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Abstract

Observational studies have reported high comorbidity between type 2 diabetes

(T2D) and severe COVID‐19. However, the causality between T2D and COVID‐19

has yet to be validated. We performed genetic correlation and Mendelian

randomization (MR) analyses to assess genetic relationships and potential causal

associations between T2D and three COVID‐19 outcomes (severe acute respiratory

syndrome coronavirus 2 [SARS‐CoV‐2] infection, COVID‐19 hospitalization, and

critical COVID‐19). Molecular pathways connecting SARS‐CoV‐2 and COVID‐19

were reconstructed to extract insights into the potential mechanisms underlying the

connection. We identified a high genetic overlap between T2D and each COVID‐19

outcome (genetic correlations 0.21–0.28). The MR analyses indicated that genetic

liability to T2D confers a causal effect on hospitalized COVID‐19 (odds ratio 1.08,

95% confidence interval [CI] 1.04–1.12) and critical COVID‐19 (1.09, 1.03–1.16),

while genetic liability to SARS‐CoV‐2 infection exerts a causal effect on T2D

(1.25, 1.00–1.56). There was suggestive evidence that T2D was associated with an

increased risk for SARS‐CoV‐2 infection (1.02, 1.00–1.03), while critical COVID‐19

(1.06, 1.00–1.13) and hospitalized COVID‐19 (1.09, 0.99–1.19) were associated with

an increased risk for T2D. Pathway analysis identified a panel of immunity‐related

genes that may mediate the links between T2D and COVID‐19 at the molecular

level. Our study provides robust support for the bidirectional causal associations

between T2D and COVID‐19. T2D may contribute to amplifying the severity of

COVID‐19, while the liability to COVID‐19 may increase the risk for T2D.
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1 | INTRODUCTION

Since the inception of the severe acute respiratory syndrome

coronavirus 2 (SARS‐CoV‐2) infection pandemic, a large number

of studies have sought to investigate the risk factors for

COVID‐19.1–6 The shortlist of COVID‐19‐aggravating conditions

includes diabetes, cardiovascular diseases, chronic kidney dis-

ease, and obesity.7–9 Meanwhile, a significant subpopulation of

individuals infected with SARS‐CoV‐2 suffers from a range of

post‐COVID symptoms or consequences of this disease

more than a month after an initial infection, which is termed

“long‐COVID.”10,11
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Metabolic dysfunction can aggravate COVID‐19 syndromes.12

Type 2 diabetes (T2D) makes up approximately 90% of all diabetes

cases and is characterized by peripheral resistance to insulin resulting

in elevated blood sugar. Consequently, T2D patients may demon-

strate increased thirst, frequent urination, increased hunger, tired

feeling, and sores that do not heal.13 Complications of long‐term T2D

may include heart disease, ischemic or hemorrhagic stroke, diabetic

retinopathy that can result in low acuity or even blindness, kidney

failure, and poor blood flow in the limbs that may lead to

amputations.14 Although T2D primarily occurs as a result of obesity

and lack of exercise, genetic predisposition does play a causal role in

defining the onset in at least some patients.15

Multiple studies have suggested that T2D is one of the significant

risk factors for severe COVID‐19, often accompanied by hospitaliza-

tion or death.16 Hyperglycemia and glycemic fluctuation levels may

adversely influence COVID‐19 outcomes.17–20 One study indicated

that treatment with insulin might contribute to increased mortality in

patients with COVID‐19.21 T2D could also impair nasal immunity and

elevate hyposmia risk in patients with mild COVID‐19 pneumonia.22

Some shared molecular pathways for T2D and coronavirus infections

have been described before, with therapeutic implications being

suggested.23 An observational study of 435 504 UK Biobank

participants pointed to a strong association between T2D and

COVID‐19.24

In addition, some studies also reported a COVID‐19 association

with an increased risk for T2D.25,26 Up to 50% of COVID‐19 deaths

are observed in individuals with metabolic and vascular disorders,

which suggests a direct link between COVID‐19 and changes in

metabolic and endocrine systems.12 It seems that not only metabolic

dysfunctions (e.g., obesity, hypertension, and diabetes) increase the

risk of developing severe COVID‐19 but also infection with SARS‐

CoV‐2 might lead to new‐onset diabetes or aggravation of pre‐

existing metabolic disorders.12 However, the mechanism behind the

T2D‐COVID‐19 association is not clear. Exploring this link may help

remove uncertainty in the management of T2D in the context of

coronavirus infection.

