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Abstract 

Background: The identification of cancer types is of great significance for early 
diagnosis and clinical treatment of cancer. Clustering cancer samples is an important 
means to identify cancer types, which has been paid much attention in the field of 
bioinformatics. The purpose of cancer clustering is to find expression patterns of differ‑
ent cancer types, so that the samples with similar expression patterns can be gathered 
into the same type. In order to improve the accuracy and reliability of cancer clustering, 
many clustering methods begin to focus on the integration analysis of cancer multi‑
omics data. Obviously, the methods based on multi‑omics data have more advantages 
than those using single omics data. However, the high heterogeneity and noise of 
cancer multi‑omics data pose a great challenge to the multi‑omics analysis method.

Results: In this study, in order to extract more complementary information from 
cancer multi‑omics data for cancer clustering, we propose a low‑rank subspace cluster‑
ing method called multi‑view manifold regularized compact low‑rank representation 
(MmCLRR). In MmCLRR, each omics data are regarded as a view, and it learns a con‑
sistent subspace representation by imposing a consistence constraint on the low‑
rank affinity matrix of each view to balance the agreement between different views. 
Moreover, the manifold regularization and concept factorization are introduced into 
our method. Relying on the concept factorization, the dictionary can be updated in the 
learning, which greatly improves the subspace learning ability of low‑rank representa‑
tion. We adopt linearized alternating direction method with adaptive penalty to solve 
the optimization problem of MmCLRR method.

Conclusions: Finally, we apply MmCLRR into the clustering of cancer samples based 
on multi‑omics data, and the clustering results show that our method outperforms the 
existing multi‑view methods.

Keywords: Low‑rank subspace clustering, Concept factorization, Manifold 
regularization, Cancer multi‑omics Data
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Background
Cancer is a series of complex diseases with high heterogeneity. Nowadays, cancer has 
gradually become one of the most common and fatal diseases worldwide. Medical stud-
ies show that gene variation and mutation are the main factors leading to the forma-
tion and development of cancer diseases [1, 2]. Moreover, the abnormality and mutation 
mechanism of gene will lead to the pathological difference of cancer, thus forming differ-
ent tumor types. As diagnosis of cancer is very important for the determination of can-
cer therapeutic schedule or regime, the identification of cancer types has attracted much 
attention in cancer research [3].

Sequencing technology has opened the omics era of life science and is leading and 
changing the development of the whole field of cancer research [2, 4]. With the devel-
opment and popularization of sequencing technology, genomics has made great pro-
gress. The generation of massive cancer genomics data provides an effective avenue to 
investigate the pathogenesis of cancer at the genomic scale. As the most commonly used 
database for analyzing cancer sequencing data, The Cancer Genome Atlas (TCGA) can 
provide a variety of cancer genomics data, such as gene expression data, DNA methyla-
tion data, copy number variation data, gene regulation data and some clinical medical 
data [5]. These cross omic measurements provide valuable opportunities for systematic 
and in-depth study of cancer. In the past decade, TCGA data sets have been widely used 
in the study of individual cancer type and pan-cancer [6, 7]. And these studies based on 
TCGA data have contributed to the accumulation and discovery of cancer knowledge.

In the field of bioinformatics, machine learning algorithms play an important role in 
disease diagnosis, pathogenic factors discovery and treatment outcome prediction, etc. 
[8, 9]. As an exploratory algorithm in machine learning, clustering algorithm is often 
used to identify cancer types. In caner classification, the purpose of clustering algorithm 
is to find sample groups with similar expression patterns by analyzing omics data, so as 
to classify cancer patients or sample tissues. So far, many classical methods have been 
proposed for the detection of cancer categories. Gao et al. proposed sparse non-nega-
tive matrix factorization to identify cancer class based on gene expression profile [10]. 
In [11], Ye et al. applied independent component analysis (ICA) into tumor clustering. 
In [12], the penalized matrix decomposition method was proposed to cluster tumor 
according to meta samples based on gene expression data. In [13], Nguyen et al. used 
partial least squares for classification of multiple types of cancer. As in references [10–
13], most studies use gene expression data to classify cancer types. With the deepen-
ing of cancer research, methylation profile is found to be different among tumor types 
and can be used as a powerful tool for sample identification [14, 15]. In addition, stud-
ies shown that copy number abnormality, as an important gene mutation, can lead to 
the abnormal growth of tissue cells and play an important role on genetic diversity and 
evolution [16, 17]. Therefore, these data can also be used as feature sources for cancer 
type recognition. For example, Polovinkin et al. used DNA methylation data to study the 
oncological diseases diagnosis, and achieved high accuracy in the classification of differ-
ent types of cancer patients [18]. Virmani distinguished different subtypes of lung cancer 
based on DNA methylation markers [19].

