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Abstract

Next-generation genotyping microarrays have been designed with insights from large-scale sequencing of exomes and
whole genomes. The exome genotyping arrays promise to query the functional regions of the human genome at a fraction
of the sequencing cost, thus allowing large number of samples to be genotyped. However, two pertinent questions exist:
firstly, how representative is the content of the exome chip for populations not involved in the design of the chip; secondly,
can the content of the exome chip be imputed with the reference data from the 1000 Genomes Project (1KGP). By deep
whole-genome sequencing two Asian populations that are not part of the 1KGP, comprising 96 Southeast Asian Malays and
36 South Asian Indians for which the same samples have also been genotyped on both the Illumina 2.5 M and exome
microarrays, we discovered the exome chip is a poor representation of exonic content in our two populations. However, up
to 94.1% of the variants on the exome chip that are polymorphic in our populations can be confidently imputed with
existing non-exome-centric microarrays using the 1KGP panel. The coverage further increases if there exists population-
specific reference data from whole-genome sequencing. There is thus limited gain in using the exome chip for populations
not involved in the microarray design. Instead, for the same cost of genotyping 2,000 samples on the exome chip,
performing whole-genome sequencing of at least 35 samples in that population to complement the 1KGP may yield a
higher coverage of the exonic content from imputation instead.
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Introduction

Genome-wide association studies (GWAS) have successfully

identified thousands of single nucleotide polymorphisms (SNPs)

that are associated with common diseases and complex traits [1].

The attention of these studies has primarily been directed at

common variants, defined as possessing a minor allele frequency of

at least 5%, by virtue of the design of GWAS that leveraged on

linkage disequilibrium and the detection of surrogate associations

at tagging SNPs [2,3]. Disappointingly, the discoveries from

GWAS have only accounted for a fraction of the phenotypic

variance for the majority of the outcomes [4,5]. The search for

factors accounting for the missing heritability has thus shifted to

interrogate functional regions of the human genome, such as the

gene exons, with the hope to locate low-frequency or rare variants

that contribute a greater impact to disease biology [6–8].

While exome sequencing provides an unbiased survey of exonic

variants, the cost is still prohibitive to hundreds or thousands of

samples for an association study. Next-generation genotyping

microarrays designed with information from population-level

whole-genome and whole-exome sequencing provide a well-

intentioned compromise for surveying the genome with a

genotyping approach at a fraction of the cost. For example, the

Illumina HumanExome array included coding variants that were

consistently identified across multiple individuals from a collection

of around 12,000 subjects from diverse populations with African,

Chinese, European and Hispanic ancestries, and this microarray

was competitively priced with the intention of extending its use to

existing GWAS cohorts. However, one of the challenges of

working with exonic variants at the rarer end of the allele

frequency spectrum is the greater tendency for these variants to be

population specific [9,10]. This raises the question whether an

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e106681

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0106681&domain=pdf


exome-centric array that is designed with prior information from a

subset of populations will be relevant for other populations of

different ancestries.

Statistical imputation has been widely employed in GWAS for

inferring the genotypes at SNPs that are not available on the

microarrays but are present in population-level haplotype

reference data [11], such as those from the International HapMap

Project [12,13] or the 1000 Genomes Project (1KGP) [10,14].

Imputation methods such as IMPUTE [15], BEAGLE [16] or

MACH [17] rely on patterns of genetic correlation in the reference

maps in order to identify the likely genotype for each sample at an

untyped SNP. While the availability of a cosmopolitan reference

panel from 1KGP is expected to improve imputation accuracy

[18,19], whether this is similarly true for exonic variants may

depend on multiple factors, such as the ancestry of the target

population, the choice of the reference panel, and the allele

frequency spectrum of the exonic variants.

Here, we aim to address the following questions: (i) to what

extent does the Illumina Exome chip represent the exonic content

of two Asian populations that are not involved in the microarray

design? (ii) for studies where there are pre-existing GWAS data, to

what extent can the exonic content of these populations be

recovered accurately through the process of statistical imputation

against the reference map from Phase 1 of the 1KGP, thereby

removing the need for additional genotyping on the exome chip?

(iii) does having population-specific haplotype maps on top of the

1KGP reference maps help in recovering the exonic variants that

are present in these populations? To answer these questions, we

utilized the resources from: (a) the Singapore Integrative Omics

Study (iOmics), where each of 110 southern Han Chinese, 108

Southeast Asian Malays and 105 south Asian Indians in Singapore

has been genotyped on both the Illumina HumanOmni2.5 and

Illumina HumanExome microarrays; (b) the Singapore Sequenc-

ing Study, where 96 Singapore Malays and 36 Singapore Indians

from the iOmics have been whole-genome sequenced to a target

coverage of 30-fold; and (c) the haplotype reference maps from

Phase 1 of the 1KGP. By down-sampling the variants on the

HumanOmni2.5, we recreated the SNP content on earlier

generations of microarrays such as the HumanHap550 and

Human1M for evaluating how well these commonly-used products

can recover the content of the exome chip.

