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Drug resistance is a major challenge in breast cancer (BC) treatment at present.
Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible
for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs
elimination could reverse drug resistance and improve drug efficacy to benefit BC patients.
Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and
separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic
strategies. Herein, we summarize the principal BCSCs surface markers and signaling
pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT),
endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for
targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention
should be paid to studies on BCSC-targeted strategies to overcome the drug resistant
dilemma of clinical therapies in the future.
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INTRODUCTION

Breast cancer (BC) is one of the most common cancers diagnosed among women and ranked as the
second cause of cancer-related death among women, after lung cancer (DeSantis et al., 2019; Siegel
et al., 2019). There are various types of BC therapeutic strategies, such as breast surgery, radiotherapy
(RT), chemotherapy (CT), endocrine therapy (ET), targeted therapy (TT), and others, which are
based on the types of tumor pathologies. For example, breast-conserving/mastectomy surgery and
adjuvant CT are applied to treat early BCs. Antitumor drugs are utilized alone or in combination to
reduce the risk of BC recurrence. For ERα-positive and Her2-positive tumors patients, hormone
therapy and targeted therapy, respectively, conduce to significant prognosis improvements.
Additionally, chemotherapy is considered the best option in advanced triple-negative BC
(TNBC). These treatment options have contributed to a BC death rate decline over the past
three decades (DeSantis et al., 2019). Hence, therapies improvement is a milestone in BC therapy.

However, many BC patients still experience poor drug response and tumor recurrence in clinical
observation (Harbeck and Gnant, 2017). Some BC cells exhibit intrinsic drug-resistance, while others
are initially drug-sensitive, but acquire resistance to anticancer drugs (Abad et al., 2020). These drug
failures are considered as chemoresistance in BC cells, owing to the survival of a special population of
heterogeneity cells in tumors which possess drug-resistance features (Eiro et al., 2019). These
heterogeneity cells are known as residual disease and can eventually lead to recurrence (Figure 1).

Cancer stem cells (CSCs), which were discovered and developed over the past decades, play a
major role in drug-resistance and relapse of solid tumors (Reya et al., 2001; Clarke et al., 2006).
Besides drug-resistance, previous studies have showed that cancer initiation (Barker et al., 2009),
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progression (Lytle et al., 2018), and metastasis (Oskarsson et al.,
2014) could also be induced by CSCs (Nalla et al., 2019). CSCs
play a similar role in BC. Al-Hajj first isolated BC stem cells
(BCSCs) with specific markers (EpCAM+/CD44+/CD24-) which
have the potential to lead to bulk tumors in vivo (Al-Hajj et al.,
2003). Targeting BCSCs, in any hypotype of BC: luminalA,
luminalB, human epithelial growth factor receptor 2 (HER2)
overexpression, or TNBC, is the key therapy approach to reverse
drug resistance (Dey et al., 2019). Therefore, we need to
understand the role of BCSCs in drug-resistance mechanisms,
which will overcome the drug-resistance problem and promote
BC prognosis.

Here, first we summarize the BCSC markers and signaling
pathways that are possible therapeutic targets for drug resistance.
More importantly, we focus on the mechanism of resistance to
specific drugs, such as anthracycline, taxane, tamoxifen,
trastuzumab, among others. Lastly, novel studies about
emerging therapies of reversing drug resistance by targeting
BCSCs are discussed. We insist that the important
breakthroughs in the field of BCSCs research will help
researchers effectively find and target BC resistance
mechanism and, ultimately, help patients achieve a favorable
prognosis.

CENTRAL SURFACEMARKERS IN BREAST
CANCER STEM CELLS

BCSCs surface biomarkers are utilized for identifying or isolating
BC. However, emerging studies show that different surface
markers determine different BCSCs (Dey et al., 2019;

Sridharan et al., 2019); the functions of BCSCs are based on
the type of markers they contain. The key surface markers of
BCSCs and their functions in BC are listed in Table 1. Novel
drugs are being designed to target these markers for regulating the
activation of BCSCs in order to achieve an efficient response to
anti-BC treatment (Figure 2). Thus, we list the central surface
markers in BCSCs and their known functions in BCSCs
regulation.