All of the above studies indicate that a variety of mutation mechanisms contribute 
to the occurrence and development of cancer [20]. In order to investigate cancer type 
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identification more accurately, it is necessary to analyze the cancer multi-omics data 
comprehensively. However, the heterogeneity, high noise, high feature dimensionality 
and small sample volume, and the differences in measurement and data types of differ-
ent omics data bring a great challenge to the integrated analysis of multi-omics data [21]. 
To this end, a variety of integration and analysis algorithms have been proposed. These 
approaches are mainly divided into two categories. One is network-based methods. For 
example, Ma et al. presented Affinity Network Fusion (ANF) method to cluster patient 
using gene expression, miRNA expression and DNA methylation data [22]. Wang et al. 
developed Similarity Network Fusion (SNF) model to integrate microRNA expression, 
DNA methylation and mRNA expression data for cancer subtypes identifying [23]. 
The other is based on matrix decomposition methods. For example, Strazar et al. came 
up with an Integrative Orthogonality-regularized Nonnegative Matrix Factorization 
(iONMF) to deal with important information from multiple data sources [24]. Liu et al. 
presented Block-Constraint Robust Principal Component Analysis (BCRPCA) model to 
integrate and analysis TCGA data [25].

Recently, the low-rank representation method, namely LRR, was proposed to solve the 
problem of subspace clustering [26]. In LRR, the rank of representation matrix is consid-
ered as equivalent to the dimension of the low-dimensional subspace. LRR strengthens 
the correlation of representation vectors by enforcing low-rank constraint on the repre-
sentation matrix. Benefiting from its pleasing efficacy in the acquisition of global struc-
ture of high-dimensional data, LRR is considered as a vigorous method and has received 
a great deal of attention. As a result, many improved methods based on LRR are devel-
oped, such as Latent Low-Rank Representation (LatLRR) [27], Structure-Constrained 
LRR (SC-LRR) [28], Non-negative Spare Hyper-Laplacian regularized LRR (NSHLRR) 
[29], graph regularized LRR under sparse and symmetric constraints (sgLRR) [30], and 
Laplacian regularized LRR (LLRR) [31]. However, these methods are only suitable to 
process single type data. When processing multi-view feature data, these methods may 
ignore the complementary information between views, thus reducing the learning per-
formance of the algorithm. In order to deal with multi-view data, Brbić et al. developed 
Multi-view Low-Rank Sparse Subspace Clustering (MLRSSC) [32]. In MLRSSC model, 
a consistent low-rank affinity matrix is constructed from multi-view data to jointly learn 
subspace representation. The experimental results on both simulated and real datasets 
show that MLRSSC method has excellent clustering performance. In [32], it is shown 
that the MLRSSC framework is suitable for multimodal data, which is crucial to the 
analysis of heterogeneous multi-omics data. However, MLRSSC method does not con-
sider the influence of local structure on manifold structure learning. Moreover, like most 
of the existing LRR based methods, it directly uses the observation data as the dictionary 
matrix to describe the subspaces of data. Since omics data of cancer are usually high-
dimension and small sample, using observation data as spatial mapping benchmark will 
lead to insufficient expression of low-dimensional subspace, thus degrading the learning 
ability of LRR algorithm on data subspaces.

In light to the shortcomings described above, we present Multi-view Manifold Regu-
larized Compact Low-Rank Representation method, which is called MmCLRR for short. 
Unlike most LRR based approaches, in MmCLRR, the concept factorization [33] idea is 
introduced to model dictionary matrix. Specifically, we consider the dictionary as a set 
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of concepts, and each concept corresponds to a low-dimensional subspace, that is, the 
cluster center. According to concept factorization, the dictionary is modeled as a linear 
combination of original data. The dictionary matrix constructed by concept can enhance 
the description of the low-dimensional mapping space and help to obtain the structure 
of subspace accurately. Besides, the manifold regularization is also imposed on the low-
rank affinity matrix to defend the local geometrical structure of each view. Similar to 
MLRSSC, the ultimate goal of MmCLRR is to achieve the consistent low-rank coefficient 
matrix from multi-view data. In MmCLRR, we jointly obtain the low-rank representa-
tion of multi-view by balancing the consistency of different views. At the same time, the 
balanced constraint on low-rank representation can avoid the noise propagation in the 
mapping process.

The key contributions of this study are summarized as below.

1. A multi-view based clustering analysis method named MmCLRR is proposed. 
Against specified fixed dictionary matrix used in most LRR methods, in MmCLRR, 
we adopt concept factorization to model the dictionary matrix. Concept factoriza-
tion makes the dictionary update continuously during optimization, which enhances 
the completeness of dictionary and breaks through the bottleneck of using fixed dic-
tionary matrix to describe subspace in LRR. In addition, we apply manifold regu-
larization to further preserve the local topology of the data in the projecting. Benefit-
ing by concept factorization and manifold regularization, the proposed method can 
capture the inherent subspace structure located in each view, and identify the latent 
subspace hidden in multi-view.

2. We apply MmCLRR to model cancer multi-omics data, and further propose a new 
cancer clustering framework based on multi omics data. This will make the cluster-
ing study of cancer get rid of the limitation of single omics data, and greatly promote 
the development of multi-omics data in cancer clustering research.

3. The clustering framework of MmCLRR is used to study cancer clustering, and many 
experiments of cancer samples clustering based on multi-omics data are provided. 
The experimental results indicate that it is feasible to cluster cancer using multi-
omics data. These results also demonstrate the effectiveness of MmCLRR in cancer 
clustering.

