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Abstract

High-dimensional single-cell data has become an important tool in unraveling the

complexity of the immune system and its involvement in homeostasis and a large

array of pathologies. As technological tools are developed, researchers are adopting

them to answer increasingly complex biological questions. Up until recently, mass

cytometry (MC) has been the main technology employed in cytometric assays requir-

ing more than 29 markers. Recently, however, with the introduction of full spectrum

flow cytometry (FSFC), it has become possible to break the fluorescence barrier and

go beyond 29 fluorescent parameters. In this study, in collaboration with the

Stanford Human Immune Monitoring Center (HIMC), we compared five patient sam-

ples using an established immune panel developed by the HIMC using their MC plat-

form. Using split samples and the same antibody panel, we were able to demonstrate

highly comparable results between the two technologies using multiple data analysis

approaches. We report here a direct comparison of two technology platforms

(MC and FSFC) using a 32-marker flow cytometric immune monitoring panel that can

identify all the previously described and anticipated immune subpopulations defined

by this panel.
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1 | INTRODUCTION

The desire to deeply profile the immune system and understand its

role in disease and therapeutic responses is driving technological

advancement. Immunotherapy has offered new opportunities in the

treatment of cancer. However, although promising, there have been

mixed outcomes among patients [1–3]. The success of immunother-

apy is believed to be dependent on individual patient immune

responses and their tumor microenvironments [4–8]. The interaction

between the immune response and the tumor microenvironment is a

complex milieu which requires a deep profiling of the cellular interac-

tions. As these treatment modalities are expensive, the ability to iden-

tify specific biomarkers that can provide insights into which patients

are likely to have a positive outcome is a valuable resource for info-

rming clinical trials [9–13]. In addition to immunotherapies, identifying

key immune biomarkers, as indicators of vaccine efficacy, can inform

decisions for prioritizing vaccines for clinical trials. Deep profiling of

the immune system can provide a more thorough understanding of
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the mechanisms and pathways of immune evasion, whether post-

therapeutically or in the natural responses to cancer and infectious

diseases [14]. With this level of information, better informed decisions

can be made in the identification of new therapeutic targets and the

development of new therapeutic modalities [13, 15–17].

The complexity of the human immune response requires the use

of technologies that can provide high-throughput in-depth analysis at

the single-cell and population levels [10, 18–21]. These technologies

are associated with a higher cost and a higher level of expertise to uti-

lize them. As a result, many major academic institutions have

established Shared Resource Centers or Core Facilities to provide

access to these technologies for investigators who need to evaluate

patient immune responses as part of clinical trials, or for biomarker

discovery for future therapeutics development or precision medicine

decisions [20, 22]. Flow Cytometry, as a high-throughput, high-dimen-

sional, technology, is an ideal platform for evaluating the immune sys-

tem at the single-cell level and has been used for many years to study

a variety of aspects of the immune system [3]. However, as the com-

plexities of the immune system were unraveled, conventional flow

cytometers were unable to analyze the number of markers required to

fully explore the dynamics of the immune system. This was primarily

due to instrument design, limiting the number of fluorescently tagged

markers which could be evaluated in a single tube [23–25]. Compre-

hensive immune profiling by conventional flow cytometry often

requires the use of multiple panels in separate tubes to adequately

cover the necessary markers, an approach which does not provide a

complete picture of the intricacies of marker co-expression in multiple

cell populations [26]. Subsequently, the development of mass cyto-

metry (MC), the application of inductively coupled mass spectroscopy

(ICP-MS) using metal-tagged antibodies, enabled an increase in the

number of parameters, or markers, that could be measured simulta-

neously [27, 28]. The use of heavy metal tagged antibodies, in lieu of

fluorescently labeled antibodies, addressed the fluorescence spectral

overlap issues associated with conventional flow cytometers that lim-

ited the number of markers which could be measured in a single tube.

MC opened up possibilities for assessing the complexity and hetero-

geneity of immune responses in clinical research, further contributing

to our understanding of the role of the immune system in cancer,

immunotherapy, vaccine development, and other pathological pro-

cesses [9, 17, 19, 24, 29–33]. While this technology has been a major

breakthrough in providing the ability to expand immune profiling

panels beyond 30 markers, it has been primarily restricted to larger

shared resource centers and core facilities due to cost, space require-

ments, and expertise required to operate [19, 34, 35]. In recent years,

the development of commercial instrumentation that takes advantage

of full spectrum fluorescence has provided the ability to increase the

number of possible fluorochromes that can be effectively used

together in a single panel [22, 36–42]. Full spectrum flow cytometry

(FSFC) measures the entire fluorochrome emission spectrum, across

multiple lasers and using many more detectors than a conventional

flow cytometer, allowing a specific spectral fingerprint to be defined

for each fluorochrome. FSFC distinguishes one fluorochrome from

another using the spectral fingerprint as a unique identifier. This con-

trasts with using a fluorochrome's maximum emission wavelength,

which is what is done on a conventional flow cytometer, to define a

fluorochrome. The use of the spectrum outside of the maximum emis-

sion enables the use of fluorochromes which have similar maximum

emissions profiles but differ in other areas of the spectrum across

multiple lasers. The combination of this different approach from the

optics perspective as well as a different mathematical approach to

identify the signal specific from each fluorochrome results in an

extremely flexible system that allows the use of highly overlapping

dyes without sacrificing resolution. Leveraging FSFC technology, the

ability to combine 30–40 fluorescently labeled antibodies, in a single

tube, has been demonstrated using a fluorescence-based flow

cytometer [2].

In this study, we chose to evaluate whether a published immune

monitoring panel that was established using MC [43, 44] could be rep-

licated using FSFC. The value of FSFC as a powerful technology for

cancer immunotherapy has been previously described [22, 45]. There

are several advantages and disadvantages to each technology, which

are outlined in Table 1; however, the main purpose of this study was

to establish the feasibility of generating comparable data with both

technologies using a panel previously validated with MC. Since the

workflow on a FSFC is very similar to most conventional flow

cytometers in terms of instrument operation, acquisition, and mainte-

nance, many researchers should be able to easily adopt this technol-

ogy. This would enable broader access to high-dimensional

immunophenotyping for those wishing to investigate the complexities

of the immune system with a single panel and smaller sample

requirements.