CD44
CD44 was initially used to isolate BCSCs from tumors.
Meanwhile, BC cells with an overexpression of CD44
marker, known as BC-initiating cells (BCIC), showed
tumorigenic ability in vivo (Ponti et al., 2005). CD44 is a
cell membrane receptor for hyaluronan acid (HA)
(Bourguignon et al., 2004). HA-CD44 interaction play an
important role in inhibiting metastasis (Lv et al., 2018a;
Bourguignon, 2019), reversing drug resistance (Liu J. et al.,
2019), and suppressing invasion (Sarkar et al., 2019) among
BC cells. For instance, The binding of CD44 and HA activated
c-Src-Twist/miR-10b/RhoGTPase-ROK signaling, that are
associated with the activation of the PI3K/AKT-dependent
invasion and metastasis in cancers (Bourguignon et al., 2010).
Furthermore, the high expression of CD44 is essential for BC
multidrug resistance by regulation of the chemoresistance
receptor through stimulation of signal transducer and
activator of transcription 3 (STAT3) pathway (Louderbough
and Schroeder, 2011). Moreover, the interaction of the cleaved
product of CD44 (CD44ICD) and cAMP-response element
binding protein (CREB) can up-regulate fructose-2,6-
bisphosphatase 4 (PFKFB4) expression, which activates

FIGURE 1 | Self-renew in BCSCs. (A) Anticancer drugs are often utilized for treat BC, efficiently targeting breast cancer cells (BCCs) (blue cells), but not BCSCs
(orange cells). The residual stem-like cell populations can drive a more aggressive BC and trigger recurrence. (B) BCSCs can form a new tissue by the balance of renewal
and divisions.
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glycolysis and impoves BC stemness (Gao et al., 2018). CSCs
are associated with tumor metastasis and invasion.

Conversely, CD44 is also utilized as a targeting marker of HA-
drug-nanocomposite complex. The combination of HA and

docetaxel (DTX), loaded in polymeric nanoparticles (NPs),
improved the effect of drug delivery by targeting CD44+high

BC cells (Gaio et al., 2020). Similarly, a HA-NPs complex
loaded with paclitaxel (PTX) was well designed to target CD44

TABLE 1 | The BCSCs Surface markers in significant literatures.

Surface markers Mediated signaling Function in BC

CD44 (Al-Hajj et al., 2003) PI3K/AKT signaling (Ghatak et al.,
2002)

Forming tumors (Al-Hajj et al., 2003), promoting metastasis (Hill et al., 2006), associated with (BRCA1)
mutational status (Bane et al., 2013)
Predicting prognosis (Bane et al., 2013), stimulating migration (Bourguignon et al., 2003), promoting cell
adhesion (Ponta et al., 2003), promoting. Cell growth, survival, and invasion (Louderbough and
Schroeder, 2011)

NF-κB signaling (Cho et al., 2015)
CREB/TGF-β2 signaling (Ouhtit et al.,
2018)

ALDH1 (Ginestier et al.,
2007)

Associated to tumor-initiating characteristics (Ginestier et al., 2007), promoting self-renewal (Ginestier
et al., 2009), As target for BCSCs-targeted therapy (Angeloni et al., 2015) Predicting prognosis
11823860 (Alexe et al., 2006; van’t Veer et al., 2002) promoting metastasis (Marcato et al., 2011)

CD133 IL6/Notch3 signaling (Sansone et al.,
2016)

Regulation of ET-resistant (Sansone et al., 2016) promoting self-renewal (Sansone et al., 2016) BCSCs
identification (Bai et al., 2018)
CD133 aptamers or CD133-targeted drug delivery system for BCSCs-targeted therapy (Shigdar et al.,
2013; Swaminathan et al., 2013)

EpCAM Regulation of migration and metastasis (Baccelli et al., 2013) promoting chemoresistance (Wang T.
et al., 2015)

ABCG2 Promoting BC chemoresistance, tumorigenicity and metastasis (Bai et al., 2018), Sorting BCSCs from
BRCA1-mutated BC cells (Leccia et al., 2014)

GD2 Aassociated with GD3S-mediated EMT (Liang et al., 2017), promoting tumorigenicity and metastasis
(Battula et al., 2017),BCSCs. identification (Bai et al., 2018)

CXCR4 SDF-1/CXCR4 signaling (Yi et al.,
2014)

Promoting metastasis (Muller et al., 2001), promoting migration or invasion (Luker et al., 2012)

FIGURE 2 | Effective drugs delivery system in BCSCs. Nanoparticles, which modified by surface markers (CD44, CXCR4) ligands and intracellular molecular (micro
RNAs, ALDH1) ligands, loaded with anti-cancer drugs, efficiently targeting BCSCs. The delivery system shows effectively reversal of drug resistance through dual
inhibition of BCSCs via repressing both ex- and intracellular tumorigenic markers.
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for improvement of chemotherapeutic effects in metastatic cancer
(Lv et al., 2018b). These results demonstrate the important role of
CD44 in BC stemness, invasion, metastasis, and drug resistance.
We should aim at significantly reversing drug resistance through
the use of nano-drug combinations, improving drug efficacy, and
ultimately, ensuring a favorable prognosis.

CD133
CD133, known as Prominin-1, is independently expressed on the
surface of stem cells and various tissue tumor stem cells. Similar
to CD44, CD133 BC cells show stem-like properties and are
found to be enrich in basal-like, triple negative, HER2+ or
luminal tumors (Borgna et al., 2012).

xenograft-initiating CD44posCD49f highCD133/2high cells
among ER-negative tumors were capable of forming ER-
negative tumors (Meyer et al., 2010), supporting the evidence
that CD133 is an identifier molecule for BCSCs with high
aggressive properties.