Materials and Methods

Sample collection
The Singapore Integrative Omics Study (iOmics) surveyed 120

individuals from each of three populations in Singapore consisting

of southern Han Chinese, Southeast Asian Malays and south

Asian Indians. These individuals were recruited from the

Singapore Population Health Study, and population membership

of each subject was determined through self-reports that all four

grandparents belong to the same population. Each of the 360

subjects was genotyped on both the Illumina HumanOmni2.5 and

HumanExome microarrays. A subset of these samples were

additionally whole-genome sequenced to a target coverage of

30-fold. These subset of samples include 62 of the Malays and 36

of the Indians. Note that subsequent assessment of imputation

coverage and accuracy was restricted to the subset of Malay and

Indian subjects that have not been sequenced in order to avoid

over-fitting. All participants provided written informed consent,

and ethical approvals for the Singapore Population Health Study

and the subsequent extension to the iOmics were granted from

two independent Institutional Review Boards at the National

University Hospital Singapore and the National University of

Singapore respectively. In particular, the consent form was

approved by the Institutional Review Boards prior to the

commencement of the sample recruitment. The data for both

the microarray genotyping and whole-genome sequencing can be

accessed publicly at http://www.statgen.nus.edu.sg.

Microarray genotyping data
Quality control (QC) of the two sets of genetic data (Omni2.5,

exome chip) was performed independently and in the following

three steps: (A) a preliminary QC step performed across all 360

samples jointly to generate a set of pseudo-clean SNPs by

removing SNPs (i) with either unknown or duplicate genomic

coordinates, (ii) not in the autosomal and X/Y chromosomes, (iii)

with unknown strand information, (iv) with conflicting allele

designation between the two microarrays, (v) that occur on both

microarrays but with genotype concordance ,99.5%, (vi) with

missingness .5%, or (vii) with gross departure from Hardy-

Weinberg equilibrium (HWE p-value ,1028); (B) a sample QC

step performed across all 360 samples jointly to identify

problematic samples, defined as samples (i) with high missingness

(.2%), (ii) with excessive identify-by-state (IBS) genotypes (see

Table S1), or (iii) that were genetically inferred to be outliers with

principal components analysis (PCA) from the self-reported

population membership; (C) a final round of SNP QC performed

for each population to exclude SNPs with more than 5% missing

genotypes or with HWE p-value ,0.001. This yields a final set of

110 Chinese, 108 Malay and 105 Indian subjects with post-QC

data for both the Omni2.5 and exome chip, with a similar number

of SNPs that passed QC in the three populations (see Table S2).

For calculating IBS between samples as well as identifying

outliers, one more filtering step is performed to remove SNPs with

MAF ,5%. IBS calculation was performed using PLINK v1.09

[28]. PLINK provides the function to estimate the genomewide

IBS/IBD-sharing coefficients between the individuals from whole-

genome data. Using these metrics, we could potentially identify

undetected relationships between samples. For excessive IBS

sharing between samples, the sample with higher call rate is

retained.

For identifying outliers using PCA, all genotypes are represented

in 0, 1 and 2 and missing data is 21. Data is centered and the

covariance matrix is constructed. Subsequently, the projection

vectors (Principal Components) are obtained from the covariance

matrix. We run PCA on two set of data, i.e. with the HapMap

data which consists of 1396 individuals from different populations

and with only the three Singapore population groups. Samples

that displayed evidence of admixture or discordance between self-

reported and genetically inferred population membership are

identified and excluded from the study.

Building the Illumina HumanHap550 and Human1M
As the iOmics samples have only been genotyped on the

Omni2.5 and exome chip, subsets of the SNPs on Omni2.5 were

taken to mimic the content of the Illumina HumanHap550 and

Illumina Human1M microarrays. Given that only 377,563 SNPs

and 681,328 SNPs on the Omni2.5 overlapped with the contents

of the HumanHap550 and Human1M respectively, we searched

for surrogates that existed on the Omni2.5 to recover the effective

coverage of the latter two microarrays. This is achieved by

considering the CEU and JPT+CHB resource from the 1000

Genomes Project, where to identify a surrogate for a target SNP,

we consider the following situations in a hierarchical fashion to

locate a SNP on Omni2.5 that: (i) is in perfect correlation (r2 = 1)

with the target SNP in both CEU and JPT+CHB; (ii) is in perfect

correlation with the target SNP in only CEU; (iii) is in perfect
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correlation with the target SNP in only JPT+CHB; (iv) exhibits the

highest r2 with the target SNP in the combined CEU and JPT+
CHB dataset, provided the highest r2 is at least 0.80. The search

for surrogates considered SNPs on Omni2.5 that were located

within 1 Mb of each target SNP. This procedure allowed us to

recover at least 470,208 SNPs and 803,333 SNPs on the

HumanHap550 and Human1M respectively (see Table S3).