A recently published study [46] compared data from a panel of

20 markers using an Aurora FSFC (Cytek Biosciences, Fremont, CA)

and a CyTOF MC (Fluidigm, S. San Francisco, CA) and found both

technologies produced comparable results. In this study, we expand

the comparison to an established 32-marker immune monitoring panel

on peripheral blood mononuclear cells (PBMCs) using an Aurora FSFC

and a Helios MC to demonstrate the ability to use FSFC as another

option for monitoring complex immune responses.

2 | MATERIALS AND METHODS

2.1 | Donors

Frozen PBMCs from 5 donors were obtained from AllCells Alameda

(Alameda, CA). Cells were provided aliquoted in 25 million cells per

vial in freezing media and cryopreserved in liquid nitrogen until ready

to use. Ethical review and regulatory compliance were conducted at

AllCells by Alpha Independent Review Board under Protocol number:

7000-SOP-045 (effective through April 2, 2023).

2.2 | MC panel design, staining procedure, and
sample acquisition

The MC surface marker staining panel (Table S1) was inspired by the

HIPC Lyoplate cocktails [47], collapsing most of the markers in the
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five fluorescent flow panels into a single MC panel and then adding

additional markers. All antibodies were from purified, unconjugated,

carrier-protein-free stocks from BD Biosciences, BioLegend, or R&D

Systems. For the in-house conjugations, the DN3 polymer was from

Fluidigm and metal isotopes were from Fluidigm, Trace Sciences, or

Sigma. Mass cytometers have a mass-dependent sensitivity pro-

file [48], with the highest sensitivity in the 159–175 mass range. The

choice of metal labeling with each antibody was chosen according to

marker expression, with higher-expressing markers generally receiving

“dimmer” metals and lower-expressing markers generally receiving

“brighter” metals. Additionally, spillovers due to oxide formation

(M into the M + 16 channel), isotopic purity, and abundance sensitiv-

ity were also addressed [49].

PBMC samples were each thawed in 10 ml RPMI containing 10%

heat-inactivate FBS, pen-strep-glutamine (100� dilution from stock),

and benzonase (1:10,000 dilution from stock) (complete RPMI) that

was pre-warmed to 37�C, then pelleted by centrifugation (480 � g,

room temperature, 10 min). The samples were resuspended in 10 ml

fresh complete RPMI and re-pelleted. The cell pellet was resuspended

in 1 ml CyFACS buffer (1� Rockland PBS/MilliQ supplemented with

2% BSA, 2 mM EDTA, and 0.1% sodium azide), and viable cells were

counted by Vicell. Cells were added to a round-bottom 1 ml well

microtiter plate at 1.5 million viable cells/well and washed once by

pelleting and resuspension in 500 μl fresh CyFACS buffer. The cells

were stained for 60 min at room temperature with 50 μl of the

antibody-polymer conjugate cocktail (Table S1). The cells were

washed twice by pelleting and resuspension with 500 μl CyFACS

buffer. The cells were resuspended in 100 μl 1� PBS/MilliQ buffer

containing 1.7 μg/ml Live-Dead (diluted 3000� from 5 mg/ml stock

DOTA-maleimide [Dojindo] containing natural-abundance indium

from Sigma). The cells were washed adding 500 μl CyFACS and

pelleting by centrifugation. The cells were resuspended in 100 μl 2%

PFA (Electron Microscopy Sciences, 16% methanol-free stock) in

Rockland PBS/MilliQ and placed at 4�C overnight.

The next day, 500 μl of CyFACS was added and the cells were

pelleted (800 � g, 4�C, 10 min). The cells were resuspended in 100 μl

eBiosciences permeabilization buffer (1x in Rockland PBS/MilliQ) and

placed on ice for 45 min before 500 μl CyFACS was added, and cells

pelleted. The cells were resuspended in 100 μl iridium-containing

DNA intercalator (1:2000 dilution in Rockland PBS/MilliQ; Fluidigm)

and incubated at room temperature for 20 min, then 500 μl CyFACS

was added, and the cells pelleted. The cells were washed twice more

in 500 μl MilliQ water. The cells were resuspended in MilliQ water

containing 0.1� EQ normalization beads (Fluidigm) to a concentration

of 0.7–0.8 million/ml (Bio-Rad TC20 measurement) before acquisition

on the Helios mass cytometer (Fluidigm) at a rate of 200–300 events/

s. A target number of 250,000 events was acquired per sample

(�20 min acquisition time/sample). The samples were acquired imme-

diately after the completion of staining and were not stored.

The Helios mass cytometer was prepared for acquisition by

igniting plasma, then running Wash Solution (Fluidigm) for 15 min

and Tuning Solution for 5 min before performing a Full Tuning proto-

col (after 20 min total of warmup time). All tuning values (including

Tb159 and Tm169) were within 10% of historical values (see

Table S2 for precise values). The Tuning Solution was removed by

running Wash Solution for 5 min, then MilliQ water for 5 min, before

samples were run. Between each sample, at least 3 min of MilliQ

water was run, until the residual event rate in Preview was under

10 events/s. Every 3 samples, 3 min of Wash Solution was run

followed by 3 min of MilliQ (until the streaks from the zirconium

impurity in Wash Solution could no longer be seen). At the end of all

samples, Wash Solution was run for 10 min until all lanthanide sig-

nals were at background levels, then MilliQ water was run for

10 min before shutting down.

TABLE 1 Comparison of mass cytometry and full spectrum flow cytometry.