The remainder of this article is schemed as follows. In Sect. 2 a brief overview of the 
related work including LRR, manifold regularization as well as concept factorization is 
given. In Sect. 3, the developed MmCLRR method and its model on cancer multi-omics 
data are elaborated. The experiment results and the performance analysis based on 
MmCLRR and several comparison methods are demonstrated in Sect. 4. The conclusion 
of this work is given in Sect. 5.

Methods
LRR and MLRSSC

LRR is an important method of subspace clustering firstly developed by Liu et al. [34]. 
The main idea of LRR is to regard high-dimensional data as a mapping from low-dimen-
sional space. For specific high-dimensional data, the corresponding low-dimensional 
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space is usually a combination of several independent subspaces. In other words, high-
dimensional data can be regarded as the mapping combination of these low-dimensional 
subspaces. The tenet of LRR is to seek the subspace structure contained in high-dimen-
sional observed data by calculating the mapping coefficient. Because the dimension of 
the low-dimensional subspace is far lower than that of the original observation data, the 
mapping coefficient of the high-dimensional data is low rank. Therefore, LRR aims to 
obtain the lowest rank coefficient matrix by optimizing the rank minimization problem. 
For observation data X , the object of LRR is defined as follows.

Here, A is the projection basis from high-dimensional space to low-dimensional space, 
often known as dictionary. The high-dimensional observation data can be formed by a 
linear combination of A , and the coefficients of linear combination constitutes matrix Z . 
So Z is called coefficient matrix, also named as low-rank representation matrix or low-
rank affinity matrix. Supposing Z = [z1, z2, ... , zn] , where n is the number of data points, 
then the column vector zj is also thought as the mapping representation of the original 
data points j in each low-dimensional subspace. Therefore, matrix Z contains abundant 
subspace structure information for subspace segmentation.

In practice, the original high-dimensional data are directly regarded as A . And the 
nuclear norm is used as the surrogate of rank function to obtain the convex optimization 
of problem (1). The deformation of the optimal problem of LRR is as follows.

Here, �·�∗ is the nuclear norm and �Z�∗ =
∑

i

σi , where σi is the singular value of Z . At 

this point, the elements of Z can be regarded as the similar expression between the origi-
nal data points in the mapping space. In subspace segmentation, the data points with 
high similarity expression are approximately from the same subspace, so these data 
points are clustered into the same class.

Generally, the observations from the real world are noisy. In order to reduce the influ-
ence of noise on subspace learning, an error item is usually added to the object of LRR. 
For random noise, we often employ l1-norm to characterize the error term. To this end, 
the optimization problem (2) can be transformed as:

where E indicates the error, �·�1 denotes l1-norm which is a regularization strategy to 
make a matrix sparse and the l1-norm of matrix E is defined as ‖E‖1 =

∑

i

∑

j

∣

∣eij
∣

∣ , α is a 

super parameter to balance the noise. After LRR decomposing, the minimizer E∗ and Z∗ 
can be acquired. Among them, E∗ can be used for noise removal [35, 36] or feature selec-
tion, Z∗ can be used for subspace clustering [37] or classification [38–40], and XZ* can 
be used for the low-rank recovery of original data [41].

MLRSSC is a multi-view clustering framework. It jointly learns a subspace representa-
tion by constructing a consistent similarity matrix shared by multi-view data. Given a 

(1)min
Z

rank(Z), s.t. X = AZ.

(2)min
Z

�Z�∗, s.t. X = XZ.

(3)min
Z,E

�Z�∗ + α�E�1, s.t. X = XZ+ E,
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dataset X =
{

X(1),X(2), · · · ,X(mv)
}

 containing mv views, X(v) ∈ RM(v)×N corresponds to 
view v . Here, N  denotes the number of samples, and all views are from the same sample 
group. M(v) denotes the feature number of view v , and each view has its own features. 
In MLRSSC, for the purpose of learning a joint representation matrix, the regulariza-
tion item is introduced to ensure the agreement between affinity matrices of pairwise 
views. At the same time, MLRSSC encourages the sparsity of low-rank representation. 
The objective function of MLRSSC is as follows.

Here, C(v) is the low-rank representation corresponding to view v . β1 , β2 and �(v) are 
parameters to balance low rank, sparse constraints and the consistency across views, 
respectively.