The accumulation of CD133high BCSCs aggravated BC and
tended to induce drug-resistance (Bousquet et al., 2017),
proliferation (Brugnoli et al., 2017), vasculogenic mimicry (Liu
et al., 2013), invasion, and metastasis (Bock et al., 2014). For
instance, heterogeneous BC cells with CD133 marker displayed
resistance to drugs and the potential to form a mass in NOD/
SCID mice (Wright et al., 2008). Moreover, CD133high BCSCs
were enriched in the tumors of hormonal therapy (HT)-resistant
BC, forming metastatic luminal BC by self-renewal during HT
(Sansone et al., 2016). The capability of self-renewal can be
switched through re-expression of estrogen receptor (ER) by
inhibition of IL6R/IL6-Notch pathways (Sansone et al., 2016).
Furthermore, a ribonucleoprotein complex (LncRNA MALAT1
and HUR) down-regulated the expression of CD133+ phenotype
and inhibited the stem cell properties of BCSCs, leading to
tumorigenesis and metastasis failure both in MCF-7 and
MDA-MB-231 (Latorre et al., 2016), revealing the indirect
mechanism of CD133 and drug resistance in BC.

Recently, a novel CD133-targeting drug delivery system that
uses nanoparticles loaded with drugs was reported. An anti-
CD133 antibody into nanoparticles loaded with paclitaxel,
increased the accumulation of paclitaxel in CD133+ cells,
decreased the population of BCSCs, and inhibited the
tumorigenic ability in vivo (Swaminathan et al., 2013). This
implies that CD133-targeting will contribute to the
development of BCSC-targeting therapeutics to reverse drug
resistance.

EpCAM
EpCAM, a type I transmembrane glycoprotein, is known as a
phenotype of epithelial tumors and is overexpressed in BCSCs
(Munz et al., 2009). EpCAM can promoting BCSCs survival
through the activation of Wnt/β-catenin signaling pathway
(Sena and Chandel, 2012). It can also promote adhesion
between epithelial cells, playing an important role in migration
and metastasis. For example, EpCAM+ disseminated tumor cells
(DTCs), isolated from the peripheral blood of BC patients,
contained a class of metastatic initiating BC cells that could
cause bone, lung, and liver metastases in NOD-SCID mice

(Baccelli et al., 2013). Moreover, EpCAM still plays an
important role in reversing resistance. For instance, Survivin
silencing, mediated by EpCAM aptamer, can make BCSCs
sensitive to doxorubicin, leading to the reversal of resistance,
which indicates that this novel strategy is an effective method to
reverse drug resistance in BC (Wang T. et al., 2015).

ALDH1
ALDH1 is an NAD(P)+ dependent enzyme that mediates the
oxidation of intracellular aldehydes into carboxylic acids. ALDH1
acts as a common marker of both normal and malignant breast
stem cells, especially in BCSCs. ALDH1-high activity is an
independent predictor of progression and poor survival of BC
patients (Ginestier et al., 2007). Moreover, CD44+/CD24−/
ALDH1+ MDA-MB-231 and CD44+/CD133−/ALDH1+
MDA-MB-468 BC cells demonstrated stronger tumorigenic
and metastatic capabilities than ALDH1lowCD44low BC cells
(Croker et al., 2009).

However, ALDH activity of BCSCs was mainly dependent on
ALDH1A3, rather than on ALDH1A1 (Marcato et al., 2011),
further enhancing the understanding of specific targets of BCSCs.
The main explanation for this difference is that the expression
level of ALDH1A1 in breast epithelial cells is lower than that of
ALDH1A3. The strong association between LDH1A3 high
expression and metastasis in BC patients was also reversed to
confirm the importance of ALDH1A3 in BC. Contrarily, NOTCH
signaling pathway increased ALDH1A1 Lys-353 deacetylation at
a post-translational level through the induction of silent
information regulator 2 (SIRT2) expression, promoting
tumorigenesis and tumor growth in a BC model (Zhao et al.,
2014). Conversely, inhibition of ALDH activity resulted in drug
(doxorubicin/paclitaxel) resistance reversal in ALDHhigh CD44+

BCSCs (Croker and Allan, 2012). Therefore, these studies reveal
that ALDH1 not only can be utilized to distinguish BCSCs, but
also as a potential therapeutic target for drug resistance reversal in
BC. ALDH1 regulation might be useful in explaining drug
resistance in further research.

