
estimate bone maturity is the use of a hand–wrist radiograph. Typically, the Greulich–Pyle
(GP) [2] and Tanner–Whitehouse (TW) [3] methods are used.

For orthodontic treatment, a lateral cephalogram must be obtained to diagnose skeletal
deformities and malocclusion in patients. If bone maturation can be estimated by lateral
cephalograms, additional exposure to hand–wrist radiographs can be avoided. Expert
dentists require a long time to estimate cervical vertebral maturation (CVM) and may
obtain different results each time they perform the estimation.

CVM, which was proposed by Baccetti and Franchi, estimates maturation using C2,
C3, and C4. After the morphological characteristics of the cervical spine are quantitatively
analyzed, maturity is estimated in six stages (cervical stage, hereinafter CS1–CS6). This
method was criticized for its reproducibility, as it lacked a clear explanation; however, to
compensate for this, McNamara and Franchi made a user’s guide [4] that explains the CVM
method in more detail. Several studies have reported that the reproducibility of the CVM
method varies across observers; therefore, it is limited in its use as a clinical guide [5,6].
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Deep learning-based methods using convolutional neural networks (CNNs) have
recently been proposed. Deep learning models for hand radiographs show excellent per-
formance [7–9]. Research on the estimation of bone maturation using lateral cephalograms
is in the beginning stage. There have been various studies on the estimation of CVM using
lateral cephalograms. To analyze the correlation between the morphological transformation
of the cervical spine and the mandible, Gray took a landmark on the lower curve of C2 and
the outlines of C3 and C4 and analyzed the shape of the cervical spine by creating a land-
mark distribution model [10]. Baptista used the Naive Bayes classifier [11], and Dzemidzic
classified CVM using a decision tree [12] after analyzing the rectangular characteristics
and the degree of concaveness in the contours of C2, C3, and C4. Moraes approached the
regression problem, which outputs bone age by learning the bottom surface of C3 using a
simple multi-layer perceptron [13]. Similar to Gray’s study, Kök extracted and classified
features, such as the width and length of the cervical body, by marking a landmark on
the outer edge of the cervical spine [14]. Amasya also considered landmarks outside C5
and classified the features by extracting them using the ratio between the lower part of the
cervical body and the left and right lengths of the body [15]. In this case, artificial neural
network, k-nearest neighbor, decision tree, random forest, support vector machine, and
logistic regression algorithms were used as classifiers. The studies described above used
classical machine learning-based methods, which are based on a manual design of features
that require expert knowledge, that is, handcrafted features. This design approach involves
highly laborious work and leads to suboptimal performance.

In contrast, the deep learning model learns features that adapt to the given data.
Therefore, it requires less expert knowledge than classical methods. Makaremi proposed a
deep learning CNN-based method. However, the method required manual segmentation of
the ROI [16]. They also proposed an experiment that extracts Sobel edge features and uses
them as input. These are opposite to feature learning, which is the basic principle of deep
learning. Seo et al. presented a benchmarking result using six deep learning models that
are variants of ResNet, GoogLenet, and MobileNet [17]. Their system is semi-automatic
since it requires manual cropping of ROI as preprocessing. The proposed method in our
study suggests a deep learning-based method for automatically estimating CVM from a
lateral cephalogram. This study aims to propose deep learning models for estimating CVM
that work in a fully automatic manner.

2. Materials and Methods
2.1. Dataset

The lateral cephalogram dataset used in this study was provided by the Jeonbuk
National University Dental Hospital. The sample images were collected from 6- to 18-
year-old children and adolescents who visited the Jeonbuk National University pediatric
department for orthodontic treatment between 2008 and 2018. A total of 600 images were
used in this experiment. The resolution of the images ranged from 1714 × 2164 to 2200 ×
2200 pixels. Two specialists, one with 14 years of experience and the other with 2 years
of experience at Jeonbuk National University Dental Hospital, classified images into one
to six maturity levels according to the CVM method [18]. Each clinician independently
evaluated the stage of cervical vertebrae age, and inconsistent results were determined
through consensus. They also segmented the C2, C3, and C4 regions using a drawing
software tool. A clinician with 2 years of experience conducted the segmentation, and
a doctor with 14 years of experience confirmed the segmentation results. The bounding
box is a rectangle drawn 200 pixels away from the top, bottom, left, and right sides of the
segmentation image.