The Mendelian randomization (MR) framework can be used to

infer a potential causative association between a phenotype

(exposure) that can be genetically influenced and a disease outcome

by utilizing genetic variants as instrumental variables.27 Previous MR

studies have revealed causal risk factors for COVID‐19, including

body mass index and smoking intensity.1–3 Since T2D has been

suggested as an additional risk factor for COVID‐19, several previous

studies were conducted to investigate the possible causality of this

relationship.1,24,28–30 However, no causal associations between T2D

and COVID‐19 have been identified.

Given the above observations, we hypothesize that T2D may be

causally associated with increased severity of COVID‐19, while

COVID‐19 may exert a causal effect onT2D, thus promoting diabetes

as one of the consequences of COVID‐19. We sought to test genetic

correlations and the potential mutual causal associations betweenT2D

and COVID‐19 using large‐sample data sets with three COVID‐19

outcomes: (1) SARS‐CoV‐2 infection; (2) hospitalized COVID‐19,

and (3) critical COVID‐19. Moreover, the pathways connecting these

two diseases were constructed to explore the potential mechanisms

underlying the T2D‐COVID‐19 connection at the molecular level.

2 | METHODS

2.1 | Genome‐wide association study
(GWAS) summary data sets

The study utilized publicly available Genome‐wide association study

(GWAS) summary results, including those on SARS‐CoV‐2 infection

(SARS‐CoV‐2 infection, 112 612 cases, and 2 474 079 controls, with

88.9% participants being of European origins), hospitalized

COVID‐19 (24 274 cases and 2 061 529 controls, with 87.7%

participants being of European origin), critical COVID‐19 (8779 cases

and 1 001 875 controls, with 94.9% participants being of European

origin), and T2D (74 124 T2D cases and 824 006 controls, all the

participants being of European origin) controls.31 The COVID‐19 data

sets were obtained from the COVID‐19 HGI GWAS round six (release

date: June 15, 2021).32 Ethical approval was obtained from all the

original studies. The SARS‐CoV‐2 infection data set mainly reflects

the overall susceptibility to the virus, whereas the hospitalized and

critical COVID‐19 data sets represent the severity of the disease.

Therefore, we collectively called the latter two outcomes “severe

COVID‐19.” Single‐nucleotide polymorphisms (SNPs) with conflicting

alleles between theT2D and COVID‐19 data sets were excluded. The

effects (values and directions) of SNPs were harmonized between the

T2D data set and the COVID‐19 data sets.

2.2 | Genetic correlation analysis

The genetic correlations between T2D and the COVID‐19

outcomes were calculated using Linkage disequilibrium (LD) score

regression.33,34 The 1000 Genome Project Phase 3 was used to

estimate the LD structure for European populations.33–35 SNPs

were filtered by 1.1 million variants, a subset of 1000 Genomes

and HapMap3, with minor allele frequency above 0.05.

2.3 | MR analysis

The main analyses were performed using the inverse‐variance

weighted (IVW) method and complemented with the weighted

median and MR‐Egger methods implemented in TwoSampleMR.36

For each MR analysis, SNPs with genome‐wide significance

(p < 5 × 10−8) were selected as instrumental variants and further

pruned using a clumping r2 cutoff of 0.01. An odds ratio (OR) from

the IVW model significantly different from one indicates that the

odds of an outcome are affected by the exposure. The intercept

from the MR‐Egger model was used as a measure of directional

pleiotropy.
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2.4 | Knowledge‐based analysis