CXCR4
As a specific receptor of stromal cell-derived factor-1 (SDF-1),
CXC chemokine receptor 4 (CXCR4) is essential for BCSCs-
related metastasis. The SDF-1/CXCR4 signaling pathway
mediates the role of promoting the directional metastasis of
CXCR4+ BCSCs. Both antibody neutralization and CXCR4
knockdown inhibited the proliferation of orthotopically
transplanted breast tumor and metastasis (Muller et al., 2001).
Non-metastatic BCSCs promote the transformation of non-
BCSCs to CXCR4+ BCSCs in BC tissues (Mukherjee et al.,
2016). Besides, CXCR4+ BCSCs displayed decreased vimentin
and increased E-cadherin, indicating the occurrence of epithelial-
mesenchymal transitions (EMT). These findings demonstrate
that CXCR4+ BCSC triggered EMT-related metastasis.

BC metastasis is closely related to drug resistance, so CXCR4
may be a key factor of reversins drug resistance. CXCR4 is also
closely related with tumor microenvironmental changes. CXCR4
is highly expressed in BC metastases; thus, I.X. found that
suppressed CXCL12/CXCR4 signaling pathway or silenced
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CXCR4 in BCSCs sensitizes BC to immune checkpoint blockers,
inhibiting metastasis reversing drug-resistance in BC (Chen I. X.
et al., 2019). In a similar mechanism, DPP-4 inhibitors were
found to reverse drug-resistance via ABC transporters-mediated
CXCL12/CXCR4/mTOR/TGFβ axis in BC cells (Li et al., 2020).
An innovative strategy, consisting of an oncolytic virus loaded
with a CXCR4 antagonist, was utilized for targeting the CXCL12/
CXCR4 signaling pathway, being remarkably effective in primary
and metastatic BC (Gil et al., 2013). Furthermore, the activation
of SDF-1/CXCR4 signaling pathway can increase the
phosphorylation of 60 proteins with migration or invasion
properties in BC, which might be key mediators for CXCR4-
induced BCSCs proliferation (Yi et al., 2014). These evidences
emphasized CXCR4 as a therapeutic target to inhibit
microenvironment-induced stemness and the appearance of
metastatic phenotypes and made it possible to eradicate the
activation of CXCR4-related signaling pathway, decreasing the
proportion of CXCR4+ BCSCs.

ABCG2
As a known drug-resistant protein, ABCG2 is highly expressed in
BC resistant cells, especially in resistance-related BCSCs. Sun
found that stem-like CD44+CD24−/low cells isolated from several
BC cell lines, such as SK-BR-3, MDA-MB-231, and MCF-7
displayed a higher expression of ABCG2 than non-stem cells
(Sun et al., 2015). Furthermore, ABCG2 is considered to be a
more effective surface marker for BCSCs identification than
CD44+CD24− (Leccia et al., 2014). Moreover, several pieces of
evidence have highlighted ABCG2 as a therapeutic target to
overcome BC multidrug resistance. For instance,
downregulation of either Rab5A or Rab21 increases surface
expression of ABCG2 and efflux of intracellular drugs,
reversing BC drug-resistance (Yousaf and Ali, 2020).
Moreover, it has also been demonstrated that drug resistance
can be reversed by ABCG2 modulators at a molecular level
(Hasanabady and Kalalinia, 2016; Pena-Solorzano et al., 2017).
However, few small molecule modulators have shown to be
effective in preclinical trials. Therefore, the role of ABCG2
inhibitors in reversing resistance by mediating BCSCs should
be re-examined and more in vivo evidence should be presented.

GD2
GD2, a b-series ganglioside, is another cell membrane phenotype
of BCSCs. Indeed, GD2+ BC cells, isolated from either BC cell
lines or clinical tumor tissue in BC patients, show stemness.
Meanwhile, it has been revealed that GD2+ cells, human
mammary epithelial cells-derived GD2+ cells, were highly
CD44+CD24− (Battula et al., 2012). GD3 synthase, a rate-
limiting enzyme, regulates the synthesis of GD2 and is
considered a kind of therapeutic target for BCSCs. GD3S was
positively correlated with the expression of GD2+ in BCSCs, and
the low expression of GD3S not only resulted in the decreased
expression of GD2+, but also disrupted EMT-mediated tumor
formation ability of BC cells (Liang et al., 2017). Consistently,
another study indicated that the high expression of GD3S was
closely associated with the activation of nuclear factor kappa-B
(NF-κB) in GD2+ BCSCs. The Inhibition of NF-κB signal can

significantly reduce the expression of GD3S and the proportion of
GD2+ BCSCs, abolishing the capability of BCSCs to metastasize
(Battula et al., 2017). Based on the correlation between BCSCs,
GD3S, and GD2, the development of GD3S-related signals as a
novel therapeutic target may induce BCSCs to reverse drug
resistance.