Genotype imputation and haplotype reference maps
The microarray data from the samples were pre-phased using

SHAPEIT v2.r644 [20,21], before imputing with IMPUTE

version 2.3.0 [15,19]. Three reference panels involving the

integrated variant set from Phase 1 of the 1KGP with 1,092

individuals were used to perform the imputation: (i) using only the

1KGP reference panel (Tables S4, S5, S6); (ii) complementing

the 1KGP reference panel with the reference panel from the

Singapore Sequencing Malay Project (SSMP) – a population-level

deep whole genome sequencing of 96 Southeast Asian Malays in

Singapore [22]; and (iii) complementing the 1KGP reference panel

with the reference panel from the Singapore Sequencing Indian

Project (SSIP) – a population-level deep whole genome sequencing

of 36 south Asian Indians in Singapore (in review). The genetic

maps from the 1KGP were used for imputation with all three sets

of reference panels. The effective population size was set at 15000

to match the parameters used in SHAPEIT, and imputation was

performed on chromosomal blocks of 5 Mb while additionally

allowing for a buffer size of 5 Mb on each side. The reference

panels were merged using the option ‘‘merge_ref_panels’’, and

discrete genotype calls were made by thresholding the imputed

genotype posterior probabilities at 0.90. In performing the

imputation, only the iOmics samples that were not part of the

SSMP and SSIP were used as target populations to be imputed to

avoid over-fitting (110 Chinese, 50 Malays and 70 Indians).

Quantifying imputation quality
To assess whether statistical imputation can successfully recover

the unobserved exonic SNPs effectively, we measured the quality

of the imputed data at the SNP level and at the individual sample

genotype level.

At the SNP level, we considered the information criterion

generated by IMPUTE (info) as part of the imputation process.

This metric is meant as a measure of the multi-SNP correlation

between neighboring SNPs and the target SNP. We defined a SNP

to be well-imputed when info was at least 0.3. In addition, we

required the imputation to produce high-confidence genotypes for

the samples at each SNP. We measured this by calculating the

proportion of the samples that carried a valid genotype call,

defined as an imputed genotype possessing a posterior probability

that was at least 0.90. When all three genotype classes possessed

posterior probabilities less than 0.90, a missing genotype was

assigned. An imputed SNP was considered to produce high-

confidence genotypes when at least 95% of the samples were

assigned valid genotypes. Thus a SNP was deemed to be poorly

imputed if either info ,0.3 or call rate ,0.95.

As the info score may not necessarily be an accurate

measurement of imputation performance for SNPs with low

minor allele frequency, and to capture the situations where the

imputation algorithm incorrectly produced high-confidence or

high-information output due to the use of an inappropriate

reference panel for the target population, we also considered the

accuracy of the imputed genotypes by assessing the concordance

between the imputed genotypes and the observed genotypes at

SNPs that are present on both the reference panel and the exome

chip. Each of these SNPs was categorized according to the minor

allele frequency (MAF) as rare (MAF #0.01), low-frequency

(0.01, MAF ,0.05) or common (MAF $0.05). Two measures of

concordance were used: (i) overall concordance, defined as the

proportion of imputed genotypes that were identical to the

observed genotypes; and (ii) minor allele concordance, defined as

the proportion of imputed genotypes with at least 1 minor allele

that were identical to the observed genotypes, calculated only

across the high-confidence low-frequency and rare SNPS (see

Tables S7, S8, S9 for Omni2.5, Tables S10, S11, S12 for

HumanHap550, Tables S13, S14, S15 for Human1M on the

number of high-confidence imputed SNPs). The motivation

behind measuring minor allele concordance is due to the greater

emphasis of getting such genotype calls to be accurate for the

intended purpose of the exome chip – to locate low-frequency or

rare coding SNPs that are associated with phenotypic outcomes.

Results

Quality checks of the genotype data for the 360 samples in

iOmics yielded a final data freeze of 110 Chinese, 108 Malays and

105 Indians with high fidelity data for both Omni2.5 and the

exome chip. The number of SNPs after QC ranged between

2,358,215 and 2,358,634 for Omni2.5, and between 272,680 and

272,857 for the exome array, of which there were at least 39,631

SNPs that were present on the exome array and the Omni2.5

(Table S2). Of the 323 samples that remained after QC, 93

samples (58 Malays, 35 Indians) were part of the population-level

whole genome sequencing of Singapore Malays (SSMP) and

Indians (SSIP) and these were excluded from the imputation

analyses as they constituted part of the haplotype reference panels

used for imputation.