To explore the potential connection between T2D and COVID‐19 at

the molecular level, large‐scale literature data mining was executed in

the Pathway Studio (www.pathwaystudio.com) environment,37 con-

taining approximately 14 million unique associations from >40 million

scientific references. Then, a set of molecular pathways connecting

T2D and COVID‐19 was constructed. First, the downstream targets

and upstream regulators of T2D and COVID‐19 were identified,

followed by a manual review of the references and related sentences

for quality control of each extracted relationship. The relationships

with no polarity or related to COVID‐19 or T2D indirectly were

removed. The remaining relationships were employed to build a map

of the molecular pathways connecting COVID‐19 and T2D.

For each set of genes, the tissue specificity was measured against

each of the differentially expressed gene sets using the hypergeo-

metric test.38 For each gene set, pathway enrichment analyses of

gene ontology molecular functions were conducted using FUMA.38 A

graph of protein–protein interactions (PPIs) was constructed using

STRING v11.39

3 | RESULTS

3.1 | Genetic correlation analysis

Genetic correlation analyses showed significant positive genetic correla-

tions of T2D with critical COVID‐19 (rg = 0.264 ± 0.052, p= 3.60E−07),

hospitalized COVID‐19 (rg = 0.275 ±0.043, p=2.23E−10), and SARS‐

CoV‐2 infection (rg = 0.207 ± 0.04, p=2.02E−07).

3.2 | MR analysis

In the MR analysis of the causal effects of T2D on the COVID‐19

outcomes, we found that genetically determined liability to T2D

confers a causal effect on hospitalized COVID‐19 (OR 1.08,

95% confidence interval [CI]: 1.04–1.12, p = 9.74E−05) and

critical COVID‐19 (1.09, 1.03–1.16, p = 3.22E−03), but not on

SARS‐CoV‐2 infection (1.02, 1.00–1.03, p = 0.075) (Table 1 and

Figure 1).

In the MR analysis of causal effects of the COVID‐19 outcomes

on T2D, we found that genetic liability to SARS‐CoV‐2 infection was

nominally associated with T2D (1.25, 1.00–1.56, p = 0.046). Genetic

liability to critical COVID‐19 (1.06, 1.00–1.13, p = 0.058) and

hospitalized COVID‐19 (1.09, 0.99–1.19, p = 0.072) showed sugges-

tive causal effects on T2D (Table 2 and Figure 1).

The sensitivity analyses revealed that the directions of causal

effect estimates across the methods were largely the same (Tables 1

and 2). Notably, tests of MR‐Egger regression did not support the

directional pleiotropy of the genetic instrumental variables for the

MR analysis (MR‐Egger intercept <0.01, p > 0.05).

3.3 | Knowledge‐based analysis

Mining of the molecular relationships and subsequent analysis of the

reconstructed pathways revealed a total of 10 genes mediating the

effect of T2D on COVID‐19, including VWF, CRP, OXT, IL6, ALB, ACE,

CXCL10, TNF, DPP4, and CXCL8 (Figure 2A), and a total of 19 genes

mediating the effect of COVID‐19 on T2D, including IL6, F3, IL10,

ICAM1, TNF, IFNG, VEGFA, IL18, CCL2, NPPB, HMGB1, IL17A, TGFB1,

VCAM1, TLR4, SERPINE1, ACE, TNNT2, and CRP (Figure 2B). Four

genes, CRP, IL6, ACE, and TNF, were shared between the two gene

sets. Therefore, T2D and COVID‐19 are connected by at least

25 genes.

Gene‐based tissue enrichment analysis showed that this set of

25 genes is expressed predominantly in the lungs, adipose tissue, and

kidney (Figure 3A). PPI analysis using the STRING database showed

that the 25 proteins encoded by the above mentioned gene set form

a tightly interconnected network (Figure 3B) enriched in immunity‐

related molecular functions (Figure 3C).