Figure 1 shows a pair of original images and ROIs with the C2, C3, and C4 segmenta-
tion regions for each of the six classes. The ROI was drawn as a bounding box enclosing
the three regions.
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Figure 1. Original lateral cephalograms and regions of interest (ROIs) with segmentation regions.
These pairs are examples of each of the six stages of a lateral cephalogram, and each pair has an
original image and ROI with the C2, C3, and C4 segmentation regions. The red box in the original
image is the ROI and it is magnified on the right side with the segmentation region. Note that
cropped images have various sizes.

The lateral cephalogram shown in Figure 1 has a width and height between
2000 pixels and 2200 pixels. The cervical spine area required in this study was approx-
imately 100 pixels, which is very small compared to the original image. Some studies
resolved this discrepancy problem by designing a suitable loss function [19,20]. We used a
more direct approach that explicitly obtains C2, C3, and C4 segmentation masks. We used
a binary mask with a value of 0 for the black background and 1 for the foreground.

To implement our approach, we designed three modules: ROI detector, segmentor,
and classifier. These modules are specified in Section 2.1. By assembling the modules in
a cascading manner, three models can be designed: model_1 (classifier model), model_2
(ROI detector–classifier model), and model_3 (ROI detector–segmentor–classifier model).
These models are explained in Section 2.2.

2.2. Modules
2.2.1. Classifier

The aim of the classifier module is to classify an input image into one of six classes
according to the cervical stage. We trained the CNN to accomplish this aim. The dataset
contained only 100 images per class, and since the training set was small, we used transfer
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learning. ResNet50 was adopted, which was pre-trained with a large natural image dataset
named ImageNet [21].

During transfer learning, the fully connected layers in ResNet50 were removed, and a
new fully connected layer with six output nodes whose weights were initialized randomly
was attached. All weights of the convolutional layers were frozen, except those of the 2nd,
3rd, and 4th layers. The rebuilt ResNet50 was trained using the Adam optimizer and the
cross-entropy loss function.

2.2.2. ROI Detector

As shown in Figure 1, the area occupied by the cervical vertebrae was smaller than
the entire image. The problem of measuring the bone age of the cervical vertebrae depends
heavily on the shapes of C2, C3, and C4 in the images. If the original image is used for
classification, deep learning may classify the cervical stage based on parts other than
the cervical spine, leading to poor performance. As an effective approach to remedy the
problem, the ROI can be segmented around C2–C4, so that the classifier module can focus
more on C2–C4. The structure of the ROI detector is shown in Figure 2.
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Figure 2. The architecture of the ROI detector module. The original X-ray image is an input in this module, and the output
is an ROI binary image. The main network is attention U-Net.

The U-Net is a deep learning model proposed for image segmentation. It is based
on fully convolutional networks, FCN, in which all layers are convolutional layers. This
network was named U-Net because it was shaped like a ‘U’. It has a contracting path going
down to the symmetry point and an expanding path going up from that point. In the
contracting path, it captures the characteristics of the input images and reduces the size of
the image. This path consists of repeated application of 3 × 3 convolutions with a rectified
linear unit (ReLU), and a 2 × 2 max pooling operation for downsampling. In the expanding
path, the image is expanded for accurate segmentation. There are 3 × 3 convolutions with
a ReLU and upsampling of the feature map by 2 × 2 up convolution in this path. A 1 ×
1 convolution is in the final layer. The border information is revised by adding the copy
of the cropped feature map of the contracting path to the upsampled feature map in the
expanding path [22]. This crop and copy process is called the skip connection because it
brings the previous feature map.

In ROI detection, we used attention U-Net. It can be used for this module because
the detection is a kind of segmentation. Attention U-Net uses an attention gate when
upsampling in U-Net’s crop and copy process. It was experimentally proven to produce
better results [23]. Our model in Figure 2 consists of 14 3 × 3 convolution layers, 3 2 × 2 up
convolution layers, and one 1 × 1 convolution layer.