Feature MC FSFC References

Number of markers demonstrateda 43 40 [2, 73]

Signal detected Metal isotopes Fluorescent probes [27, 28]

Directly conjugated antibody availability Single vendor Many vendors [34]

Sensitivity limit 300–400 molecules <40 molecules [34, 48]

Autofluorescence No Yesb [14, 38]

Throughput 500 cells/s 10–15,000 cells/s [34, 74]

Cell transmission efficiency 30%–60%c >95% [19, 34]

Cell size/complexity directly measured No Yes [74, 75]

Single label controls required No Yes [39]

Cell sorting No Yes

Normalization of data post-acquisition Yes No [76]

Abbreviations: FSFC, full spectrum flow cytometry; MC, mass cytometry.
aDoes not include bar-coding, includes live/dead.
bCan be extracted for increasing resolution as well as used as an additional parameter for analysis.
c30% for earlier MC models; 50%–60% for later MC models.
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2.3 | Full spectrum flow cytometry panel design,
staining procedure, and sample acquisition

Using the markers included in the MC panel (Table S1), we proceeded

to design an equivalent panel to run on a FSFC (Cytek Aurora)

equipped with five lasers. The optical configuration of this instrument

and the strategy used for the panel design and optimization were as

described in OMIP-069 [2]. Briefly, 32 fluorochromes were selected

based on their spectral characteristics, ensuring that all had a unique

full spectrum signature and could be distinguished from each other.

Fluorochrome brightness of each dye, and spread (measured using the

spillover spread matrix [50]), were the two metrics used for panel

design. The guidelines previously published for successful panel

design were followed [39, 40, 51]. Dimmer fluorochromes were

assigned to antigens expressed at high levels and with high level of

co-expression with other markers in the panel, ensuring good resolu-

tion while minimizing spread. Inversely, antigens expressed at low

levels were paired with fluorochromes that are very bright or bright

and whose signals were not severely impacted by spread from other

fluorochromes assigned to co-expressed markers. The selection of

marker/fluorochrome was also aimed at maximizing the use of the

same clones included in the MC panel. However, there were some

restrictions due to commercial availability of reagents or, in some

instances, a different clone was selected because of previous valida-

tion in other panels developed for the Aurora (data not shown). The

final reagent selection is presented in Table S1. All antibodies used in

the panel, as well as the viability dye, were titered for optimal signal-

to-noise. Panel performance was carefully evaluated, prior to running

the samples for this study, and deemed to be optimal as resolution of

each marker was comparable in the single stained versus the multi-

color samples (Figure S1B) and all populations of interest were clearly

identified.

Cells from the five donors used in this study were stained and

acquired on the same day. PBMCs were thawed following the same

procedure described for the MC panel. However, differently to the

MC procedure, after the second wash, cells were resuspended in

7.5 ml of complete RPMI (approximate concentration 3 million/ml).

From each donor, 700 μl of cell suspension were transferred to a

12 mm � 75 mm tube labeled with the donor ID + Multicolor. In

addition, from one of the donors, 300 μl of cell suspension were trans-

ferred to 32 12 mm � 75 mm tubes, each labeled with the name of a

marker/fluorochrome pair. For each donor, one unstained control

tube was prepared, and in addition to inclusion in the multicolor sam-

ple, cell viability was assessed prior to doing the staining with the full

cocktail by staining with the amine reactive viability dye LIVE/Dead

Blue (Thermo Fisher). All donors had viability higher than 90%. Single

stained cells were stained for 30 min at room temperature with opti-

mal titer for each antibody. For the multicolor tubes (one for each

donor), cells were first washed with 1x PBS, stained with optimal titer

of the viability dye for 15 min, washed with BD Stain Buffer (BSA, BD

Biosciences) and then stained for 30 min with the antibody cocktail in

presence of Brilliant Staining Buffer (BD Biosciences). After staining

was completed, cells were washed once by pelleting with the BD Stain

Buffer and then resuspended with 500 μl of 1% PFA. Cells were incu-

bated for 30 min and then washed by pelleting and resuspended in

350 μl of BD Stain Buffer.

Prior to acquisition, instrument set up and Quality Control for the

FSFC was performed per the manufacturer recommendations. Single

stained controls were acquired first, an unmixing matrix with

autofluorescence extraction was calculated using SpectroFlo 2.2.1

and the multicolor samples were run using the live unmixing function-

ality, setting the stopping criteria using CD3+ cells to achieve, per

donor, the same number of events collected in the MC. Samples were

run at medium flow rate (averaging 800 events/s for the sample con-

centration used; �1.5 million/ml) and the time of acquisition ranged

from 2 min 40 s to 3 min and 20 s per sample. Medium flow rate was

chosen because it was the highest flow rate that had minimal impact

on data resolution.

2.4 | Data QC and manual analysis

For the MC data, after acquisition, the files were normalized

together in one batch using Premessa R package (version 0.2.5,

RStudio 1.1.456, R 3.3.3). Since no antibody capture bead data was

collected, no mass compensation was performed [52, 53]. Manual

data analysis was performed using FlowJo v10.1r5 by gating on

Ir191 versus Ce140 (“Cells” Ir191+Ce140�), then Ir191 versus Ir193

(“Intact Cells” Ir191+Ir193+), then Ir191 versus Event Length

(“Intact Singlets” Ir191+ Event Length < �30), then Ir191 versus

Live-Dead In115 (“Live Intact Singlets” Ir191+Live-Dead�), followed

by surface marker-based cell subset-specific gating (Figure S1C)

modeled after the HIPC Lyoplate panel gating [47]. Samples were

evaluated for signal stability using Time versus Ir, CD3, and CD19

(Figure S1A).

The FSFC data was QC'ed using SpectroFlo 2.2.1. NxN plots were

used to QC the unmixing accuracy in the multicolor tubes as

described in OMIP-069 [2] and corrections were applied when neces-

sary. The largest correction applied was 4.09% (Qdot800 into PE-

Cy7). As a best practice, and to demonstrate that the corrections

made (with full knowledge of the biology and expected patterns for

the markers in this panel) do not impact the results presented in this

paper, a dimensionality reduction analysis using data with or without

spillover corrections was performed (Figure S8).