Polymorphic extent of the exome chip
For the SNPs that are present on the exome chip, more than

40% are unique to the exome chip design and are not present on

any of the existing microarrays or in the reference panels of the

1KGP (Phase 1), SSMP or SSIP, implying that these are the

variants can never be recovered from imputation. However, on the

basis of 110 Chinese, 108 Malays and 105 Indians that were

genotyped on the exome array, almost all of these variants (.95%)

are monomorphic in the three Singapore populations (Fig-
ure 1A). In fact, we observed that more than 80% of the SNPs

on the exome chip were actually monomorphic in the three

populations (Figure 1B). Of the remaining SNPs that were

polymorphic, more than 50% had MAF .0.05 which raised the

possibility that they may be recoverable from statistical imputa-

tion. In particular, if the focus was only on the polymorphic

variants on the exome chip, more than 90% of these variants were

present in the 1KGP reference panel (Figure 1C). The availabil-

ity of population-specific reference panels for the Malays and

Indians provided additional coverage of polymorphic exome chip

variants that were not present in the 1KGP.

Recovering the exome chip with imputation
Although the majority of the polymorphic variants on the

exome chip can be found in haplotype reference panels for

imputation, whether these SNPs can be successfully recovered for

downstream association analyses depends on the quality and

accuracy of the genotype imputation. We investigated the

imputation performance for 110 Chinese, 50 Malays and 70

Indians, excluding the 58 Malays and 35 Indians that had been

whole-genome sequenced and were used to construct haplotype

reference panels for imputation. Each sample was imputed against

three reference panels: (i) 1KGP; (ii) 1KGP and SSMP; (iii) 1KGP

Next-Generation Imputation with 1KGP
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and SSIP. The SSMP and SSIP consisted of 96 Singapore Malays

and 36 Singapore Indians respectively that had been whole-

genome sequenced to a target coverage of 30X. Two definitions of

imputation success were used.

A SNP was defined to be successfully imputed if the information

metric generated as part of the imputation process was at least 0.3

(IMPUTE info $0.30), and if at least 95% of the samples

presented a valid genotype call when the imputed genotype

posterior probabilities were compared against a threshold of 0.90.

The latter metric was akin to a SNP call rate of at least 95%.

Jointly these two metrics indicated the extent of correlation

between a target SNP with neighboring SNPs, and whether the

imputation produced high-confidence calls. As expected, when

imputed using the SNPs present on the Omni2.5, in excess of 75%

of the common polymorphic SNPs on the exome chip were

imputed successfully whereas less than 45% of the rare polymor-

phic SNPs were successfully imputed regardless of the choice of

reference panels (Figure 2). Supplementing the 1KGP panel with

reference haplotypes from SSMP yielded more successfully

imputed SNPs compared to using only the 1KGP panel, although

this was not true when the Indians were imputed with a SSIP-

supplemented reference panel. Interestingly, even when we

downsampled to using only the contents of the HumanHap550

and Human1M, the imputation yielded similar performances in

terms of the extent of the rare and low-frequency variants

recovered. However, the percentage of common variants recov-

ered decreased by approximately 15% and 10% with the

HumanHap550 and Human1M respectively (Figures S1–S2).

While it appeared surprising that supplementing 1KGP with the

Indian-specific panel did not produce more high quality imputa-

tion for the Indians, it was important to note the above two

definitions of imputation quality fundamentally relied on the

correlation structure between the target SNP and surrounding

markers in the reference panel. The imputation algorithm can

mistakenly bestow high-confidence calls when the underlying

patterns of genetic correlation in the target sample differ

considerably from the reference panel. The second measure of

imputation success thus focused on the accuracy of the imputed

genotypes, evaluated by the degree of concordance between the

imputed genotypes and the observed genotypes at SNPs present on

the Omni2.5 but absent on the exome chip.