Manifold regularization

Usually, the naturally generated data are approximately regarded as to be located in a 
certain manifold. Many studies have shown that the manifold structure of data is very 
important to the low-dimensional space learning or low-dimensional representation 
[42, 43]. However, these data are usually from high-dimensional space and have insuf-
ficient sample size, which makes it very difficult to obtain the global structure of the data 
manifold accurately. In manifold theory, each small enough part of a manifold is consid-
ered to come from Euclidean space and the manifold can be regarded as the adhesion 
of these small parts. So, researchers focus on preserving the local structure informa-
tion of manifold to learn the topological properties from scattered data. In practice, the 
nearest neighbor graph based on data points is used to model the local geometry of the 
data manifold [44]. Given X = [x1, x2, . . . ,xn] from an underlying submanifold of high-
dimensional space, n is the number of data points, we can construct a nearest neighbor 
graph G with n nodes. In G , each node corresponds to a sample point, and the sample 
points are connected by edges. More specifically, we first determine the k-nearest neigh-
bors of each data point by calculating the Euclidean distance between the data points, 
and then assign the weights of the connecting edges between the data points. There are 
three main ways to assign the weights of edges. For more details, please refer [45]. In this 
paper, we use Gaussian Kernel to calculate the weights. For the edge connecting data 
points xi and xj , the according weight is set as

Here, k is the number of nearest neighbors. Nk

(

xj

)

 denotes the set of k nearest neigh-
bors based on xj . For high-dimensional data X , all the weights of the edges between data 
points form a symmetric weight matrix, which is denoted as H . Because H contains the 
local structure information of the submanifold in which the observed data are located, 

(4)
min

mv
∑

v=1

(

β1

∥

∥

∥
C
(v)
∥

∥

∥

∗
+ β2

∥

∥

∥
C
(v)
∥

∥

∥

1

)

+
∑

1≤v,w≤mv ,v �=w

�
(v)
∥

∥

∥
C
(v) − C

(w)
∥

∥

∥

2

F

s.t. X(v) = X
(v)
C
(v), diag(C(v)) = 0, v = 1, . . . ,mv .

(5)Hij =







e
−

�

�

�xi−xj

�

�

�

2

2t2 if xj ∈ Nk(xi) or xi ∈ Nk

�

xj

�

0 otherwise
.
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based on H , every data point of the observation data can be represented as a linear com-
bination of its nearest neighbors.

According to the basic assumption of manifold theory, namely, if two data points in 
the data manifold are close to each other, their mappings of the two data points in a new 
coordinates are still close [46], we can minimize the objective as shown in formula (6) to 
preserve the inherent local structure of high-dimensional data.

Here, zi is the mapping expression of data point xi . The matrix D is diagonal, and its 
diagonal element is defined as Dii =

∑

j Hji . L = D−H is named as graph Laplacian 
matrix [47]. tr(·) denotes the trace function. The manifold regularization is widely used 
to enhance various algorithms [48–50].

Concept factorization

The basic idea of concept factorization is that each prominent concept in the observa-
tion data set can be represented by associating data points with similar concepts [33]. 
Namely, each concept can be represented by the linear combination of the whole data 
points. The vectors generated by this linear combination characterizes the key concepts 
shared by relevant data points. Given data set X = [x1, x2, . . . ,xn] , xi denotes data point 
i , then the concept Rc can be represented mathematically as follows.

Here, wic is an association coefficient, showing the degree of association of xi with con-
cept Rc.

On the other hand, the data point in the observation data can also be approximated by 
linear union of these concepts, in mathematics, which can be expressed in the following 
formula.

where mic is overlap coefficient that indicates how well xi overlaps the concept Rc . We 
denote the association coefficient matrix composed of coefficient wic as W , and the over-
lap coefficient matrix formed by mic as M . In mathematics, the idea of concept factoriza-
tion can be formulated as follows.

(6)

∑

i,j

∥

∥zi − zj

∥

∥

2
Hij

=
∑

i

z
T
i ziDii −

∑

i,j

z
T
i zjHij

= tr
(

Z(D−H)ZT
)

= tr
(

ZLZ
T
)

.

(7)Rc =

n
∑

i=1

wicxi.

(8)xi =
∑

c

micRc,

(9)X ≈ XWM
T .
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In Eq. (9), XW can be seen as center of concept, and M can be regarded as the projec-
tion of original data point on concept center. After concept factorization, we can find the 
prominent concepts in a given dataset and cluster membership for each data point. Due to 
the excellent performance of concept factorization in concept discovery, it has been widely 
concerned and applied into clustering research [51, 52].

The proposed MmCLRR method

In this part, the proposed Multi-view Manifold Regularized Compact Low-Rank Rep-
resentation (MmCLRR) method and its solution are elaborated. And then the model of 
MmCLRR based on cancer multi-omics data is given.

Problem formulation and the solution

Most LRR-based methods select observed data as dictionary to learn the low-rank repre-
sentation of high-dimensional data. The noise contained in the data and the insufficient 
sample size will lead to the incompleteness of the dictionary, which will directly affect the 
mapping expression of the original data in the low-dimensional space. To this end, we 
introduce concept decomposition into MLRSSC method to reconstruct dictionary matrix 
using the linear combination of original sample points. Meanwhile, in view of the advan-
tages of manifold regularization in exploring the local structure of manifold, we further 
introduce manifold regularization into our method. In MmCLRR, we combine the sparse 
LRR model with the data dictionary modeling and manifold regularization constraints to 
obtain the subspace structure information comprehensively. Given a dataset with mv views 
X =

{

X(1),X(2), . . . ,X(mv)
}

 , where X(v) represents the v-th feature view, the MmCLRR 
method can be formulated as

Here, Z(v) , E(v) is the low-rank affinity matrix and error item corresponding to view X(v) .  
X(v)W(v) represents the center of cluster of X(v) . W(v)TW(v) = I is a constraint to ensure 
the stability of the model. γ1 , γ2 and γ3 are penalty parameters. The parameter γ (v) is to bal-
ance the consistency of coefficient matrix between different views. The last item in (10) can 
help to reduce the noise propagation in low-rank affinity matrix and encourage the similar-
ity between the representation matrices of views. Take view v as an example, the decompo-
sition of MmCLRR is shown in Fig. 1.