Time versus SSC plots were visualized to assess signal stability

throughout the acquisition. Examples of signal stability using time ver-

sus FSC, CD3, and CD19 plots are presented in Figure S1A. Finally,

multicolor data was gated following the same strategy used for the

MC data (Figure S1D).

FCS Express 7.04.0014 was used for visual side-by-side compari-

son of both data sets. Scaling adjustments were made accordingly,

based on the data source, that is, arcsinh cofactor 5 for the MC data

(which is most commonly used) and biexponential transformation set

to ensure all events were displayed off the axes for the FSFC data.

Differences in the distribution of the negative populations resulting

from contributions of spillover spreading errors between
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fluorochromes necessitated fluorochrome-specific biexponential

transformation.

2.5 | Analysis using the astrolabe cytometry
platform

The Astrolabe Cytometry Platform is a commercially available cloud-

based platform for the automated and standardized analysis of flow

and MC data [54]. Astrolabe was applied to the autofluorescence

extracted FSFC data and bead-normalized MC data. Astrolabe

preprocessed the FSFC data using the logicleTransform function from

the flowCore package [55] followed by a FSC/SSC gate removing

debris and doublets, and a Live/Dead gate removing dead cells. The

platform preprocessed the MC data using an arcsinh transformation

with a cofactor of 5 followed by a 140/151/165/175 gate removing

beads, a DNA/Event Length gate removing debris and doublets, and a

In115Di removing dead cells. Astrolabe then labeled 24 canonical cell

subsets, mirroring the manual gating strategy proposed for manual

gating of the MC data (Figure S1C). The labeling strategy was adapted

to the FSFC data by adding SSC in the separation of myeloid and non-

myeloid cells.

We inspected marker staining and variability using the average

overlap frequency (AOF) [56] to assess staining quality based on a

bimodal distribution model of marker intensity and also employed the

coefficient of variation (CV) to compare marker intensity noise

between the instruments.

2.6 | Unsupervised analysis

Both the FSFC and MC data were analyzed with the OMIQ platform

(https://www.omiq.ai/) utilizing the following pipeline. First the scal-

ing was adjusted to ensure at least 99% of events were on scale for

each channel and the arcsinh cofactor was set at 6000 to ensure the

negative population was unimodal around 0 for the FSFC data and

5 to ensure dim populations were visible for the MC data. The data

were gated manually by the manufacturers' recommended strategy to

remove doublets, debris, and dead cells and the data were then

subsampled to the “clean” population. The flowCut algorithm [57]

was used to ensure there was no shift in signal across the time param-

eter (flowCut settings are as follows: all files used, all fluorescent

channels and time selected, Segment = 500, Max Contin = 0.14,

Mean of Means = 0.15, Max of Means = 0.22, Max of Valley

Height = 0.1, Max Percent to Cut = 0.3, Low Density Removal = 0.1,

no Gate Line set, Max Channel for Mean Range = 1, Max Channel for

Mean SD = 2, no Flagged Rerun, Uniform of Time Check = 0.22,

Remove Multi SD = 7) - all files passed flowCut analysis with the

listed settings. Next, a UMAP analysis [46, 58–60] was performed

with the following settings to visualize the different sub-populations

in distinct groups: all files used, all phenotype parameters used, includ-

ing ICOS and PD-1, except for CD95 in the FSFC files, Neighbors= 80,

Minimum Distance = 0.7, Components = 2, Metric = Euclidean,

Learning Rate = 1, Epochs = 250, Seed = 6695 (FSFC) and 1337

(MC), and Embedding Initialization = spectral. After the UMAP analy-

sis, FlowSOM [61] was used to cluster the data. FlowSOM settings

for both sets of files are as follows: all files used, clustering features

CD16, CD27, CD14, CCR7, CD45RA, CD127, CD28, TCRgd, CD123,

CD25, umap_1, and umap_2, 625 clusters with xdim = 25 and

ydim = 25, rlen = 10, Distance Metric = Euclidean, Consensus Meta-

clustering k = 85, Seed = 1531 (FSFC) 7829 (MC). After clustering,

the metaclusters were combined into commonly recognized biological

populations if they expressed a recognized phenotype. A set of

heatmaps was generated comparing the populations that existed in

both datasets and a set of plots showing the expression levels of each

marker across all UMAP islands is also included. The combination of

these methods allows the visualization of unsupervised clustering on

the UMAP groups, easy phenotyping of each population via the

heatmap, and an easy way to see expression levels of populations on

the continuous variable UMAP plots.

3 | RESULTS

The data sets obtained when running the 32-marker panel in each

platform, FSFC and MC, were initially analyzed independently to

assess data integrity and staining quality. For the FSFC and MC data,

signal stability during the acquisition (time vs. parameter) and pres-

ence of signal for major markers across all donors were assessed

(Figure S1A). While there was some slight signal variation over time in

the FSFC data, likely related to the time of the sample boost, the MC

data shows more variability, particularly in Donors 5036 and 4392. In

addition to variation in MC event rate that are due to micro-clogs

from sample quality, there can be a variation in MC event rate due to

sample settling in the Pneumatic Sample Introduction (PSI) system.

While the PSI does have a stirring mechanism, it may be less efficient

than that on the FSFC, especially since MC runs at a slower event rate

and therefore has a longer per-sample acquisition time.

For FSFC, unmixed data was evaluated for any obvious unmixing

errors that led to visualization artifacts and single versus multicolor

data were compared to ensure minimal loss of staining resolution due

to spillover spreading (Figure S1B). For the MC data, an internal con-

trol was run (Figure S1C) and it was verified that the pattern for all

markers was consistent with historical data obtained at the HIMC.

We concluded from these steps that both sets of data adhered to

quality standards established for each platform and were therefore

suitable for comparison.