To train the attention U-net for ROI detection, a labeled dataset is essential. We used
the C2–C4 segmentation dataset described in Figure 1. A rectangle is drawn at 200 pixels
away from the top, bottom, left, and right sides of the C2–C4 segmented patches, and the
rectangle is regarded as the ROI label. When the original radiograph is entered as an input
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into the attention U-net, a grayscale map is produced. Using a fixed threshold value of 0.8,
the grayscale map with range [0, 1] is converted into a binary image. We used the Adam
optimizer and cross-entropy loss.

2.2.3. Segmentor

While the ROI detector can make a neural network focus more on the C2–C4 regions,
it cannot extract the shape information of C2–C4. On a radiograph, the underside of the
cervical vertebral body may appear to overlap because of the problem of the shooting
angle. In this case, even if the ROI is segmented, the overlapping regions are visible. Using
segmentation images represented in a binary map, a neural network can focus only on the
cervical spine.

The segmentor module receives the ROI segmented from the original image as an
input and outputs the segmented image of the cervical spine as a result. When the cropped
patch image is provided as an input into the network, a grayscale map is produced. Using
a fixed threshold value of 0.8, the grayscale map with the range of [0, 1] is converted into
a binary image. Similar to the ROI detector in the previous section, this module uses the
attention U-Net, which delivers a better performance than U-Net. The structure of the
segmentor shown in Figure 3 is the same as that of the ROI detector. Only the inputs and
outputs were different. We used the Adam optimizer and cross-entropy loss.
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cervical vertebrae segmentation image. The main network is attention U-Net.

2.3. Classification Models

Classification models can be made by assembling the modules in a cascading manner.
The model estimates the CVM using a lateral cephalogram. The simplest model, model_1,
consists of only the classifier module. The input of model_1 is the 224 × 336 image resized
from the original image. The average size of the original images was approximately 2100
× 2200. The resized image fits into model_1, and model_1 predicts one of the six classes as
output. Figure 4a illustrates model_1.

The second model, model_2, employs both the classifier and ROI detector modules.
As shown in Figure 4b, the first part of model_2 is the ROI detector module, and the second
part is the classifier module. The original image was resized to 224 × 224 and input the ROI
detector. The ROI detected by the ROI detector was cropped from the original image. The
cropped ROI was resized to 448 × 224 and input to the classifier module for classification.
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Figure 4. Architecture of three models: (a) model_1, (b) model_2, and (c) model_3.

The last model, model_3, uses all three modules described in the previous section. As
shown in Figure 4c, it consists of ROI detector–segmentor–classifier modules in sequence. The
ROI detector receives as input the resized image with 224 × 224 resolution. The cropped ROI
was resized to 448 × 224 and input to the segmentor module. The segmentor produces the
binary image, where pixels with 0 represent the background, and pixels with 1 represent the
foreground (cervical vertebrae). Finally, the binary image is input into the classifier module.
The classifier module converts the binary image into one of the six classes.

3. Results
3.1. Experimental Environment

The experiment was based on Python 3.6 and PyTorch 1.2.0. The experiment was
performed on an Ubuntu 16.04 and NVIDIA GeForce RTX 2080 TI with 11 GB RAM.
For data augmentation, we used rotation, horizontal and vertical flip, and changes in
brightness, contrast, saturation, and hue. The rotation was allowed randomly between
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−20◦ and 20◦. To generalize the results in this dataset, we used 5-fold cross-validation.
Each fold was divided into 8:2, trained, and tested.

When assessing maturity performance, we must consider the gradual progression of
body growth. Therefore, there is a correlation between the current stage and the preceding
and subsequent stages. Since it is necessary to refer to the front and rear stages clinically,
model accuracy is evaluated using the ε index, allowing one- or two-stage errors. ε(0)
allows for no errors. ε(1) allows a one-stage error, that is, classifying into the previous or
next stage is considered the correct answer. For example, when the correct maturity stage
is CS3, all the model predictions of CS2, CS3, and CS4 are considered correct.