Figure 1. (A) The proportion of monomorphic and polymorphic exonic variants in the Illumina exome chip when assessed in each of the three
Singapore populations. The exonic variants on the exome chip are further categorized according to whether they are present in any of the reference
panels from the 1000 Genomes Project or the Singapore Sequencing Study for the Malays and Indians (‘‘Covered’’) and can in theory be imputed, or
not present in any of the existing reference panels and thus cannot be recovered through imputation (‘‘Not covered’’). (B) Distribution of SNPs on the
exome chip according to the minor allele frequencies (MAFs) into monomorphic (MAF = 0%), rare (0%, MAF #1%), low-frequency (1%, MAF #5%)
and common (MAF .5%) in each of the three populations. (C) MAF categorization of the polymorphic exome chip SNPs in each of the three
populations according to whether these SNPs are present (non-purple bars) or not (purple bars) in the respective reference panels. Numbers in
brackets indicate the number of SNPs in the respective categories.
doi:10.1371/journal.pone.0106681.g001
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While increasing the size of the 1KGP reference panel with at

least 36 more samples improved imputation accuracy, the greatest

improvements were seen when the respective population-specific

panels were used to supplement the 1KGP to impute the Malays

and Indians, where up to 0.55% decrease in discordance was

observed for low-frequency SNPs in the Malays when using the

Omni2.5 SNPs (Table 1). For HumanHap550 and Human1M,

the discordance decreased by up to 0.35% and 0.38% for the

HumanHap550 and Human1M respectively, Tables S16–S17).

As the primary intention for the use of the exome chip was to

discover phenotype associations with rare and low-frequency

SNPs, we additionally evaluated the minor allele discordance –

defined as the discordance between imputed and observed

genotypes that carried at least one minor allele at rare and low-

frequency SNPs. This revealed that supplementing the 1KGP

panel with population-specific haplotypes can significantly reduce

the error rates of imputing the rare and low-frequency variants by

up to 14.86% and 8.44% for the Malays and Indians respectively

on the Omni2.5 (Table 2), and up to 16.21% and 9.48%

respectively even with the lowest density HumanHap550 (Tables
S18). Table S19 shows the reduction in error rate with respect to

Human1M as the study panel.

Actual coverage of exome chip
The discussion thus far has focused on quantifying how much of

the exome chip was actually polymorphic and the extent that these

polymorphic SNPs can be recovered by statistical imputation. It is

however just as important to evaluate whether the exome chip is

representative of the full set of polymorphic exonic variants in

other populations, or whether it is only relevant to the populations

that were used to design the chip. For example, the SSMP

identified 261,962 SNPs in the exonic regions of which only

28,049 SNPs were present on the exome chip. Similarly, out of

183,835 polymorphic exonic SNPs in SSIP, only 22,039 SNPs

were present on the exome chip (Table S20). In contrast, 43% of

the full set of exonic variants in SSMP (58.42% for SSIP) can be

recovered successfully (info $0.3 and call rate $0.95, including

the exonic variants from study sample) by imputing off the 1KGP

reference panel (Table 3). Even with the lowest density content

from the HumanHap550, we can recover 30.93% of the full set of

exonic variants in SSMP (42.24% for SSIP, Table S21). When a

population-specific reference panel of at least 36 individuals was

supplemented, the proportion that was successfully recovered

increased to 47.20% for SSMP and 62.21% for SSIP (Table 3).

Discussion

We have investigated the relevance of the Illumina HumanEx-

ome array for three populations in Southeast Asia comprising the

Southern Han Chinese, Southeast Asian Malays and South Asian

Indians. We observed that more than 80% of the content of the

exome chip was monomorphic when assessed in about 100

individuals from each of these populations. Of the remaining SNPs

that were polymorphic, at least 55% could be imputed successfully

even with the use of early generation GWAS arrays such as the

Illumina HumanHap550K or the Illumina Human1M, together

with the haplotype reference panel from Phase 1 of the 1KGP.

Imputation accuracy was increased by supplementing the 1KGP

panel with population-specific whole-genome sequencing of at

least 36 individuals. What was striking was the exome chip only

provided an actual coverage of 9.57% of the polymorphic exonic

variants that were present from whole-genome sequencing a

Figure 2. The percentage of polymorphic exome chip SNPs in each of the three populations that can be reliably imputed against
three different reference panels using the SNPs on the Illumina HumanOmni2.5 as input. Each of these SNPs is categorized according to
the minor allele frequency (MAF) as rare (0%, MAF #1%), low-frequency (1%, MAF #5%) and common (MAF .5%). See Figures S1 and S2 in the
Supplementary Material for the equivalent figures when SNPs on the HumanHap550 and Human1M are used as input respectively. The total number
of imputed exome SNPs when using Illumina HumanOmni2.5/HumanHap550/Human1M as the study panel is shown in Table S4, S5 and S6.
doi:10.1371/journal.pone.0106681.g002
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separate collection of 96 Malays (11.76%, for the equivalent in 36

Indians), and imputation against the 1KGP alone could already

recover at least 30.93% of these variants successfully with high

confidence in the Malay population (42.24% for Indian popula-

tion) based upon the lowest density content genotyping array

HumanHap550. Supplementing the 1KGP reference panel with

population-specific content further increased the recoverable

coverage to at least 32.44% for Malay population (42.74% for

Indian population) using HumanHap550 as study panel, far

surpassing the coverage provided by the exome chip (Table S22,

Table S19 for the respective information for Human1M).

