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The goal of this article is to discuss the possible contribution to antiepileptic effects of the vagus
nerve stimulation (VNS) from the functional connectivity between the cortex and internal organs.
According to our previous work, this connectivity is particularly prominent during sleep, the brain
state when epileptic activity is prominent, as well. As such, the relationship between the brain and
the viscera needs to be put into the equation when considering VNS as a treatment for epilepsy.

Vagus nerve stimulation is widely used as a seizure-preventive action in many types of otherwise
incurable epilepsy and is extensively studied for treating other conditions ranging from rheumatoid
arthritis to depression (Vonck et al., 2001; Groves and Brown, 2005; Yuan and Silberstein, 2016;
Dibue-Adjei et al., 2019; Noller et al., 2019). It is well-known that vagus nerve is engaged in the
bidirectional information transfer between the internal organs and the brain, but how changes
in activity going along visceral pathways may be related to paroxysmal events occurring in
various brain areas remained unclear. The available literature describe several ideas proposed to
explain possible seizure preventing action of VNS, which mainly based on molecular mechanisms
of synaptic transmission in the central nervous system. Although neuronal desynchronization,
hippocampal plasticity, anti-inflammatory immune changes, and changes in neurotransmitter
concentrations are all currently considered as possibly involved in its antiepileptic effects (Yuan
and Silberstein, 2016), none of the existing theories explains the impressive variety of demonstrated
effects of VNS. We are offering for discussion another suggestion, based on the role of the vagus
nerve in autonomic regulation and on the recent results of sleep studies.

In this opinion article we do not present any new experimental results, but only aim to
provide a possible link between four seemingly unrelated clusters of well-established physiological
observations, which, being considered together, might offer new directions for thinking and
investigation of VNS mechanisms.

First, there is a well-established connection between epileptic seizures and the state of sleep (e.g.,
Shouse et al., 1996; Herman et al., 2001; Dinner, 2002; Combi et al., 2004; Pavlova et al., 2004;
Durazzo et al., 2008; Hofstra and deWeerd, 2009; Kothare and Kaleyias, 2010; Mirzoev et al., 2012).
Ictal activity is generally most frequent in slow-wave sleep and during transition from wakefulness
to sleep, but is very rarely present in REM-sleep. Approximately half of all recorded seizures are
happening during slow wave sleep while this state occupies less than one third of circadian cycle
in humans. In addition, it is highly likely that some seizures happening during sleep may stay
undetected. We group these observations in the first cluster of the data.

A second cluster of observations to consider involves another generally recognized feature
of many types of epilepsy—the epileptogenic effects of rhythmic stimulations delivered
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to various sensory systems (see e.g., Kaplan, 2003; Guerrini
and Genton, 2004; Hirsch et al., 2004; Michelucci et al., 2004;
Wilkins et al., 2004; Parra et al., 2005). Ictal activity provoked by
rhythmic exteroceptive stimulation may have similar mechanism
to physical resonance systems. Theoretically, any circuit with
positive feedback has its own internal resonance frequency.
Rhythmic external stimulation, even relatively weak, would
initiate strong oscillations if the frequency of this stimulation
approaches this resonance frequency. In the nervous system, it
would manifest as paroxysmal activity. Neuronal circuits with
feedback are common features at all levels of the nervous
system, and resonance effects in the nervous system were indeed
demonstrated (see e.g., Hutcheon and Yarom, 2000; Herrmann,
2001). In addition, widely accepted mechanism of pathologically
elevated excitability in epileptic focus can be a part of this
mechanism as it would be able to increase probability of the
weak rhythmic afferent signal to reach thresholds for such
resonant oscillations.

Resonant model of epileptogenesis implies the presence of two
components. The first component is the local neuronal network
with positive feedback, which has the fundamental frequency of
oscillation and is susceptible to paroxysmal activity. The second
component is the rhythmic afferent flow directed to that network
that may cause the resonant activation. Neither of these two
components can provoke an ictal activity alone.

Anticonvulsant drugs can elevate the activation thresholds
of the resonant network, diminishing responses to the afferent
signals, but are not able to eliminate the incoming signals driving
the network into ictal activity.

It might seem that resonance evoked by afferent inputs
cannot be a mechanism of the previously mentioned epileptic
activity during sleep. In classical neuroscience paradigm, sleep
is considered as the state when brain is sensory deprived
and any external rhythmic stimulation is excluded. However,
recent sleep studies offer an alternative source of rhythmic
sensory afferent signals directed to cerebral cortex, that are
not attenuated, but likely to be enhanced during sleep. We
previously demonstrated that during sleep cortical sensory areas
begin receiving information coming from various visceral organs
(Pigarev, 1994, 2013; Pigarev et al., 2013; Pigarev and Pigareva,
2014, 2018). Experiments that demonstrated propagation of the
visceral afferent signals to the cerebral cortex during sleep, were
performed on gastrointestinal and cardio-respiratory systems,
and their work is inherently rhythmical (Pigarev, 1994; Pigarev
et al., 2013; Lavrova, 2019; Lavrova et al., 2019). Thus, nervous
signals in the involved sensory pathways would be rhythmically
organized during sleep. These results of sleep studies comprise
the third block of the relevant observations.