To perform the comparative analysis of the results obtained in

both platforms three approaches were taken. The first approach was

to visually compare the data using traditional manual gating,

inspecting the data to ensure all expected biologically relevant

populations could be identified using the specific markers employed

in the panel and to investigate any observations where there were

apparent differences in either the qualitative, or quantitative, results

between the two platforms. The second approach was to use the

Astrolabe Cytometry Platform, a cloud-based service that
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automatically identifies canonical cell populations, to do an in-depth

quantitative comparison using a standardized method identical

between the two data sets. Finally, commonly used, high-dimensional

unsupervised algorithm pipelines (FlowSOM and UMAP) were used to

further explore similarities, and differences, on the data obtained from

these two data sets [46, 58, 59].

3.1 | Manual gating

For manual/visual inspection, the gating strategy established by the

authors at the HIMC to QC the MC panel performance was used to

assess the ability to identify all expected biological populations for all

donor samples acquired on both platforms. The list of markers, and

the respective subsets identified by these markers, are provided in

Table S1. An example of the gating strategy using representative data

from one donor is provided in Figure S1D,E. Scaling adjustments were

made as explained in the Methods section. Of note, visual comparison

of the data/ patterns needed to consider the difference in distribution

of the “negative” populations between the two platforms, that is, lack

of negative values in the MC data in contrast to having a population

distribution centered around 0 with negative values in fluorescence-

based data. In this study, neither the MC nor the FSFC data included

Mass Minus One (MMO) [62] or Fluorescence Minus One (FMO) [63,

64] controls respectively, since the subpopulations identified by the

markers included in the panel for each platform have been extensively

characterized and it had been determined that these were not neces-

sary to establish gate positioning. Internal controls such as differences

in pattern or distribution across cell subsets or donors were used, if

necessary, to determine gate position. The main goals of the manual

gating evaluation of the two data sets were to (1) assess whether the

same populations could be identified, starting with the main cellular

subsets (monocytes, T cells, B cells, natural killer cells (NKs), and den-

dritic cells (DCs)), then phenotyping those compartments using the

additional markers in the panel, (2) evaluate marker expression pat-

terns and differences across donors, and (3) determine if the ranges of

the frequencies of the main subsets for each donor were similar. As

there were no replicates of the samples, the differences of population

frequencies between the platforms assessed from donor pairs were

evaluated qualitatively, not statistically, to identify population

differences.

The data from both platforms identified all the expected

populations in all donors (Figure S1D,E). Many expression patterns

were very comparable between the two data sets, for example the

pattern and level of expression of the gamma delta T cells; the expres-

sion pattern of CCR7 and CD45RA in CD4+ and CD8+ T cells, all-

owing for similar identification of naïve, memory, and effector

memory subsets; the IgD versus CD27 expression, leading to similar

distribution of naïve and memory B cells subsets; and the CD16 ver-

sus CD56 patterns in the NK compartment. Importantly, differences

in the abundance of a given subset or marker expression patterns

across donors were similar on both platforms. For example, and as

shown in Figure 1A, in the NK cell compartment, both data sets

highlighted differences across donors in the level of expression of

both CD161 and CD57, as well as in co-expression between these

two markers. In addition, when comparing cellular frequencies in indi-

vidual donors, there was, for the most part, a high level of agreement

between the two sets of data (Figure S2A–E).

We identified, however, patterns that were visually different

between the two platforms. For example, the distribution of CD127

and CD25 that allows regulatory T cell (Treg) identification, or the

CD38 versus CD24 pattern in B cells, were dissimilar and appear to

be related to differences in the resolution/brightness of the anti-

bodies used for CD25 and CD38 respectively (Figure S1D,E). As

expected, in cases where staining and population pattern differences

were observed through the visual inspection process, differences in

the frequencies in the donor pairs were also noted (Figure S3A,B). In

general, these differences appeared to be associated with the resolu-

tion of the markers defining a specific subpopulation, or markers

defining the upstream gates of those subpopulations. In some

instances, the differences for some populations/markers were specific

to a donor, and not observed across all donors. For example, in donor

5036, the resolution of the CD14+/-CD33� lineage population was

lower in the MC data compared to the FSFC data, and the gating

based on these two markers led to major differences in the percent-

ages of downstream populations like CD20�, CD20+CD19+, and

CD56brightCD16� (Figure S3A). Other donors did not show this level

of discordance within these subsets. In contrast, there were several

subpopulations that showed similar inconsistencies between the two

platforms across multiple donors, and were mainly associated with

dimly expressed antigens, such as PD-1 and ICOS, chemokine recep-

tors CXCR5, CCR6, and CXCR3 or CD127 and CD161 expression on

T cells. An example of this finding is presented in Figure S3B where

the lack of resolution of CXCR5 on non-naïve CD4+ T cells in the MC

data on donor 4392 impacts not only the percentage of this popula-

tion, but also the subpopulations of both the CXCR5� and CXCR5+

gated populations defined by CXCR3 and CCR6.

The distribution of markers expressed at low levels were assessed

in combination with other markers with which they could be co-

expressed across different cellular compartments and across all

donors. One example of this analysis/visualization strategy is shown

in Figure 1B for ICOS. ICOS expression was visualized in all major T

cell compartments (B and NK cell compartments had no signal for this

marker), allowing clear confirmation of its expression, even if at very

low levels. On T cells, co-expression with CD28, and specifically in

CD4+CD8� T cells, made it easier to visualize and confirm presence

or absence of expression. Using this approach, comparison of expres-

sion across donors showed similar trends between the two data sets

even if there were differences in the frequencies (e.g., donor 4559

had a higher level of expression compared to all other donors).