It is important to note that we have sought to evaluate the

representation and coverage of the exome chip in two populations

(Malays, Indians) which were not part of the design and for which

we have deep whole-genome sequencing data for. We did not

investigate whether the conclusions were similarly relevant for

European populations, which contributed the greatest resource

during the design of the exome chip. However, we similarly

noticed that in excess of 80% of the SNP content for the exome

chip was monomorphic in the Chinese, despite the inclusion of

samples of Chinese ancestry in the design. In addition, we will like

to emphasize that our categorization of the SNPs into the four

minor allele frequency bins of monomorphic, rare, low-frequency

and common were made on the basis of our existing samples, and

it is entirely possible that as the number of samples genotyped

increases, a fraction of the SNPs currently categorized as

monomorphic can actually turn out to be polymorphic albeit

with low allele counts.

From the perspective of cost, at the price of US$50 per exome

chip (ignoring manpower and other infrastructure expenses) and

US$3000 to perform 30-fold whole-genome sequencing of one

genome, the cost to genotype 2,100 samples on the exome chip is

equivalent to sequencing 35 samples. However, we have shown

that the information generated from the whole-genome sequenc-

ing of at least 35 samples, together with publicly available

information from the 1KGP, delivers a more comprehensive

coverage of the exonic variants for the new population than

additionally genotyping samples with the exome chip. The

sequencing information can also be naturally extended to impute

other populations as well, thereby benefitting multiple projects.

Table 1. Discordance (%) between imputed genotypes and actually observed genotypes at SNPs on Omni2.5 but not in the
exome chip.

Population SNP Category Haplotype reference panel for imputation

1KGP1 1KGP + SSMP2 1KGP + SSIP3

Chinese Rare 0.78 0.70 0.72

Low-freq 1.12 1.07 1.07

Common 0.42 0.39 0.39

Malay Rare 0.75 0.44 0.67

Low-freq 1.40 0.85 1.16

Common 0.80 0.51 0.72

Indian Rare 0.77 0.60 0.59

Low-freq 1.16 1.00 0.89

Common 0.86 0.70 0.60

1Phase 1 of the 1KGP, consisting of 1,092 subjects.
2Singapore Sequencing Malay Project, consisting of 96 Southeast Asian Malays that have been whole-genome sequenced at 30X.
3Singapore Sequencing Indian Project, consisting of 36 South Asian Indians that have been whole-genome sequenced at 30X.
doi:10.1371/journal.pone.0106681.t001

Table 2. Discordance (%) between imputed genotypes and actually observed minor allele genotypes1 at rare and low-frequency
SNPs on the exome chip but not in the Omni2.5.

Population SNP Category Haplotype reference panel for imputation

1KGP2 1KGP + SSMP3 1KGP + SSIP4

Chinese Rare 42.93 40.24 41.03

Low-freq 21.65 21.15 21.33

Malay Rare 27.23 12.37 24.61

Low-freq 20.42 12.13 17.82

Indian Rare 28.64 24.31 20.20

Low-freq 18.41 15.53 14.58

1A minor allele genotype is defined as a genotype that carries at least one copy of the minor allele, and discordance here is measured against the total number of
observed minor allele genotypes at rare and low-frequency SNPs.
2Phase 1 of the 1KGP, consisting of 1,092 subjects.
3Singapore Sequencing Malay Project, consisting of 96 Southeast Asian Malays that have been whole-genome sequenced at 30X.
4Singapore Sequencing Indian Project, consisting of 36 South Asian Indians that have been whole-genome sequenced at 30X.
doi:10.1371/journal.pone.0106681.t002
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Based on this assessment, we recommend that it is more cost-

effective to perform deep whole-genome sequencing of a small

subset of the samples in order to generate population-specific

reference haplotype maps to complement the 1KGP, than to

extend the use of the exome chip to studies with pre-existing

GWAS data.

Our assessment of imputation performance focused on different

aspects of quality and accuracy. We particularly highlighted the

difference between: (i) SNP-level imputation confidence, as

measured by the information content and the peakedness of

imputed genotype posterior probabilities (which affects the call

rate at a SNP); and (ii) inherent accuracy between the imputed

genotypes and the actually observed genotypes. While the latter

metric is more appropriate in assessing imputation performance, it

is often not possible to evaluate this agnostically as this requires the

target set of SNPs to have already been genotyped. As such, the

information criterion from imputation is often used as a surrogate

measure of imputation quality. Jallow and colleagues illustrated

that relying on the information criterion can produce erroneous

outcomes, since imputation can mistakenly bestow high-confi-

dence calls when the underlying haplotype structure in a target

sample differs from that present in the reference panel [23]. Thus,

our evaluation utilized both measures of SNP-level imputation

confidence and imputation accuracy in order to provide a more

meaningful assessment of the imputation strategy for recovering

exome chip content.