CENTRAL SIGNALING PATHWAYS IN
BREAST CANCER STEM CELLS

As mentioned above, surface markers play an important role in
maintaining the stemness of BCSCs, but they can’t work
independently of intercellular signaling pathways. Here, we
continue to describe the activation of several key intracellular
signaling pathways in BC, as a result of gene mutation, epigenetic
modifications, or tumor microenvironment changes, which
generate drug resistance-related BCSCs. Therefore,
understanding the relevant pathways can contribute to better
understand the characteristics of BCSCs and determine the
research direction of reversing drug resistance targeted
therapy. Major mechanisms of drug resistance in BCSCs are
shown in Figure 3

Notch Signaling Pathway
Notch signaling pathway is one of the regulative mechanisms of
BCSCs’ self-renewal and survival. Cytokine IL-6 regulates Notch
signaling, and the increase of IL-6 was detected in BC treated with
HT, activating the Notch3 signaling in BC cells. The activation of
Notch3 signaling enables BC cells to self-renew instead of the ER-
dependent survival mechanism, thus impacting clinical efficacy of
HT. However, inhibiting Notch signaling significantly reduced
the self-renewal ability of CD133highERlow BCSCs in HT-resistant
cells (Sansone et al., 2016). Similarly, another study indicated that
the combination of MK-0752 (gamma secretase inhibitors) and
Tocilizumab (IL6R antagonist) remarkably decreases the
proportion of BCSCs and inhibits cell proliferation or tumor
growth in BC, through Notch3 signaling pathway (Wang D. et al.,
2018).

Moreover, emerging evidence suggested that BCSCs mediate
drug resistance in BC through Notch-related signaling pathway.
For example, the activation of Notch signaling pathway promotes
the appearance of stem cell phenotype in ERα/ESR1+ BC cell lines
and causes drug resistance to ET for BC (Gelsomino et al., 2018).
Consistently, the activation of JAG1-NOTCH4 signaling pathway
stimulates BCSCs activity and generates anti-estrogen resistance
in BC (Simoes et al., 2015). In particular, Notch1 also mediated
trastuzumab resistance in BCSCs by inhibiting PTEN expression
to cause the activation of ERK1/2 signaling. Notch1-PTEN-
ERK1/2 signaling might be a target for the novel therapy
strategies of combining anti-Notch1 and anti-MEK/ERK to
reverse trastuzumab resistance (Baker et al., 2018).

Wnt/β-Catenin Signaling Pathway
Wnt/β-catenin signaling pathway also plays an important role in
BCSCs self-renewal. A previous study has shown that Wnt/
β-catenin signaling pathway was deemed as a key mechanism
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of Sam68- mediated self-renewal in BC cells (Wang L. et al.,
2015). Another study displayed that Gomisin M2 remarkably
inhibited BCSCs self-renewal by suppressing the Wnt/β-catenin
signaling pathway (Yang Y. et al., 2019). Compared to other cells,
the higher level of Wnt/β-catenin signaling pathway contributes
to the high resistance level of BCSC. CWP232228, a small-
molecule of Wnt/β-Catenin inhibitor, suppressed the
proliferation of BCSCs by inhibiting β-catenin-mediated
transcription (Jang et al., 2015). Furthermore, this result
implied that Wnt/β-catenin might indirectly regulate drug
resistance by BCSCs self-renewal or proliferation, promoting
Wnt/β-catenin as a therapeutic target for BCSCs therapy in
the future.

PI3K/AKT/mTOR Signaling Pathway
The activation of the phosphatidylinositol 3-kinase (PI3K)-
related signaling pathway in BCSCs was reported in recent
years and can be contribute to drug resistance in BC.
Mounting evidence demonstrated that PI3K/AKT/mTOR
signaling pathway has an important role on ET-resistance in
ER+ BC (Droog et al., 2013; Ojo et al., 2015). PI3K/Akt/mTOR
signaling pathway induces BCSCs metastasis by CD44 regulation.
Moreover, the interaction of PI3k and Wnt/β-catenin signaling
maintain the self-renewal and stemness abilities of BCSCs (Solzak
et al., 2017).

Impressively, inhibition of PI3K/AKT/mTOR signaling
pathway reduces BCSC survival and self-renewal. In other
words, the inhibitors of PI3K/AKT/mTOR signaling pathway
impact the activity of BCSCs. For instance, IGF-1R, a stemness
marker, is associated with BC disease progression. Inhibitors of
IGF-1R and its downstream PI3K/Akt/mTOR signaling pathway

reduced the population of BCSCs. Therefore, IGF-1R/PI3K/Akt/
mTOR signaling pathways are favorable targets for the treatment
of BCSCs (Chang et al., 2013). Indeed, rapalogs, such as NVP-
BEZ235 and NVPBGT226, were utilized as inhibitors of both
PI3K and mTOR. Meanwhile, the inhibition of PI3K by rapalogs
could stimulate GLP1-mediated stem-like features in BC cell
lines, as the BCSCs generated imply rapalogs resistance in BC
(Posada et al., 2017). Hence, future research is necessary to
elucidate the relationship between the distinct mechanisms of
drug resistance and the regulation of PI3k-mediated BCSCs.