TABLE 1 Causal effects of T2D on COVID‐19 outcomes

Exposure Outcome Method b (SE) OR [95%CI] N_IV Egger_intercept P_pleiotropy p

T2D Critical COVID‐19 IVW 0.090 (0.031) 1.09 [1.03–1.16] 300 2.83E−03 0.509 3.22E−03

T2D Critical COVID‐19 Weighted median 0.094 (0.044) 1.10 [1.01–1.20] 300 2.83E−03 0.509 0.033

T2D Critical COVID‐19 MR Egger 0.039 (0.084) 1.04 [0.88–1.23] 300 2.83E−03 0.509 0.644

T2D Hospitalized COVID‐19 IVW 0.073 (0.019) 1.08 [1.04–1.12] 305 4.93E−03 0.070 9.74E−05

T2D Hospitalized COVID‐19 Weighted median 0.083 (0.024) 1.09 [1.04–1.14] 305 4.93E−03 0.070 4.98E−04

T2D Hospitalized COVID‐19 MR Egger −0.019 (0.054) 0.98 [0.88–1.09] 305 4.93E−03 0.070 0.725

T2D SARS‐CoV‐2 infection IVW 0.016 (0.009) 1.02 [1.00–1.03] 303 1.29E−03 0.303 0.075

T2D SARS‐CoV‐2 infection Weighted median 0.006 (0.009) 1.01 [0.99–1.02] 303 1.29E−03 0.303 0.516

T2D SARS‐CoV‐2 infection MR Egger −0.008 (0.025) 0.99 [0.94–1.04] 303 1.29E−03 0.303 0.733

Abbreviations: b, effect size; CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian randomization; N_IV, number of instrumental

variables; OR, odds ratio; SARS‐CoV‐2, syndrome coronavirus 2; SE, standard error; T2D, type 2 diabetes.
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4 | DISCUSSION

T2D and COVID‐19 have been suggested to be mutual risk factors,

with the underlying mechanism(s) being largely unknown.25,40 In this

study, we conducted genetic correlation analysis, MR analysis, and

knowledge‐based pathway reconstruction to explore the mechanisms

underlying the connection betweenT2D and COVID‐19 in the context of

their shared genetics. We detected positive genetic correlations between

T2D and all COVID‐19 outcomes. Although the magnitudes of the

genetic correlations observed in our study are relatively low

(0.207–0.275), the positive relationships support previously observed

associations of T2D with COVID‐19 at the genetic level.

F IGURE 1 Causal associations between T2D and COVID‐19. The trait on the x‐axis denotes exposure, the trait on the y‐axis denotes
outcome, and each cross point represents an instrumental variant. The lines denote b of exposure on outcome. b, effect sizes; IVW, inverse
variance weighted.

TABLE 2 Causal effects of COVID‐19 outcomes on T2D

Exposure Outcome Method b (SE) OR [95%CI] N_IV Egger_intercept P_pleiotropy p

Critical COVID‐19 T2D IVW 0.059 (0.031) 1.06 [1.00–1.13] 15 −7.96E−03 0.657 0.058

Critical COVID‐19 T2D Weighted median 0.047 (0.024) 1.05 [1.00–1.10] 15 −7.96E−03 0.657 0.049

Critical COVID‐19 T2D MR Egger 0.109 (0.115) 1.12 [0.89–1.40] 15 −7.96E−03 0.657 0.361

Hospitalized COVID‐19 T2D IVW 0.082 (0.045) 1.09 [0.99–1.19] 20 5.37E−03 0.649 0.072

Hospitalized COVID‐19 T2D Weighted median 0.047 (0.036) 1.05 [0.98–1.12] 20 5.37E−03 0.649 0.189

Hospitalized COVID‐19 T2D MR Egger 0.021 (0.139) 1.02 [0.78–1.34] 20 5.37E−03 0.649 0.880

SARS‐CoV‐2 infection T2D IVW 0.223 (0.112) 1.25 [1.00–1.56] 11 3.72E−04 0.977 0.046

SARS‐CoV‐2 infection T2D Weighted median 0.255 (0.114) 1.29 [1.03–1.61] 11 3.72E−04 0.977 0.025