In addition to measuring overall accuracy between imputed and

observed genotypes, we specifically measured the discordance at

observed genotypes that carried at least one minor allele at low-

frequency and rare SNPs. There are two reasons here: (i) given the

low frequency of the minor alleles at such SNPs, miscalling all the

genotypes as major allele homozygotes only contributes a small

degree of discordance and this can send the incorrect impression

that imputation is highly accurate (i.e. .99% accuracy for a rare

variant incorrectly imputed as monomorphic); (ii) the use of the

exome chip is primarily intended to identify association with low-

frequency and rare SNPs, and erroneously calling the presence or

absence of a minor allele genotype can affect the power and false

positive rate of the association analyses, especially when it is

common to use statistical methods that pool allele counts across

multiple SNPs in a gene region. Thus, in our evaluation of the use

of imputation to recover exonic SNPs, we specifically assessed the

ability to accurately determine the minor allele genotypes.

One criticism to imputing the exonic variants is the need to

address imputation uncertainty in during downstream analyses, in

order to maximize statistical power [24]. Methodologies such as

MACH2qtl [25], ProbABEL [26], SNPTEST [27] and PLINK

[28] have the option of utilizing the genotype posterior probabil-

ities or dosages in the association analyses, although these

approaches are mostly for testing association at a single SNP

and have not been extended to evaluate allele burden across

multiple SNPs. However, this seems surmountable from an

analytical perspective, particularly when the alternative is to

perform additional genotyping on a microarray which provides an

effective coverage of less than 10%.

When it comes to querying low-frequency or rare variants in the

genome, there is likely to be no cost-effective replacement for

sequencing. While genotyping with pre-designed microarrays has

offered spectacularly success at representing common genomic

content, our evaluation here has shown there is no significant

advantage in additionally genotyping samples with GWAS

information on the exome chip, over what statistical imputation

with existing haplotype reference panels can already provide. If

any, performing population-level deep whole-genome sequencing

for as many subjects as possible for the cost of genotyping a GWAS

cohort on the exome chip may yield greater returns.

Supporting Information

Figure S1 The percentage of polymorphic exome chip
SNPs in each of the three populations that can be
reliably imputed against three different reference
panels using the SNPs on the Illumina HumanHap550
as input. Each of these SNPs is categorized according to the

minor allele frequency (MAF) as rare (0%, MAF #1%), low-

frequency (1%, MAF #5%) and common (MAF .5%).

(TIF)

Figure S2 The percentage of polymorphic exome chip
SNPs in each of the three populations that can be
reliably imputed against three different reference
panels using the SNPs on the Illumina Human1M as
input. Each of these SNPs is categorized according to the minor

allele frequency (MAF) as rare (0%, MAF #1%), low-frequency

(1%, MAF #5%) and common (MAF .5%).

(TIF)

Table S1 Details on samples removed during the
quality control process.

(DOCX)

Table 3. Actual and recoverable content of exonic variants in 96 Malays (SSMP) and 36 Indians (SSIP) based on HumanOmni2.5 as
the study panel.

Number of exonic SNPs SSMP SSIP

Rare/Low-freq Common Rare/Low-freq Common

In total 167,523 94,439 91,157 92,678

Overlap Omni2.51 19,253 47,148 13,839 50,136

On exome chip 11,831 13,226 7,920 13,694

Imputed off 1KGP 14,622 31,612 12,534 30,880

Imputed off 1KGP+SSMP 24,394 32,860 13,028 30,783

Imputed off 1KGP+SSIP 14,961 30,528 18,345 32,042

1Overlap Omni2.5 is the total number of exonic variants from SSMP or SSIP that overlaps with genotypes from HumanOmni2.5 array. The number of imputed variants
does not include these overlapped variants. For the corresponding results for HumanHap550/Human1M as the study panel, please refer to Table S21 and S22
accordingly.
doi:10.1371/journal.pone.0106681.t003
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Table S2 Number of SNPs remaining after the quality
control process, assessed on the basis of the post-QC
samples.
(DOCX)

Table S3 Number of SNPs available after rebuilding the
Illumina HumanHap550 and Human1M from the
Omni2.5.
(DOCX)

Table S4 Total number of imputed SNPs using 1000
Genome (1KG) Reference panel and Illumina Huma-
nOmni2.5 as the study panel.
(DOCX)

Table S5 Total number of imputed SNPs using 1000
Genome (1KG) Reference panel and rebuilt Illumina
HumanHap550 as the study panel.
(DOCX)