3.2. Evaluation of ROI Detector and Segmentor

A comparison between the prediction result and ground truth is shown in Figure 5,
where the red box represents the ground truth and the blue box represents the prediction
result. The blue box is obtained by following the boundary of the detected region with a
value of 1. Finally, the blue box is converted into a rectangle with the minimum x, y values
and the maximum x, y values. The intersection over union (IOU) between the ground truth
rectangle and the predicted rectangle was used to evaluate the model. IOU scores were
measured and averaged over the entire test image. The average IOU score was 0.9181. As
confirmed by the blue box in Figure 5, the predicted ROI includes the cervical vertebral
regions C2, C3, and C4 for all the test images.
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Figure 5. Comparison between ground truth of segmentation mask for extracting the region of interest (ROI) and prediction
mask. Red is the ground truth, while blue is the predicted result. (a–d) are examples of accurate ROI detection of cervical
vertebrae area. Panels (e,f) are not exactly tetragonal shaped, but they are necessary for the cervical vertebral region.

The segmentation ground truth and the output of the segmentor are compared in
Figure 6. Most of the 120 test images were correctly segmented into three regions, as shown
in Figure 6a–d. Nine test images were segmented with more than three regions, as shown
in Figure 6e, and three test images were segmented with less than three regions, as shown
in Figure 6f.
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3.3. Evaluation of Classification Accuracy of the Three Models

Table 1 shows the classification accuracies of models 1, 2, and 3 evaluated using the
ε index.

Table 1. ε(x) accuracies of the three models.

ε(x)
Model

Model_1 Model_2 Model_3

ε(0) 0.5333 0.5916 0.6250
ε(1) 0.9250 0.9667 0.9333
ε(2) 0.9916 0.9833 0.9833

Model_3 showed the highest accuracy in terms of ε(0), which is a significant improve-
ment over models 1 and 2. The accuracy of model_3 was 9.17% higher than that of model 1
and 3.34% better than that of model 2. In terms of ε(1), the accuracy of all three models
was better by more than 30% compared to that of ε(0). The reason for the impressive
improvement is that there are many cases where the stage of cervical vertebrae maturity
spans between the previous and next stages of the correct answer. We must consider the
gradual progression of body growth. Many cases are ambiguous as to whether a patient’s
cervical vertebral maturity in the transition from CS1 to CS2 should be classified as CS1 or
CS2. Therefore, ε(1) is meaningful in helping dentists’ decision making. In terms of ε(2), all
the models had an accuracy of more than 98%.

For the comparison of each model (Figure 7), the confusion matrix was made based
on the last fold. The row of the matrix is the ground truth of the class, and the column is
the class predicted by deep learning.
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4. Discussion

Our model automatically detects the ROI and segments the C2, C3, and C4 regions,
leading to a fully automatic system with a reasonable performance. The contributions of
this study are as follows:

• Dataset construction: Our dataset contains 600 lateral cephalograms collected from
patients visiting the Jeonbuk National University Dental Hospital, Korea. Each image
is labeled with one of the six classes representing the bone maturity stage. In addition,
to support segmentation-based model learning, the C2, C3, and C4 cervical vertebrae
are labeled with segmentation information at the pixel level.

• The C2, C3, and C4 cervical vertebrae are very small compared to the whole image,
resulting in a severe data imbalance. To solve this issue, we propose attention U-Net
models that automatically detect the ROI and segment the C2, C3, and C4 regions
with high accuracy.

• We propose three CNN-based classification models: a one-step model with only CVM
classification, a two-step model with ROI detection and CVM classification, and a
three-step model with ROI detection, cervical segmentation, and CVM classification.
Their accuracies were compared with those of our dataset.

Since human maturation is continuous, the estimation of CVM is inherently a regres-
sion problem. In the medical field, the regression problem is converted into a classification
problem by discretizing the continuous CVM level into six classes. Discretization incurs a
barrier in obtaining a satisfactory performance even by experienced radiologists. A recent
study that evaluated human performance for CVM revealed a very low reproducibility [24].
Six experts in radiology and orthodontics participated in the evaluation. The intra-rater
agreement ranged from 77.0% to 87.3% and inter-rater agreement was only 42.82%. A
deep learning model has no choice but to use the class labels made by human experts
who are doomed to low reproducibility. It seems that there is an upper bound achievable
by computer algorithms and the upper bound is far from being satisfactory. However, it
does not mean the model is useless. As other medical artificial intelligence systems, the
model can contribute to boosting human performance and accelerating human decision
making [25].