We use Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) [53] 
to solve the optimization problem in (10). In order to facilitate the solution, we introduce 
three auxiliary variables ZA , ZB and ZC into the objective of MmCLRR. The problem (10) is 
converted into

(10)

min

mv
∑

v=1

[

∥

∥

∥Z
(v)
∥

∥

∥

∗
+ γ1

∥

∥

∥Z
(v)
∥

∥

∥

1
+ γ2

∥

∥

∥E
(v)
∥

∥

∥

2,1
+ γ3tr

(

Z
(v)

L
(v)
Z
(v)T

)

]

+
∑

1≤v,w≤mv ,v �=w

γ (v)
∥

∥

∥Z
(v) − Z

(w)
∥

∥

∥

2

F

s.t. X
(v)

= X
(v)
W

(v)
Z
(v) + E

(v)
,W

(v)T
W

(v) = I.
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Then, we draw into augmented Lagrangian method. The function (11) is recast as

Here, µ1 = µ2 = µ3 = µ4 = µ5 = µ are penalty parameters, Y1 ∼ Y5 are Lagrange multi-
pliers. Next,

The formula (12) is separated into the following sub problems with respect to Z(v)
A  , Z(v)

B  , 
Z
(v)
C  , Z(v) , H(v) , W(v) and E(v).

(11)

min

mv
∑

v=1

[

∥

∥

∥Z
(v)
A

∥

∥

∥

∗
+ γ1

∥

∥

∥Z
(v)
B

∥

∥

∥

1
+ γ2

∥

∥

∥E
(v)
∥

∥

∥

2,1
+ γ3tr

(

Z
(v)
A
L
(v)
Z
(v)T
A

)

]

+
∑

1≤v,w≤mv ,v �=w

γ (v)
∥

∥

∥Z
(v)
C

− Z
(w)

∥

∥

∥

2

F

s.t. Z
(v)
A

= Z
(v)
,Z

(v)
B

= Z
(v)
,Z

(v)
C

= Z
(v)
,H

(v) = W
(v)
Z
(v)
,

X
(v) = X

(v)
H

(v) + E
(v)
,W

(v)T
W

(v) = I.

(12)

min

∥

∥

∥Z
(v)
A

∥

∥

∥

∗
+ γ1

∥

∥

∥Z
(v)
B

∥

∥

∥

1
+ γ2

∥

∥

∥E
(v)
∥

∥

∥

2,1
+ γ3tr

(

Z
(v)
A
L
(v)
Z
(v)T
A

)

+
∑

1≤v,w≤mv ,v �=w

γ (v)
∥

∥

∥Z
(v)
C

− Z
(w)

∥

∥

∥

2

F

+
µ1

2

∥

∥

∥

∥

X
(v) − X

(v)
H

(v) − E
(v) +

Y1

µ1

∥

∥

∥

∥

2

F

+
µ2

2

∥

∥

∥

∥

H
(v) −W

(v)
Z
(v) +

Y2

µ2

∥

∥

∥

∥

2

F

+
µ3

2

∥

∥

∥

∥

Z
(v) − Z

(v)
A

+
Y3

µ3

∥

∥

∥

∥

2

F

+
µ4

2

∥

∥

∥

∥

Z
(v) − Z

(v)
B

+
Y4

µ4

∥

∥

∥

∥

2

F

+
µ5

2

∥

∥

∥

∥

Z
(v) − Z

(v)
C

+
Y5

µ5

∥

∥

∥

∥

2

F

s.t. W
(v)T

W
(v) = I.

Fig. 1 The decomposition flowchart of MmCLRR on view v
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Then, the final iterative algorithm is obtained by solving the above sub problems in 
turn. It is assumed that all variables after the k-th iteration are known. For example, 
the variable.
E(v) in the k-th iteration is marked as E(v)

k  . The iteration rules for each variable are as 
follows.

(1) Updating Z(v) . According to sub problem (13), we take the derivative with 
respect to Z(v) and let the derivative be equal to 0. Then the iteration rule of Z(v) is 
obtained as follows.

(2) Updating Z(v)
A  . We take the derivative of the problem (14) with regard to Z(v)

A  , and 
denote the derivative as ∇Zf

(
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.
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According to LADMAP, the solution of Z(v)
A  is transformed into the optimization of 

problem (22).

where η = 2γ3
∥

∥L(
v)
∥

∥

2
+ µ3

(

1+
∥

∥X(v)
∥

∥

2

2

)

 . Then the solution to problem (14) is as 

follows.

Here,�(·) denotes skinny singular value decomposition and �ε(A) = USε
(
∑

)

VT  , 
where Sε(x) = sgn(x)max (|x| − ε, 0).