3.2 | Automated cell subset identification using
astrolabe platform

Manual gating depends on an experienced flow cytometrist's exten-

sive knowledge of the biology and staining patterns of the markers

employed with regards to setting the thresholds on each marker. This
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F IGURE 1 Visual comparison of population's patterns and resolution in FSFC and MC data. (A) Dot plots showing CD57 (x-axis) versus
CD161 (y-axis) expression in NK cells for all five donors. Data was gated on singlets/lymphocytes/CD14�CD33�/CD3�/CD16+CD56+ as shown
in Figure S1D,E. FSFC data (top row), MC data (bottom row). Different levels of expression of both markers across donors following similar
patterns in both data sets can be seen. (B) ICOS (x-axis) and CD28 (y-axis) expression across different cell compartments. Data from two different
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could lead to variability across samples, and the possibility of missing

relevant subsets which could be identified using a highly complex

panel. Moreover, as previously explained, manual gating of the data

acquired on the MC and FSFC required using different criteria/

strategies to establish the gates as the data presentations and some

of the patterns were different. To address the variability and limita-

tions introduced by manual analysis, a second round of analysis was

performed using the Astrolabe Cytometry Platform, which is a stan-

dardized platform for the analysis of both flow and MC data [54].

The first goal using this analysis pipeline was to assess quantita-

tive differences between the 2 data sets. The frequencies for the

major compartment subsets (T, B, NK, NKT, and monocytes) from all

cells, across all donors, matched well between the instruments, with

Pearson's ⍴ = 0.98 (Figure 2A). Notably, the analysis highlighted an

aberrantly high population of NKT cells (CD3+CD56+) in donor 4395

in both data sets (35% in FSFC, 34% in MC, compared to less than 5%

for all other donors) as shown in Figure 2A. This finding was con-

firmed by examining this subset in the manually gated data

(Figure 2B).

Interestingly, if the analysis of the correlation of the cell subset

frequencies was done excluding the T cells, to better evaluate cellular

subsets with lower frequencies, a lower correlation was found

(⍴ = 0.89) (Figure 3A). It appeared that this could be caused by lower

frequencies of NK cells in the MC data compared to the FSFC data.

This was confirmed by visual inspection of the plotted data of CD16

versus CD56 in the CD33�CD14�CD3� cells from each instrument

(Figure 3B).

We next evaluated the frequencies of subpopulations under the

major canonical compartments. High correlation values were obtained

when examining subsets within the T cell (CD4 and CD8 naïve/mem-

ory cells) (⍴ = 0.97) (Figure 4A) and NK cell (⍴ = 0.99) compartments

(Figure 4B). For subsets in the B cell compartment, the correlation is

also high (⍴ = 0.99). However, the data generated with the FSFC had

a higher frequency of transitional (CD3�CD19+CD20+CD38+CD24+)

B cells in all donors (Figure 4C). We investigated this finding by

reviewing the data visualization and manual gating. Because clear

identification of this subset relies on optimal CD38 resolution, we

compared this marker's expression pattern and resolution on B cells

(CD3�CD19+CD20+) and NK cells (CD3�CD20�). However, we did

not observe any significant differences that could lead to the discrep-

ancy seen in the frequencies (Figure S4A,B). As CD24 also plays a

major role in defining this subset, we then compared the level of

CD24 expression in the context of CD38 expression to determine

whether the combined expression levels were different between the

two platforms. As can be seen in Supplemental 4C, there is a decrease

in the staining of CD24 across all donors (with varying degree) in the

MC data, not only compared to the FSFC data, but also when com-

pared to the MC QC sample staining. Note that the percentage of

transitional B cell in the MC QC sample is in-line with the values

obtained with the FSFC data. This reduction in the CD24 staining in
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F IGURE 2 (A) Correlation of major cellular
subsets frequencies based on analysis using the
astrolabe cytometry platform. Frequencies of
basophils (light pink), B cells (yellow), monocytes
(green), NK cells (light green), NKT cells (blue),
plasmacytoid dendritic cells (purple), and T cells
(pink) from FSFC (x-axis) compared to MC (y-axis)
across all donors (4392 circle, 4395 triangle, 4559
square, 4604 cross, and 5036 crossed square). A
high frequency of NKT cells was identified in
donor 4395 (blue triangle circled) in both sets of
data. (B) Dot plots gated on singlets/live/
CD14�CD33� cells showing CD3 (x-axis) versus
CD56 (y-axis) for all five donors. NKT cells were
identified as CD3+CD56+. A very high frequency
of those cells was observed in donor 4395, in
contrast to what was seen in other donors,
confirming the findings from the astrolabe
analysis.
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the MC data appears to have contributed to the differences in the

percentage of transitional B cells. Of note, the approach that was

taken for the manual gating strategy was to keep the gate positioning

static across samples. Another approach would have been to adjust

the gate positioning for each donor to better account for differences

in levels of expression that could have led to differences in the per-

centages reported in Figure S4C. However, the discrepancies

obtained from the Astrolabe analysis are independent of these differ-

ent manual gating strategies.

In contrast to the high correlation observed in T, B, and NK cell

subsets, the correlation for myeloid compartments was very low for

all donors (⍴ = 0.27) (Figure 5A). This result confirmed previous obser-

vations made during the manual gating of the data. In the MC data

the resolution of CD14 and CD16 in monocytes, that were identified

as CD33+ cells, exhibits a very different pattern for the classification

of classical, non-classical, and intermediate subsets compared to the

FSFC data (Figure 5B).

3.3 | Staining quality assessment using average
overlap frequency analysis

To assess the differences in staining quality and population resolution

from the manual gating observations, we chose to use the Average

Overlap Frequency (AOF) metric. AOF is an efficient semi-

quantitative metric to evaluate and quantify the robustness of staining

[56]. AOF models marker distributions as bimodal. In other words, it

assumes clear positive and negative peaks. For each (sample, marker)