SARS‐CoV‐2 infection T2D MR Egger 0.215 (0.306) 1.24 [0.68–2.26] 11 3.72E−04 0.977 0.501

Abbreviations: b, effect size; CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian randomization; N_IV, number of instrumental
variables; OR, odds ratio; SARS‐CoV‐2, syndrome coronavirus 2; SE, standard error; T2D, type 2 diabetes.
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Although previous MR analyses did not detect causal associa-

tions between T2D and COVID‐19,1,24,28–30 our study revealed

robust causal associations between T2D and severe outcomes of

COVID‐19, namely, hospitalized COVID‐19 and critical COVID‐19. A

possible explanation for newly discovered significant associations is

an increase in the study power achieved by employing larger data

sets for both COVID‐19 and T2D. Our results support the hypothesis

that T2D may augment the pathophysiology of COVID‐19, thus

adding to its severity. The results of our study are in line with

previous observations of T2D‐attributed risks for hospitalization

and/or death in COVID‐19 patients.41 The evidence of an increased

risk for T2D patients to contract SARS‐CoV‐2 infection was

insufficient. As the SARS‐CoV‐2 virus is highly infectious, the

observed trend may be negligible or attributed to asymmetric

incompleteness of the detection of silent virus carriers or mild

infections in relatively healthy, nondiabetic individuals.42

Our study also detected a causal effect of SARS‐CoV‐2 infection

on T2D. However, more severe forms of COVID‐19 showed only

suggestive causal effects on T2D, which may be due to reduced

power in smaller severe COVID‐19 data sets. Since hospitalized

COVID‐19 cases account for approximately 6.8% of all SARS‐CoV‐2

infections,43 an increase in the available sizes of this type of data set

is expected in parallel with the global spread of SARS‐CoV‐2. One

may speculate that severe forms of COVID‐19 should be causally

associated with an increased risk for T2D, in line with a similar

association detected for SARS‐CoV‐2 infection. These results are

F IGURE 2 Reconstruction of molecular pathways connecting T2D and COVID‐19. (A) Quantitative genetic changes driven by T2D exert
more negative (highlighted in red) than positive (highlighted in green) effects on COVID‐19. (B) Quantitative genetic changes driven by
COVID‐19 exert more negative (highlighted in red) than positive (highlighted in green) effects on T2D. T2D, type 2 diabetes.
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consistent with previously observed findings that COVID‐19 patients

are at risk of T2D25 and suggest that T2D could be one of the post‐

COVID‐19 sequelae.12 Our study points out that the protocols for

post‐acute COVID‐19 care should include the diagnosis and

management of diabetes.26

Knowledge‐based analysis showed that the mutual effects of

T2D and COVID‐19 may be partially mediated through the

quantitative influence of multiple upstream regulators shared by

these two diseases (Figure 2). The map of the pathways built through

large‐scale literature data mining shows that T2D is capable of

elevating the levels of seven known COVID‐19 promoters while

inhibiting one of four known COVID‐19 inhibitors (Figure 2A). Among

T2D‐enhanced COVID‐19 promoters is the CXCL10 cytokine, which

is upregulated in T2D44 and serves as a biomarker for worsening the

course of COVID‐19 and increasing fatality.45 Elevated plasma levels

of von Willebrand factor are a predictive marker of death and

prolonged hospital stay among COVID‐19 inpatients46 and have also

been found to increase in T2D patients in parallel with endothelial

dysfunction.47,48 CXCL8 encodes a soluble protein commonly

referred to as interleukin‐8 (IL‐8). Along with the (TNF)‐encoded

cytokineTumor necrosis factor (TNF‐α), IL‐8 orchestrates a notorious

“cytokine storm” afflicting many hospitalized patients with

COVID‐19.49 Inhibitors of IL‐850 and TNF‐α‐dependent51 pathways

have been utilized for attenuating disease progression in severe

SARS‐CoV‐2 infection.