Hedgehog Signaling Pathway
The activation of Hh signaling pathway is essential to balance
tissue homeostasis and self-renewal in BC. Generally, Hh
signaling pathway is up-regulated in BCSCs, which may be
involved in stemness maintenance. However, there are few
pieces of evidence to understand the abnormal activation of
Hh signaling pathway in BCSCs. Interestingly, SHH (Sonic
Hedgehog), secreted by BCSCs, regulated cancer-associated
fibroblasts (CAFs) via the activation of Hh signaling (Valenti
et al., 2017), promoting BCSCs proliferation and self-renewal.
Furthermore, Shh (Sonic Hedgehog)-mediated Hh signaling
activation gives rise to salinomycin resistance (He et al., 2015).
Conversely, inhibition of the Hh signaling pathway could
sensitize BCSCs to paclitaxel by cyclopamine (He et al., 2015).
So far, rare inhibitors of Hh signaling pathway were applied to
regulate BCSCs. Thus, further studies on the activation
mechanisms of Hh signaling pathway-related stemness
maintenance or resistance in BCSCs are needed to identify
drugs that target Hh signaling pathway for reversing drug
resistance.

FIGURE 3 | Major mechanisms of drug resistance in BCSCs. Drug resistance is not only a result of the activation of the self-renewal (Notch and Hh signaling
pathway) and anti-apoptotic (PI3K/AKT/mTOR signaling) in BCSCs, but also a consequence of the promotion of metastasis (EMT andWnt/β-catenin signaling pathway),
anti-oxidative activity (NRF2 signaling) and ATP-binding cassette (ABC) transporter (ABCG2) activity in BCSCs.
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RESISTANCE TO CANCER THERAPY

Resistance to Chemotherapy
Chemotherapy is an important part of BC routine treatment.
Effective neoadjuvant chemotherapy helps patients to reduce
tumor burden and clinical stage and provides opportunities
for breast conserving surgery. Moreover, accumulating
evidence indicated that advance BC patients benefit from
chemotherapy. However, recent studies showed that the
phenomenon of BCSCs enrichment occurs after chemotherapy
in BC. Therefore, we focus on various chemotherapeutic drugs,
listing the specific relationship between BCSCs and drugs,
understanding the mechanism of chemotherapy resistance and
summarizing the potential therapeutic strategies to reverse drug
resistance.

Paclitaxel Resistance
Paclitaxel, a microtubule stabilizer, is widely used in BC clinical
chemotherapy. It can keep the cells in the G2/M phase to inhibit
the cell cycle (Horwitz et al., 1986). Unfortunately, paclitaxel
resistance is becoming a clinical challenge in BC treatment. The
mechanisms of paclitaxel resistance are the following. First,
paclitaxel-resistant cells have the mutant microtubule binding
sites, which can impact tubulin expression. Mutations in
microtubule-related proteins (e.g., βI-tubulin (Giannakakou
et al., 1997) and βIII-tubulin (Magnani et al., 2006))
contributed to paclitaxel resistance. Secondly, the expression of
transporters, such as ATP-binding cassette transporter MDR-1/
P-gp (ABCB1) (Genovese et al., 2017), BCRP (ABCG2) (Arnason
and Harkness, 2015; Robey et al., 2018), which are required for
paclitaxel resistance, is abnormal. Paclitaxel-resistant cells exhibit
stem-like properties (Bumbaca and Li, 2018). Some scholars insist
that tumor stem cells can resist to chemotherapy, and that a
higher expression of CD44+/CD24- tumors displayed greater
resistance to neoadjuvant chemotherapy (Creighton et al., 2009;
Marotta et al., 2011). Recently, Tanei found that ALDH1 is
enriched in chemotherapy resistance cells (Tanei et al., 2009).
Interestingly, ALDH1 and CD44 were utilized as important
surface markers to isolate BCSCs.

Recently, with the going research between BCSCs and
paclitaxel resistance, scientists often focus on the biological
metabolism of BCSCs with a unique perspective. Lee
discovered that the interaction of MYC and MCL1 regulated
the production of reactive oxygen species (ROS) and participated
in mitochondrial oxidative phosphorylation (OXPHOS), further
activating the HIF-dependent hypoxia pathway and enhancing
the enrichment of BCSCs and paclitaxel resistance (Lee et al.,
2017). Similarly, the laboratory of Dr. Samanta investigated and
verified that, after paclitaxel or gemcitabine chemotherapy,
BCSCs increased activity and expression of HIF-1α and HIF-
2α through the paclitaxel-ROS-HIF-IL-6/IL-8 axis after
chemotherapy (paclitaxel or gemcitabine) (Samanta et al.,
2014). Consequently, HIF-mediated downstream signaling
pathways will become a crucial target for paclitaxel resistance
in BCSCs. Ultimately, IL-6 and IL-8, paclitaxel-induced,
increased BCSCs enrichment and drug resistance through the
STAT3 (Marotta et al., 2011) and TGF-β pathways (Bhola et al.,

2013), respectively. Thus, the intrinsic relationship between
STAT3 signaling and TGF-β pathway can also be an
important target to regulate BCSCs to reverse drug resistance.
In summary, paclitaxel resistance is not only related to its unique
metabolic pathway, but also to the biological behavior of BCSCs.