pair, the metric can range between 0% and 100%, where 0% indicates

good resolution between positives and negatives, and a decrease in

this separation will lead to % increases. Based on the original AOF

paper (Figure 2C in Ref. [56]), the AOF threshold was set at 15%,

which was the highest reported AOF in that study in which the posi-

tive population was still resolvable. Markers above the 15% threshold

are flagged as having potential staining/resolution issues. Potential

reasons for a high AOF include: (a) sample staining or reagent issue,

(b) clustering algorithm issue, (c) biological expression of the marker is

continuous (there is no distinct positive peak), and (4) the marker iden-

tifies a rare population which the metric could not identify. Manual

validation of results is required before making any conclusive deci-

sions regarding data quality using this method. The results of the AOF

measurement for every marker included in this panel across all donors

are presented as a heatmap in Figure 6A. We found that AOF values

were qualitatively similar between the two data sets and that dim

markers (PD-1 and ICOS primarily) that did not have a clear positive

population were flagged, as expected. To identify potential discrepan-

cies, we examined the AOF correlation across all samples and all

markers between the data sets (Figure 6B). This analysis indicated

that, overall, there was a good correlation (⍴ = 0.88), but for certain

markers in specific donors there were significant discrepancies. To
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F IGURE 3 (A) Correlation of lower frequency
non-T cell subsets frequencies based on analysis
using the astrolabe cytometry platform.
Frequencies of basophils (light pink), B cells
(yellow), monocytes (green), NK cells (blue) and
plasmacytoid DCs (pink) from FSFC (x-axis)
compared to MC (y-axis) across all donors (4392
circle, 4395 triangle, 4559 square, 4604 cross, and
5036 crossed square). Lower correlation of

frequencies of NK cells between the platforms
(offset from the diagonal) as indicated by the blue
symbols circled in the graph. Higher frequencies
were detected in the FSFC compared to the
MC. (B) Dot plots showing classical NK cells
(CD16+CD56+) gated on singlets/live/
CD14�CD33�/CD3� cells for all five donors,
which represent the low correlations seen in
Figure 3A.
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F IGURE 6 Average overlap frequency (AOF) analysis. (A) Heatmap showing AOF for all markers included in the panel (columns) across every
donor (rows) for the FSFC (top) and the MC (bottom) data. Low AOF (light colored cells) indicate good resolution of the positive population
whereas high values (dark cells) indicate poor resolution. Note the high level of agreement of AOF values between the two data sets. (B) High
correlation between AOF values from FSFC (x-axis) versus MC data (y-axis), (⍴ = 0.88). (C) List of sample and marker pairs that are below the 15%
threshold for one instrument but above that value for the other. Orange denotes greater than 15%. (D) Comparison of CD127 distributions
between the two instruments. For a direct comparison the data intensity was normalized (x-axis, transformed intensity) as well as the cell
frequency (y-axis, density). In the FSFC data the distribution is bimodal with a strong positive peak. On the other hand, in the MC data the
positive peak is more of a smear, especially in donor 4392.
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further examine these discrepancies, the sample and marker pairs that

were below the 15% threshold for one instrument but above that

value for the other were evaluated. These values are summarized in

the table in Figure 6C, where orange denotes greater than 15%. Upon

closer manual inspection, several markers have consistent differences

in distribution between the instruments. For example, the distribution

for CD127 (Figure 6D) in the FSFC data is bimodal with a strong posi-

tive peak. On the other hand, in the MC data the positive peak is more

of a smear, especially in donor 4392. Two other markers that

exhibited a similar trend were CCR6 and CXCR3. As can be seen in

Figure S5, the CCR6 and CXCR3 markers in the FSFC data exhibited a

clearer positive/negative distribution across all donors compared to

the MC data.

3.4 | Quantitative marker variability comparison

AOF assesses staining quality based on the bimodal distribution

assumption. To approach potential variability assuming a continuous

distribution, we utilized the coefficient of variation (CV), which is
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F IGURE 7 Coefficient of variation (CV) analysis. (A) Comparison of CD56 distribution between the two instruments. Data was normalized as
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pair. A linear regression model was fit to the data to identify outliers (red and blue dots, respectively). (C) Comparison of PD-1 (top) and ICOS
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defined as the standard deviation divided by the mean. The CV is a

standardized measure of dispersion and an accepted measure for bio-

logical and technical noise [65].

In the context of the instrument comparison, we calculated the

CV for the positive peak of every marker, which was defined based on

the AOF, per the methods described in [56]. An example of the visual-

ization of this analysis that allows to identify the positive and negative

peaks for each marker, independent of their distribution, in the data

for each instrument is presented for CD56 in Figure 7A. We then

compared the CVs from each of the data sets using a dot plot, where

each dot is the CV of the positive peak of a marker in one of the

donors (Figure 7B). Of note, the CV is scale-sensitive, which leads to

differences in actual values between the FSFC and the MC. To quan-

tify which (sample, marker) pairs differ between the instruments, we

fit a linear regression model between the MC and the FSFC and vice

versa. (Sample, marker) pairs with a standardized residual greater than

2 are marked in red (FSFC) and in blue (MC). Out of the 155 pairs

compared, six were identified as having higher CVs in the MC data
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(blue dots). Those correspond to ICOS in all 5 donors and PD-1 in

donor 4392. Both are dim markers and have a spread distribution in

the MC data making it challenging to identify a clear positive peak

(Figures 1E and 6C).

Another 6 pairs were flagged in the FSFC data (red dots): CD127/

donor 4559, CD45RA/donor 4559, CD57/donor 4395, HLA-DR/

donor 4395, and PD-1/donors 4604 and 5036. Closer examination

and reviewing of the manual gating did not identify any staining issues

with these pairs and therefore were classified as false positives

(Figure S6).

3.5 | Data analysis using high-dimensional
unsupervised pipeline

Our third approach to comparing the performance of this panel

between platforms was to utilize an unsupervised algorithm pipeline,

as this is likely a common approach to be applied by users of both the

FSFC and MC platforms [2, 66]. Dimensionality reduction, combined

with clustering algorithms, have been successfully used for the data

analysis of complex datasets from both mass and fluorescence cyto-

metry platforms [46, 60, 66, 67]. Here, we chose to use Uniform Man-

ifold Approximation and Projection (UMAP) [68] in combination with

FlowSOM [61] for identifying the major canonical subsets defined by

the HIMC manual gating template. To effectively enable analysis with

an unsupervised algorithm pipeline, settings for both UMAP and clus-

tering need to be calibrated for the number of events and complexity

of the panel, and settings from one technology are transferrable to

the other. It is important to increase the number of clusters beyond

the estimated number of populations to ensure each population is

clustered appropriately and account for small clusters, such as the

innate lymphoid cells (ILCs) identifiable in this panel. It should also be

noted that differences in the pre-pipeline cleanup steps, such as dou-

blet and live/dead discrimination, mean that some unknown

(unassigned) populations may differ between the two technologies.