Observable rhythmic motility of the visceral organs generally
has relatively low frequencies in comparison to frequencies of
exteroceptive sensory stimulation reported as epileptogenic (10–
50Hz). However, nervous signals from these organs transferring
along the nerves might have another organization in time, and
more complicated frequency spectrums. Namely, these nervous
signals can interfere with resonant frequencies of different
brain regions leading to ictal events. In addition to that, one
should remember that not only the exact correspondence of

frequencies leads to a resonance, as resonance is possible for
both the fundamental frequency and for its harmonics and sub
harmonics. Afferent information flow from some internal organs
may have frequency pattern close to the resonant frequency of
a particular brain circuit susceptible to paroxysmal events. In
our opinion, during sleep epileptic activity could be initiated
in such area by the rhythmical visceral afferentation, similarly
to generation of such events by rhythmical exterosensory
stimulation in wakefulness. Indeed, registration of vagal electrical
activity during natural sleep in cat demonstrated synchronized
appearance of spindle-like activity in vagus itself and in a
range of cortical and subcortical regions receiving vagal input
(Leichnetz, 1972).

Assuming that in some cases epileptic events are generated
in response to resonant frequencies of visceral afferentation,
antiepileptic effect of VNS may have a simple explanation.
For therapeutic purpose, stimulation usually is applied to
the left cervical vagal trunk that contains fibers from the
recurrent laryngeal, cardiopulmonary, and subdiaphragmatic
vagal branches. At this level, roughly 80% of the vagal fibers
are afferent, and 20% are efferent (Krahl, 2012). With such fiber
composition, VNS would change the pattern of visceral activity
transmitted to the brain by the vagus nerve, and is likely to
cause prominent reorganization of activities within the crucial
structures receiving vagal afferentation and altering further
visceral input, such as nucleus tractus solitarius, parabrachial
nucleus, and hypothalamus.

The role of VNS as disrupting the afferent flow to the regions
susceptible for convulsive activity is in good accordance with
the ability of a surprisingly wide range of frequencies of VNS
to reduce epileptic activity. Frequencies from 1 to 143Hz were
used for this purpose, although frequencies above 50Hz are not
recommended in clinical practice as potentially damaging to
the vagus nerve itself (for details see Terry, 2014). It was also
proposed that stimulation of the afferent vagus nerve fibers can
change the fundamental resonant frequencies of the brain circuits
itself (Fanselow, 2012).

Furthermore, stimulation of the efferent vagal fibers also alters
the frequencies of rhythmically working visceral organs, such
as heart, stomach and intestine (e.g., Martinson, 1965; Chang
et al., 2003; Osharina et al., 2006; Tong et al., 2010; Bonaz et al.,
2016; Frøkjaer et al., 2016). Changes of rhythmicity of the various
visceral organs elicited by stimulation of the vagus efferent fibers
and altering activity of the visceral organs should modify the
frequency composition of the visceral afferent signals coming
to the brain areas not only by vagal, but also by spinal cord
pathways. All of the changes described above are expected to
move visceral afferent frequencies out of the resonance range,
thereby blocking paroxysmal activity. These visceral effects of
VNS we present as the fourth cluster of the relevant observations.

Taking all the above mentioned into account it seems
important to study background spike firing in the vagus nerve
during wakefulness and sleep, and the effect of VNS on this
firing. The former subject was actually investigated in one study
in cat. It was shown that during natural sleep activity in vagus
nerve itself and in a range of cortical and subcortical regions
receiving vagal input demonstrated spindle-like synchronized
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pattern, and prominent amplitude and frequency differences
were noted between wakefulness, slow wave and REM sleep states
(Leichnetz, 1972). However, the technique used at that time (ink
electroencephalography) did not allow observing single spikes
and only the integrated power of spike activity was recorded.
Nevertheless, the results obtained by Leichnetz revealed that
circadian dynamic is indeed present in vagal activity. Ramet
et al. (1992) also indirectly observed increased vagal activity
during sleep in humans. However, to the best of our knowledge,
this topic has not been studied in detail using contemporary
techniques. Such studies would be instrumental in finding the
optimal parameters of VNS.