Anthracyclines Resistance
Anthracyclines, inhibitors of topoisomerase II (TOPO II), are a
broad-spectrum chemotherapy drugs, including doxorubicin and
epirubicin, which are widely used in BC chemotherapy.
Nevertheless, the emergence of drug resistance often caused
the failure of anthracyclines chemotherapy. Emerging studies
have shown that anthracyclines could exhibit different drug
resistance patterns in different parts of cells (Capeloa et al.,
2020): on the cell envelope, ATP-binding cassette transporter
can decrease the concentration of intracellular anthracyclines
(Gottesman et al., 2002; Sun et al., 2015). In the cytoplasm,
alterations in apoptosis (Gyorffy et al., 2005) and autophagy (Liu
et al., 2011; Sun et al., 2011) pathways impact the cytotoxic effects
of anthracyclines in the cytoplasm; in the nucleus, gene mutations
regulate the expression and activation of TOPO II, inhibiting the
effect of anthracyclines-induced DNA damage and promoting
anthracyclines resistance (Press et al., 2011; Wijdeven et al.,
2015). These resistance-related proteins or pathways above are
affected by metabolism. Thus, anthracyclines metabolism
impacts the sensitivity of BC to anthracyclines. Many CD44+

or CD133+ BCSCs are enriched in tumors under anthracyclines
therapy in BC (Jia et al., 2016). Other studies have shown that
BCSCs could effectively remove DNA damage caused by
chemotherapeutic drugs (Nicolay et al., 2016), and that the
dysregulation of Annexin A3 (ANXA3) changed the sensitivity
of BCSCs to doxorubicin (Du et al., 2018). These evidences
support the role of BCSCs in anthracyclines resistance, and
further studies on the therapeutic targets of BCSCs to reverse
anthracyclines resistance should be performed.

Platinum Resistance
Platinum is one of the most common drugs for advanced BC
because of its DNA-damaging properties. It interacts with DNA
at guanine and adenine nucleotides to form Pt−DNA
nonfunctional adducts that destroy double-stranded the DNA
template and inhibit the division of tumor cells. However,
platinum is not considered an option if progression of disease
occurs during platinum-based chemotherapy. Unfortunately,
only 47% of advanced BC patients are sensitive to platinum
drugs (Sledge et al., 1988). Fortunately, mounting studies show
that platinum resistance is associated with BCSCs. For instance,
Disulfiram could improve the cytotoxic effect of cisplatin by
reversing BCSCs-mediated cisplatin resistance. Meanwhile,
Disulfiram exhibited difference ability to eliminate ROS
between BCSCs and non-BCSCs (Yang Z. et al., 2019).
Coincidentally, more than one researcher suggested that the
stem-like BC cells are modulated by ROS (Nguyen et al., 2020;
Nourbakhsh et al., 2020). These results implied that ROS could
affect platinum resistance by regulating BCSCs. Besides, Xu
proposed that IL-6 enhances resistance to cisplatin via the
activation of STAT3 pathway in BC (Xu et al., 2018).
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Although STAT3 has been shown to induce BCSCs, it is unclear
that IL6/STAT3 signaling pathway may affect the resistance to
platinum by BCSCs modulation.

Capecitabine Resistance
Capecitabine is commonly used as a chemotherapy drug for
advanced second-line BC. The cytotoxic effect of capecitabine
is triggered by 5’-furan and thymidine phosphorylase. Therefore,
low activity of thymidine phosphorylase led to capecitabine
resistance in tumor tissues (Ishikawa et al., 1998). However,
few pieces of evidence indicated the relationship between
BCSCs and capecitabine resistance as the consequence of
capecitabine metabolism complexity.

Based on clinical observations, multidrug resistance is the
main form of chemotherapy resistance. For example, paclitaxel-
resistant BC often shows resistance to anthracycline at the same
time (Lee et al., 2006). The main reason is that ATP-binding box
transporters take part in both paclitaxel and anthracycline
metabolisms, increasing the expression of drug-resistant
proteins, such as MDR-1 (Genovese et al., 2017). Meanwhile,
studies found that BCSCs that have DNA mismatch repair
function ability, caused resistance to both anthracycline and
platinum chemotherapy, but failed to resist to paclitaxel
(Fedier et al., 2001). In brief, multiple pathways in BCSCs
regulated the activation of metabolism and induced resistance
to multiple chemotherapeutic drugs in BC, such as paclitaxel,
anthracyclines, platinum, and capecitabine. Thus, it is expected
that highly effective drugs targeting BCSCs emerge as a new
therapeutic strategy for multi-chemotherapeutic resistance.