We also presented the additional information of ε accuracies allowing one- or two-
stage errors. We believe that providing sub-categories for each of the CS1~CS6 classes will
help a lot of orthodontists in making a more accurate medical decision. For example, each
class may have three sub-categories: low, middle, and high. One of our future areas of
research is to extend the classes into sub-categories in order to consider the nature of the
regression problem and to develop a suitable deep learning model.

The conventional methods rely on some manual operations in a series of processing
steps such as inputting the specific landmarks. The manual operation is prone to lead to
a subjective medical decision. It also hurts the reproducibility of the same performance
on the same patient group. In most situations, the direct decision of the bone age is more
accurate or easier than inputting extra landmarks. Since our method is fully automatic, it is
meaningful to install the method in some commercial orthodontic systems. The obstacle
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to performance improvement in our study was the error of ε(2) or ε(3). Errors above ε(2)
were observed to be 9% for model_1, 8% for model_2, and 6% for model_3, respectively.
Although it does not occupy a high proportion in the overall error rate, it is an important
evaluation criterion in terms of prediction accuracy. The ε(2) and ε(3) errors are mostly
incorrectly evaluated as CS3 or CS4. In particular, the error of epsilon (1) was also observed
to be the highest in CS3. The CS3 stage includes the peak period of puberty, and it has been
reported that the prediction accuracy is low even in previous studies. In future research, it
is necessary to reduce the ε(2) error and increase the prediction accuracy in the CS3 step.

A critical limitation of conventional studies and our study is the lack of state-of-the-art
comparison of classification accuracy. This comes from the fact that no public datasets are
available. Therefore, direct comparison of accuracy between studies is not allowed. On the
other hand, the cephalometric landmark detection problem has a de facto standard dataset
named ISBI2015 [26]. The ISBI2015 dataset has served for the Cephalometric X-ray Image
Analysis Challenge held by the IEEE International Symposium on Biomedical Imaging
and for comparing the state-of-the-art performance of the models proposed by academic
papers [27]. One of the most important future works in CVM is to construct a publicly
available dataset.

This study had several clinical limitations. Since this study used the panoramic image
of a single medical institution, its generality is limited. In the future, it will be possible to
improve the generalization performance of the model through objective evaluation using
external validation data or a benchmark dataset. Moreover, it is not known whether the
performance of the model is clinically acceptable, as no comparative studies of human
doctors and models have been conducted. It is necessary to conduct comparative studies
with clinicians through follow-up studies.

The future scope for research is as follows. Recently, 3D cephalometric computed
tomography (CT) has become popular. We will enhance the performance by extending our
methods to processing 3D cephalometric CT. A recent study conducted by the AO Spine
Cervical Classification Validation Group [28] agreed to use MRI as a screening tool despite
regional and empirical differences in surgeon preference for the treatment of cervical
facet joint injuries. In order to secure the reliability of the estimation of cervical vertebrae
maturity, it is better to use MRI or CBCT 3D data rather than 2D lateral cephalograms.
Occasionally, congenital absence of the cervical spine pedicle has been reported [29,30]. If
such a benign malformation is observed, there is a possibility of a diagnosis error because
it could only be confirmed through three-dimensional CT reconstruction images. Another
future study is to use automatic landmark detection techniques. Since accurate landmark
detection algorithms are available, it is possible to combine landmark detection and bone
age classification. We expect that this combination will significantly improve the bone
age estimation accuracy. Finally, the explanatory power of the model will be visualized
using the explanation of artificial intelligence such as a class activation map. Although it is
important to classify the maturity in the cervical spine image, studies on a model that can
explain the classification performance appropriately for clinical use will also be needed.

5. Conclusions

Most of the papers that evaluated bone age estimation using machine learning selected
the hand, wrist, knee, or clavicle as the ROI [31], but in this study, deep learning was applied
using cervical vertebrae for age estimation. This study described a dataset with 600 images
and proposed three deep learning models that work automatically. Owing to the nature
of gradual growth, we devised the ε(x) index, allowing one- or two-stage errors, and
presented the accuracies of three classification models. Achieving more than 93% accuracy
for ε(1), we demonstrated the practicability of the proposed approaches.
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