This opinion may meet disagreement based on a doubt
concerning the increased involvement of the cerebral cortex
in the processing of visceral information during sleep. Our
view is based on electrophysiological experiments performed in
rabbits, cats, and monkeys (see for review, e.g., Pigarev, 2014;
Pigarev and Pigareva, 2014). However, results of these studies
are not widely known yet, most likely because their subject,
being located between three very different disciplines—classical
sensory physiology, physiology of the visceral systems and sleep
research, usually slips attention of the corresponding three
groups of researchers. Recently several independent laboratories
started demonstrating similar results. Lecci et al. (2017) found
the relationship between slow periodicity in the cortical EEG
during sleep and heart rate variability. In experiments combining
functional MRI and electrogastroscopy the reflection of slow
gastric rhythms in cortical sensory areas was observed in
humans (Rebollo et al., 2018). There is also a growing body
of evidence pointing to the link between visceral abnormalities
and psychiatric disorders. For example, it was proposed that
degeneration of cells in the intestinal enteric nervous system
might have causal link with the following appearance of
Parkinson disease (for a review see e.g., Smith and Parr-
Brownlie, 2019). Fatal familiar insomnia syndrome, which leads
to progressive inability to sleep, also results in severe autonomic
dysfunction finally finishing by death (Lugaresi and Provini,
2007). It is generally believed that insular, orbitofrontal and
medial prefrontal areas are directly involved in autonomic
regulation (Neafsey, 1990; Ongür et al., 1998; Ongür and Price,
2000; Nieuwenhuys, 2012), but at the same time they are known
to take part in regulation of the sleep-wake cycle (Saper et al.,
2010; Chen et al., 2016). Significant increase in neuronal activity
associated with slow waves during sleep was found in the inferior
frontal, medial prefrontal, posterior cingulate areas and the
precuneus (Dang-Vu et al., 2008). The overall, it was found that
reorganization of the interneuronal connections during wake
to sleep transition leads to formation of new cortical neuronal
networks (Larson-Prior et al., 2011).

One may argue that VNS is also efficient in wakefulness.
Influence of VNS in wakefulness can be understood taking into
account that seizures often start in the high order associative
cortical areas. It is known that local or partial sleep also starts
developing from these cortical areas (Pigarev et al., 1997).
According to the visceral theory of sleep (Pigarev and Pigareva,
2014) development of the local sleep in limited parts of the
cerebral cortex indicates the onset of visceral information transfer

to those cortical areas while behaviorally this state correspond
to wakefulness or drowsiness. In addition, it was reported that
epileptic attacks often happen during developing drowsiness
(Mirzoev et al., 2012).

On the other hand, some cortical areas receiving vagal input,
such as the insular cortex, are involved in the processing of
visceral information in wakefulness as well. The role of the insular
cortex in mediating bodily feelings—“interoceptive awareness”—
has been discussed by Craig (Craig, 2011; for a review of the
insula functions see Nieuwenhuys, 2012). Thus, rhythmic visceral
afferentation definitely reaches insular cortex in wakefulness,
and “visceral” mechanism of epileptogenesis may work through
the insular network not only during sleep. However, we have
recently reported the prevalence of insular neurons responding
to non-noxious intestinal electrostimulation in slowwave sleep in
comparison to wakefulness (Levichkina and Pigarev, 2016), and it
is therefore expected that responses of the insular cortex to VNS
can be more prominent in sleep as well.

Finally, it was hypothesized (Morchiladze et al., 2018) that
some mental disorders can be associated with pathological
chronic inactivation of the mechanisms blocking the propagation
of visceral information toward the central nervous system in
wakefulness. As a result, these visceral signals could be added to
the normal exterosensory information flows as noise, disrupting
their normal analysis. If this “noise” has rhythmic structure,
it would be able to evoke seizers in a similar way to the
exterosensory rhythmic signals.

In the context of the probable role of the visceral rhythmic
afferentation in genesis of paroxysmal events it might be
important to analyze the noted comorbidity of epilepsy to a
number of visceral issues such as gastrointestinal bleed, chronic
diseases of cardio- and respiratory systems, pneumonia and
diabetes (Gaitatzis et al., 2004). It is not excluded that described
positive effect of the ketogenic diet for treatment of epilepsy
(e.g., D’Andrea Meira et al., 2019) also can be related to
probable change of some rhythms in gastro-intestinal system and
consequently of frequencies in the visceral afferent messages in
response to the changed food content.

We do not intend to present this “visceral” mechanism
of seizure generation and proposed mechanism of VNS
antiepileptic effect as the only possibility. Obviously different
types of epilepsy are likely to have other mechanisms of seizure
initiation. The goal of our comment is to draw attention
to the additional factor, which has not been considered yet.
Important and unexpected feature of the proposed mechanism
is that theoretically paroxysmal activity may start in a healthy
brain. A deviation from normal activity of, e.g., organs of the
gastro-intestinal or cardio-respiratory systems would lead to an
emergence of signals with pathologic frequency composition
directed to the central nervous system during sleep, with a
possibility to cause epileptic events if these signals happen to be
within the resonant ranges of the particular brain circuits. In light
of that, it seems reasonable, especially in the pharmacoresistent
cases, when no obvious morphological deviations in the brain
tissue were found, to consider paying special attention to the
visceral state of a patient, and particularly to the visceral systems
with clearly rhythmic patterns of activity.
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