(3) Updating Z(v)
B  . We find the partial derivative of problem (15) as below.

Let formula (24) be 0, and the expression of Z(v)
B(k) is

According to literature [54], the literation rule of Z(v)
B  is as follows.

(4) Updating Z(v)
C  . Similar with Z(v)

A  , the solution of problem (16) is as bellow.

(5) Updating E(v) . According to reference [34], the iterative formula of E(v) is.

Here, G = X(v) − X(v)H
(v)
(k) + Y1(k)

/

µ1(k).
(6) Updating H(v) . Similar with Z(v)

A  and Z(v)
C  , the updating rule of H(v) is as.

(7) Updating W(v) . Referring to Theorem 1 in [55], we solve sub problem (19) and get 
the iteration of W(v) as follows.
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Here, 
(

H(v) + Y2(k)

/

µ2(k)

)

(

Z
(v)
(k)

)T
= U℧V

T , ℧ = diag(δ).

(8) Updating Y1 ∼ Y5.

Finally, based on the low-rank representation matrix of each view, we calculate the 
fused affinity matrix Z∗ by formula (36).
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.
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(v)
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)

.

(36)Z
∗ =
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}

mv
.

Fig. 2 The MmCLRR model on cancer multi‑omics data for cancer samples clustering
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The detailed optimization process of MmCLRR method is shown in Algorithm 1.

The MmCLRR model on cancer multi‑omics data

As mentioned earlier, besides gene expression data, DNA methylation and copy num-
ber variation also play important roles in the formation and development of cancer. And 
these omics data of cancer have been used alone or in combination with other data for 
cancer type research. This fully shows that these data contain the characteristic infor-
mation needed in cancer type recognition. Thinking different omics data as the expres-
sion of cancer features at different levels, it is reasonable for us to regard that the feature 
information in these omics data can complement each other. Therefore, we intend to 
fuse the characteristic information of gene expression data, DNA methylation data and 
copy number variation data to cluster cancer samples. Here, we think of each omics data 
as a feature view of cancer, and use MmCLRR method to model these omics data. The 
schematic diagram of MmCLRR model on multi-omics data is shown in Fig. 2. In Fig. 2, 
gene expression data is abbreviated as GE, copy number variation is abbreviated as CNV, 
and DNA methylation is abbreviated as ME. Z(1),Z(2) and Z(3) denote the low-rank rep-
resentation matrix corresponding to GE, CNV and ME, respectively. In this model, we 
are not sure which omics data are more important, so we regard the proportion of each 
omics data in the model as the same, and use the same γ (v) for all omics data. After the 
decomposition of MmCLRR, we adopt NCuts clustering method to cluster cancer sam-
ples based on the fused matrix Z∗.
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Results
Evaluation metrics

We use Accuracy (Acc) [56], Rand Index (RI) [57] and F1 measurment (F1) [58] as the 
evaluation metrics of clustering performance. The following is a brief introduction to 
these metrics.

Acc evaluates the clustering performance at the global level by calculating the match-
ing degree between the experimental labels and the actual labels. It is defined as follows.

Here, qi and pi denote the experimental label and actual label of data point i , respec-
tively. N  represents the number of data points. map(qi) is a function to match the 
experimental labels with the actual labels, and the method called Kuhn–Munkres [59] 
is usually employed to implement the matching. δ(pi,map(qi)) is a function that com-
pares the experimental tag with the actual tag. For data point i , if the experimental label 
qi is the same as the actual label pi , the function value is assigned as 1, otherwise it is 
assigned as 0.

(37)Acc =

∑N
i=1 δ(pi,map(qi))

N
× 100% .

Table 1 Samples and genes distribution of each omics data in the experimental datasets

Datasets Omics data Genes Normal samples Cancer 
samples

HNSC Gene expression 2002 20 398

DNA methylation 23627 20 398

Copy number variation 21031 20 398

COAD Gene expression 20502 19 262

DNA methylation 23627 19 262

Copy number variation 21031 19 262

ESCA Gene expression 20502 9 183

DNA methylation 23627 9 183

Copy number variation 21031 9 183

Table 2 The clustering performance of five methods on three experimental data sets

Best clustering results are highlighted in bold

Multi‑omics data Metrics ioNMF (%) SNF (%) BLLRR (%) MLRSSC (%) MmCLRR (%)

HNSC Acc 69.38 90.29 97.58 78.71 99.52
RI 57.41 83.74 92.00 67.23 99.02
F1 44.45 47.51 74.22 55.37 97.24

COAD Acc 64.76 86.30 98.27 74.93 98.93
RI 54.87 78.53 89.38 63.21 97.88
F1 66.06 50.29 72.13 58.90 96.05

ESCA Acc 67.32 84.31 96.88 69.53 96.25
RI 55.84 77.80 93.91 65.71 92.83

F1 45.18 46.97 79.44 50.03 83.50
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RI assesses the performance of clustering algorithm by comparing the relationship 
between the actual classification and the experimental classification. The following is the 
definition of RI.