Table S6 Total number of imputed SNPs using 1000
Genome (1KG) Reference panel and rebuilt Illumina
Human1M as the study panel.
(DOCX)

Table S7 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Chinese, based
on the SNPs on the Omni2.5.
(DOCX)

Table S8 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Malays, based
on the SNPs on the Omni2.5.
(DOCX)

Table S9 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Indians, based
on the SNPs on the Omni2.5.
(DOCX)

Table S10 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Chinese, based
on the SNPs on the HumanHap550.
(DOCX)

Table S11 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Malays, based
on the SNPs on the HumanHap550.
(DOCX)

Table S12 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Indians, based
on the SNPs on the HumanHap550.
(DOCX)

Table S13 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Chinese, based
on the SNPs on the Human1M.
(DOCX)

Table S14 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Malays, based
on the SNPs on the Human1M.
(DOCX)

Table S15 Total number of imputed exome SNPs with
info $0.3 that have call rate $95% in the Indians, based
on the SNPs on the Human1M.
(DOCX)

Table S16 Discordance (%) between imputed genotypes
and actually observed genotypes at highly reliably

imputed exome SNPs using HumanHap550 as the study
panel. 1 Phase 1 of the 1KGP, consisting of 1,092 subjects.
2 Singapore Sequencing Malay Project, consisting of 96 Southeast

Asian Malays that have been whole-genome sequenced at 30X.
3 Singapore Sequencing Indian Project, consisting of 36 South

Asian Indians that have been whole-genome sequenced at 30X.

(DOCX)

Table S17 Discordance (%) between imputed genotypes
and actually observed genotypes at highly reliably
imputed exome SNPs using Human1M as the study
panel. 1 Phase 1 of the 1KGP, consisting of 1,092 subjects.
2 Singapore Sequencing Malay Project, consisting of 96 Southeast

Asian Malays that have been whole-genome sequenced at 30X.
3 Singapore Sequencing Indian Project, consisting of 36 South

Asian Indians that have been whole-genome sequenced at 30X.

(DOCX)

Table S18 Discordance (%) between imputed genotypes
and actually observed minor allele genotypes1 at rare
and low-frequency SNPs using HumanHap550 as the
study panel. 1 A minor allele genotype is defined as a genotype

that carries at least one copy of the minor allele, and discordance

here is measured against the total number of observed minor allele

genotypes at rare and low-frequency SNPs. 2 Phase 1 of the

1KGP, consisting of 1,092 subjects. 3 Singapore Sequencing

Malay Project, consisting of 96 Southeast Asian Malays that have

been whole-genome sequenced at 30X. 4 Singapore Sequencing

Indian Project, consisting of 36 South Asian Indians that have

been whole-genome sequenced at 30X.

(DOCX)

Table S19 Discordance (%) between imputed genotypes
and actually observed minor allele genotypes1 at rare
and low-frequency SNPs using Human1M as the study
panel. 1 A minor allele genotype is defined as a genotype that

carries at least one copy of the minor allele, and discordance here

is measured against the total number of observed minor allele

genotypes at rare and low-frequency SNPs. 2 Phase 1 of the

1KGP, consisting of 1,092 subjects. 3 Singapore Sequencing

Malay Project, consisting of 96 Southeast Asian Malays that have

been whole-genome sequenced at 30X. 4 Singapore Sequencing

Indian Project, consisting of 36 South Asian Indians that have

been whole-genome sequenced at 30X.

(DOCX)

Table S20 Number of overlapping exonic exome vari-
ants with whole genome sequencing data. 1All exonic

exome: Malay = 249,940; Indian = 249,821. 2Polymorphic

exonic exome: Malay = 28,528; Indian = 28,474. 3Proportion of

polymorphic exonic exome is defined as the number of overlap

polymorphic exonic exome divide by the total number of exonic

SSMP/SSIP respectively. 4SSMP and SSIP variants are all

polymorphic.

(DOCX)

Table S21 Actual and recoverable content of exonic
variants in 96 Malays (SSMP) and 36 Indians (SSIP)
based on HumanHap550 as the study panel. 1Overlap

HumanHap550 is the total number of exonic variants from SSMP

or SSIP that overlaps with genotypes from HumanHap550 array.

The number of imputed variants does not include these

overlapped variants.

(DOCX)

Table S22 Actual and recoverable content of exonic
variants in 96 Malays (SSMP) and 36 Indians (SSIP)
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based on Human1M as the study panel. 1Overlap

Human1M is the total number of exonic variants from SSMP or

SSIP that overlaps with genotypes from Human1M array. The

number of imputed variants does not include these overlapped

variants.

(DOCX)
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