Another interesting molecule upregulated in T2D is an

angiotensin‐converting enzyme (ACE), which normally counterba-

lances the effects of ACE2, a functional receptor of SARS‐CoV‐2. An

imbalance of the renin–angiotensin system is associated with

COVID‐19 progression to its severe form.52

These and other pathways are shown in Figure 2A and may

cumulatively explain the observed links between T2D and the severe

forms of COVID‐19.

The molecular pathway in Figure 2B points to the potential

mechanism for the effects of COVID‐19 on establishing metabolic

dysfunction or its progression to T2D. It seems that COVID‐19 could

F IGURE 3 Functional analyses of the 25 genes connecting T2D and COVID‐19. (A) Tissue expression enrichment analyses of the genes.
Significantly enriched DEG sets (pBonferroni < 0.05) are highlighted in red. (B) Protein–protein interactions among the genes. (C) gene ontology
pathway analysis of the genes. DEG, differentially expressed gene; T2D, T2D, type 2 diabetes.
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elevate the expression levels of 16 out of 18 known T2D promoters

while boosting only two T2D suppressors, IL‐10 and IL‐17A. In

particular, most COVID‐19 patients present with elevated levels of

C‐reactive protein (CRP),53 a widespread biomarker of both acute

and systemic inflammation. The latter process also plays an etiologic

role in the development of T2D.54

Similar to T2D influences on COVID‐19 as described above, the

role of COVID‐19 in the development of T2D is executed mainly

through the elevation of the levels of T2D promoting molecules.

Moreover, it seems that COVID‐19 and T2D‐related processes form

a vicious cycle, augmenting each other. In physiologically vulnerable

states, this augmentation may become even more prominent. For

example, a SARS‐CoV‐2‐dependent increase in IL‐6 levels may

predispose both to gestational diabetes mellitus and infection‐

related hospitalization,55 with differential liability to severe outcomes

of coronavirus disease in pregnancy trimesters56 being partially

attributed to the gradual development of underlying deregulation of

glucose metabolism.

Gene‐based tissue enrichment analysis showed that the set of 25

genes forming the molecular pathways presented in Figure 2 was

upregulated in the lung, adipose tissue, and kidney (Figure 3A). These

tissues are commonly impaired both in COVID‐1957–59 and in

T2D.60–62 The protein products of these genes form a tightly

interconnected network (Figure3B) involving multiple immunity‐

related molecular pathways (Figure 3C), which were previously found

to be dysfunctional in both COVID‐1963 and T2D.64 These results

support the validity of the shared pathogenesis model reconstructed

in the frame of this study (Figure 2).

The main strength of the study is that MR analysis is generally

less affected by causality pitfalls, which are common in traditionally

designed observational studies due to confounding factors and

reverse causation. The largest available GWAS summary data

sets were utilized for tracing the causative association between

COVID‐19 and T2D. The vast majority of the participants in the

GWAS data sets were of European ancestry, reducing the potential

population heterogeneity.

Our study has several limitations. In particular, we assessed only

genetic liability for both diseases with no regard to the effects of the

environment, which are critical for both T2D and COVID‐19.

However, in these two diseases, a substantial proportion of the

variance is heritable. We acknowledge that MR analyses may be

biased due to pleiotropy, especially in nonhomogenous data sets.

Therefore, we have tested the MR assumptions using various models.

Although the results were broadly consistent, some residual

uncertainty remained. Additionally, the samples comprising the

COVID‐19 data sets were collected before June 2021 and therefore

do not include recent waves of SARS‐CoV‐2 infections. The causal

effects of severe COVID‐19 on T2D did not reach significance,

possibly due to the limited sample sizes. Therefore, validation of the

findings in expanded data sets is warranted in the future.

In summary, our study reveals mutual causal associations

between T2D and COVID‐19. It seems that COVID‐19 and

T2D‐related processes form a vicious cycle, augmenting each other.

Patients with T2D may have an increased risk for severe outcomes

of COVID‐19, and T2D may be an integral part of the post‐COVID

syndrome.
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