Here, a represents the number of data point pairs belonging to the same class in the 
actual classification and experimental classification. And b denotes the number of data 
point pairs that are not in the same class. C2

nsamples
 is the total number of data pairs clus-

tered or classified.
F1 is the average of precision rate and recall rate, which is defined as below.

Here, P = TP
TP+FP × 100% and R = TP

TP+FN × 100% denote precision rate and recall rate 
respectively, where TP means that positive samples are clustered into positive class, FP 
indicates that negative samples are wrongly classified into positive class, and FN  means 
that positive samples are classified into negative classes.

Data sets

The data sets used in our study, including Head and Neck cancer (HNSC), Esophagus 
Cancer (ESCA) and Colon Adenocarcinoma (COAD), are downloaded from TCGA. 
Each data set contains three types of omics data, namely gene expression, DNA meth-
ylation data and copy number variation. And these omics data in each dataset come 
from the same batch of samples. Each of the three data sets includes cancer samples and 
normal samples. Specifically, HNSC consists of 398 cancer samples and 20 normal sam-
ples, ESCA includes 183 cancer samples and 9 normal samples, and COAD has got 262 
cancer samples and 19 normal samples. The number of genes in gene expression, DNA 
methylation data and copy number variation data is 20502, 23,627 and 21,031, respec-
tively. The samples and genes distribution of each omics data is shown in Table 1.

(38)RI =
a+ b

C2
nsamples

× 100% .

(39)F1 =
2 ∗ P ∗ R

P + R
× 100% .

Table 3 The average clustering results of three low‑rank methods

Best clustering results are highlighted in bold

Multi‑omics data Metrics ioNMF (%) SNF (%) AVG‑LRSC (%)

HNSC Acc 69.38 90.29 91.94
RI 57.41 83.74 86.08
F1 44.45 47.51 75.61

COAD Acc 64.76 86.30 90.71
RI 54.87 78.53 83.49
F1 66.06 50.29 75.69

ESCA Acc 67.32 84.31 87.55
RI 55.84 77.80 84.15
F1 45.18 46.97 70.99
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Results and analysis
In order to test and verify the performance of our method in cancer samples cluster-
ing, we compare MmCLRR with the existing multi-views analysis methods, includ-
ing ioNMF [24], SNF [23], Block- constraint Laplacian regularized LRR (BLLRR) [60] 
and MLRSSC [32]. In order to evaluate the performance of each clustering method 
more objectively, the clustering experiment of each method is executed 50 times, and 
the average values obtained from 50 experiments are used to evaluate the clustering 
results. The experimental results on HNSC, COAD and ESCA are shown in Table 2. 
And the best results of each data set are represented in bold. From Table 2, we can see 
that our method outstrip all comparison methods. Next, we will compare and analyze 
the experimental results in detail.

(a) The values of Acc on three data sets.

(b)  The values of RI on three data sets.

(c) The values of F1 on three data sets.
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Fig. 3 The clustering results of three LRSC methods
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Among the methods, BLLRR, MLRSSC and MmCLRR are low-rank subspace clus-
tering (LRSC) methods. These LRSC methods mainly use the nuclear norm constraint 
to obtain the low-rank representation of multi-omics data, so as to explore the sub-
space structure of data. And, they construct the affinity matrix based on low-rank 
representation for cancer samples clustering. SNF is a network-based approach. It 
constructs similarity network for each omics data, and then integrates these networks 
generated by different omics data to realize samples clustering. The ioNMF approach 
is a NMF-based method. In ioNMF, different omics data are decomposed into a com-
mon fusion matrix and multiple independent sub matrixes at the same time, and then 
the common matrix is used to cluster samples. So, we firstly compare the three sub-
space clustering methods with ioNMF and SNF. From Table 2, we can find that the 
clustering results of the three subspace clustering methods are generally better than 
those of ioNMF and SNF. For this reason, we further calculate the mean values of 
BLLRR, MLRSSC and MmCLRR on each clustering metric (see Table 3). In Table 3, 
the average of LRSC methods is denoted as AVG-LRSC. And we also show the best 
results in bold. As can be seen from Table 3, the average clustering performance of 
these LRSC methods is significantly higher than the other two methods. The above 
analysis shows that LRSC method has a significant advantage in subspace learning.

Among the three LRSC methods, MLRSSC method does not take the local topology 
of data into account in subspace learning. Different from MLRSSC method, both BLLRR 
and MmCLRR methods are all committed to obtaining the global and local structures 
of manifold in multi-omics data by introducing manifold regularization constraint 
into LRR. Therefore, next, we compare MLRSSC with BLLRR and MmCLRR. For the 
convenience of comparison, as shown in Fig. 3, the histograms of clustering results on 
these three methods are given. From Fig. 3, it can be find that the values of all meas-
ures on method BLLRR and MmCLRR are higher than those on method MLRSSC. This 
indicates that the local geometry structure embedded in high-dimensional data is very 
vital to subspace segment problem. Preserving the local structure information of high-
dimensional data during spatial mapping is helpful to smooth the manifold structure of 
the data in low-dimensional space and improve the subspace learning performance of 
the low-rank representation algorithm.