The UMAP of the clusters displaying the canonical subsets

described in the previous two approaches is presented for the FSFC

(Figure 8A) and MC (Figure 8B) data. The identification was highly

conserved between the two platforms for all the major subsets: CD4+

subsets including CD45RA+ and CD45RA� T regs, CD8 subsets, B

cells (and plasmablasts), TCRγδ, NKs, monocytes, DCs, pDCs, Baso-

phils, and ILCs. UMAP was able to separate the samples from each

platform into two dimensional representations that contained nearly

equivalent groups of events that conserve the global structure present

in the datasets. For example, CD4+ NK T cells were next to the CD4

island, DCs proximity to pDCs is similar, Monocyte transition from

Classical to Non-Classical is represented, and ILCs are very close to

NKs (in the NK island) in both datasets. (Figure 8A,B) A marker

expression level heatmap comparison of these subsets is shown in

Figure 8C. Overall, the heatmaps demonstrate highly reproducible

data between the two platforms. In a few instances (examples

highlighted in red boxes) there are differences between the two plat-

forms. However, this is most likely due to differences in the

frequencies of the positive events above background, that is, the

median for the platform that has the lower frequency of positive

events will be negatively impacted by the disproportionate contribu-

tion of the negative events to the median value. For example, differ-

ences can be seen in the expression of PD-1 on CD8 EM cells, but not

on the expression of PD-1 on CD4 NKT cells, with the expression

level of PD-1 on CD8 EM cells being higher on FSFC (red boxes). In

this case the majority of events are positive for PD-1 on the NKT cells

in both platforms, whereas the frequency of PD-1 positive events on

the CD8 EM cells differs between the two platforms, with MC having

a higher percentage of negative events contributing to having a lower

median (dimmer shade of blue). Using a density UMAP, the abnormal

NK population in donor 4395, which was noted in the two previous

analysis approaches, can also be easily identified in both platforms

(Figure 8D).

However, some differences in the pipeline results are visible. In the

myeloid compartment, there are two CD33+CD14dim/� populations in

the FSFC data that are absent in the MC data, as well as an additional

CD56dimCD16�CD38+ population in the FSFC data (identified with an

arrow in Figure 8A). Further inspection revealed the lower resolution of

the myeloid markers CD14, CD16, and CD33 in the MC data made

assigning them to a known population more difficult. These differences

are consistent with the observations made when utilizing the other data

analysis approaches described above. Examples of density UMAPs of

markers where differences in the AOF values were found in previous

analyses (CD127, CCR6, CD38, CXCR3, CD57, CD45RA, PD-1, and

ICOS) are also displayed in Figure S7.

4 | CONCLUSION AND DISCUSSION

For the most part, the qualitative and quantitative results obtained in

the two platforms, using multiple complimentary analysis approaches,

are comparable. However, some differences were noted, and these

were associated with differences in the resolution of the markers used

to identify the monocytes and markers expressed at very low levels in

certain donors.

Differences in marker resolution can be related to differences in

clone performance, or if using the same clone, differences in perfor-

mance between the reagents used in MC versus FSFC. Ideally, all

clones should have been kept consistent across markers but there

were constraints at the time when the study was done in the availabil-

ity of fluorochrome-conjugated antibodies for some of the clones

used in the MC panel, and overall when designing multicolor panels of

this level of complexity.

An important factor to be able to assess comparability of the

results obtained by these two different platforms was the use of dif-

ferent analysis strategies, from traditional manual gating to the use of

sophisticated clustering algorithms and the inclusion of different met-

rics to assess resolution of each individual marker. All these analysis

strategies are complimentary and, in our opinion, are needed to have

a full assessment of the quality of the data and ability to robustly iden-

tify different cell subsets.
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Based on these findings, it is feasible for a high-dimensional panel

developed for MC to be converted to a fluorescence-based panel

when utilizing FSFC, at least for surface immunophenotyping panels.

Additional studies will need to be done to assess equivalency for

applications requiring intracellular (cytokine, signaling) staining.

There are advantages and disadvantages to each of these tech-

nologies that need to be considered when using one or the other. For

example, sample throughput is a major consideration for MC, while

the need for bar coding is a consideration for FSFC, as this can be

more challenging in the fluorescence space of a high-dimensional

panel. Another important consideration is the technical expertise and

maintenance required for operating a mass cytometer compared to a

fluorescence based FSFC such as the Cytek® Aurora used in this

study. Generally, signal spillover is a larger concern in FSFC than in

MC, and therefore there is the need for accurate single-color controls.

However, recent publications have reported that signal spillover due

to issues such as metal oxidation, abundancy related spillover, and

metal impurities can impact data quality and interpretation in MC

[52,69]. Efforts have been employed using single metal bead based

controls [52], unlabeled competitor antibody [69], or statistical

approaches [70] for compensating crosstalk between channels to

improve overall data quality.

The desire to sort the subpopulations identified through high-

dimensional phenotyping for further downstream studies, such as sin-

gle cell RNAseq (SCRNAseq) or functional studies, is common and

possible using FSFC, but not MC. Other considerations based on the

inherent differences in these technologies are presented in Table 1.

The important take home message from this evaluation is that

panels previously designed for MC with 40 biomarkers, or less, can be

effectively implemented utilizing FSFC with comparable results. It is

also important to note, common to both technologies, the importance

of careful experimental design and the use of appropriate controls to

ensure the accuracy of the results [3, 35, 39, 40, 48, 50, 51, 56, 60,

62, 71–73]. With these technological tools, proper experimental

design, and quality control, there is much to be learned using high-

dimensional panels for assessing the immune network associated with

cancer, health, and disease.
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