Thirdly, we compare MmCLRR with BLLRR. As be seen in Fig.  3, the experiment 
results of MmCLRR are better than BLLRR, especially on HNSC data set. First, for multi-
omics analysis, the frameworks of the two methods are different. BLLRR is a method 
based on integrated multi-omics data. In BLLRR, the multi-omics data are integrated 
to form a comprehensive data matrix across omics. And the consistent low-dimensional 
subspace representation shared by multi-omics data is learned from the integrated 
data by imposing different penalty constraints on different omics data. MmCLRR is a 

Table 4 The paremeter values of MmCLRR on each experimental data set

Multi‑omics data γ1 γ2 γ3 γ

HNSC 10–1 104 10–1 100

COAD 10–1 10–1 10–1 102

ESCA 100 10–1 102 102
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method of multi-views learning. In MmCLRR, it is considered that the subspace rep-
resentation from different views should be consistent. MmCLRR jointly learns the rep-
resentation matrix of each view by enforcing the balance constraint between different 
views. In addition, if BLLRR is employed to single omics data, the objective of MmCLRR 
is transformed into min �Z�∗ + γ1�Z�1 + γ2�E�2,1 + γ3tr

(

ZLZ
T
)

s.t. X = XZ+ E , 
that is, MmCLRR method is changed into BLLRR method. Similarly, when ana-
lyzing single omics data, the objective of MmCLRR method will become 
min �Z�∗ + γ1�Z�1 + γ2�E�2,1 + γ3tr

(

ZLZ
T
)

 s.t. X = XWZ+ E,WW
T = I . Obvi-

ously, the only difference between the two methods for single view is that the dictionary 
is constructed differently. BLLRR uses the original data as dictionary, which is fixed in 
iterative learning. And, MmCLRR applies the idea of concept factorization to construct 
dictionary matrix, which is constantly updated in learning. According to the above anal-
ysis, the clustering advantage of MmCLRR can be attributed to two points. One is that 
the multi-views learning model is more suitable for cross group analysis than the analy-
sis model on integrated data. Another point is the successful modeling of dictionary by 
concept idea.

Finally, the MmCLRR approach is compared with MLRSSC. These two methods are 
basically consistent in the framework and main ideas for multi-view processing. There 
are two differences between them. On the one hand, compared with MLRSSC, manifold 
constraint is introduced into MmCLRR. On the other hand, the construction methods 
of dictionary are different. As mentioned above, MmCLRR takes the linear combina-
tion of original data as dictionary to update the dictionary matrix with the algorithm 
optimization, while MLRSSC uses original data as the fixed dictionary. From Fig. 3, we 
can see that the clustering advantage of MmCLRR method is much larger than that of 
BLLRR method. This fully shows that both manifold constraint and dictionary modeling 
make the low-rank representation matrix obtained by MmCLRR better distinguishable 
in subspace separation.

The setting of parameters

In MmCLRR method, there are four regularization parameters γ1 , γ2 , γ3 and 
γ (v)(v = 1, 2, 3) . As mentioned in the previous section, there is no prior knowledge to 
prove which omics data are more important in low dimensional learning. So we think 
that the proportion of each omics data in MmCLRR model is the same, and we use the 
same adjustment parameter γ for all the three omics data, i.e., γ = γ (1) = γ (2) = γ (3) . In 
our experiment, the parameters are set by grid search, and the parameter values are 
shown in Table 4.

Discussion
MmCLRR is a novel multi-view integration analysis framework based low-rank decom-
position. Our main contribution is to model dictionary matrix by concept factorization, 
which enables the dictionary matrix to update with subspace learning, thus enhancing 
the ability of dictionary to describe subspace. The comparative experiment of MmCLRR 
with other four multi-view methods is given on real multi-omics data. And the experi-
ment results indicate that MmCLRR has a good performance in subspace clustering. In 
our experiment MmCLRR treats all omics data equally, so the parameter γ (v) , balancing 
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the consistency of low-rank representation of different views, is set to the same. If differ-
ent views are of different importance in the analysis, the parameter γ (v) should be set to 
different values, which may increase the difficulty of parameter adjustment. Therefore, 
the increasing number of multi-view and the difference of their importance will be the 
main challenges for MmCLRR method.

Conclusions
In this study, we develop a multi-view low-rank subspace clustering method, named as 
MmCLRR, to analyze caner multi-omics data. MmCLRR aims to achieve the consist-
ent low-rank representation from multi-view data by balancing the consistency of dif-
ferent views. In our method, concept factorization is adopted to model dictionary. That 
is, the dictionary is constructed as the combination of the original data. Furthermore, 
the manifold regularization is introduced into our method to grasp the local structural 
relationship within the data. So, MmCLRR can capture the global and local structure of 
submanifold shared by multi-view data more efficiently. Finally, we adopt the proposed 
method to cluster cancer samples based on multi-omics data from TCGA. The experi-
mental results demonstrated that our method can outperform the state-of-the-art multi-
view approaches. In the future, we will promote the application of MmCLRR in other 
fields of cancer research.
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