Resistance to Endocrine Therapy
Endocrine therapy (ET) is a highly effective treatment for
estrogen receptor (ER) positive BC by blocking ER pathway
and depriving the tumor of estrogen (Howell, 2008). As a
matter of fact, the ER signaling pathway is a complicated
biological pathway that regulates many functions, such as cell
proliferation, invasion, and angiogenesis, and is used as a crucial
survival pathway by BC cells (Manavathi et al., 2013). Different
endocrine therapies work by various mechanisms, which can be
divided into three different categories: selective estrogen receptor
modulators (SERMs), aromatase inhibitors (AI), and CDK4/6
inhibitors. Currently, evidence continues to show that BCSCs are
responsible for tumor evolution and play a crucial role in
achieving ET resistance (Dey et al., 2019; Rodriguez et al., 2019).

Tamoxifen Resistance
Tamoxifen is one of the most famous selective ER modulators,
which can antagonize the effects of estrogen and bind in the ER
pathway to some particular target genes (Frasor et al., 2004).
Thereby, adjustment of each element or transcription in ER
pathway can mediate resistance to endocrine treatment by
modulating ER activity or by acting as an escape pathway.
Primitively, the increase of BCSCs in advanced BC indicated
their potential role in tumorigenesis and tamoxifen resistance
(Pece et al., 2010). Further, recent studies demonstrated that
tamoxifen resistant MCF-7 (TAM-R) cells contained a higher
proportion of BCSCs than non-resistant cells (Wang et al., 2012).

Therefore, we speculate that BCSCsmay play an important role in
endocrine resistance, and accumulating studies have
confirmed this.

Recent studies provide more direct evidence on BCSCs
participating in tamoxifen resistance through some important
pathways. The ER signaling pathway functions as a major
mechanism responsible for tamoxifen resistance. The
expression of ER splicing variants, such as the estrogen related
receptors and the identified short variant ERα36, have also
contributed to a poor tamoxifen response (Zhang and Wang,
2013). Although considered ERα negative, BCSCs can still be
stimulated by estradiol via paracrine mechanisms. A study also
showed that ERα could mediate the rapid estrogen signaling in
BCSCs and enhance transcription of genes related to stem cells
(Gelsomino et al., 2018). ER could also promote the development
of BCSCs via a crosstalk with Sox2 (Zhang Y. et al., 2012). In
return, Sox2 could promote the non-genomic estrogen-
stimulated activity of ER, thus inducing ER phosphorylation at
Ser118 site (Zhang Y. et al., 2012; Vazquez-Martin et al., 2013). In
fact, phosphorylation, ubiquitination, and other post-
translational modifications of ER and its co-regulators affect
the sensitivity to different endocrine therapies (Musgrove and
Sutherland, 2009). However, the role of estrogen receptors β
(ERβ) in BCSCs is still partly unclear, requiring further
experiments to explore its relationship with endocrine
resistance and BCSCs.

Another important category of pathways involved in
endocrine resistance is the growth factor family. Up-regulation
of EGFR, HER2, FGFR, and IGF1 receptors (IGF1R) could
activate the downstream signaling pathway, especially PI3K
pathways, causing tamoxifen resistance (Chakraborty et al.,
2010; Arpino et al., 2008). Lately, using gene expression
analysis, it was revealed that the activation of the PI3K/AKT/
mTOR pathway and the inactivation of the PTEN tumor
suppressor were the major alterations in MCF7 cell-derived
BCSCs-enriched cells, compared to non-enriched cells. Down-
regulation of PI3K, AKT1 and PI3K/mTOR reduced the self-
renewal and survival of BCSCs in vitro and their tumor initiation
and self-renewal ability in vivo (Gargini et al., 2015). In general,
these data suggest that some regulators, such as IGF1R and PI3K,
may be potential targets to recover the resistance to tamoxifen by
restraining BCSCs survival and activity.

Alterations in genes involved in stemness-related pathways,
such as Wnt/β-catenin, Notch, and Sonic Hedgehog, have been
proven highly effective in acquiring tamoxifen resistance.
According to recent studies, activation of Wnt and Notch
signaling pathways induced tamoxifen resistance and
promoted BCSCs activity in MCF-7 (TAM-R) cells, while
inhibition of these pathways abolished the resistance
(Magnifico et al., 2009; Loh et al., 2013; Lombardo et al.,
2014), supporting the important role of BCSCs in endocrine-
independent and TAM-resistant proliferation. Furthermore,
clinical data demonstrated that upregulation of the HH
signaling was related with a reduction in overall survival and
recurrence-free survival in estrogen receptor positive BC patients,
even leading to tamoxife resistance (Ramaswamy et al., 2012). By
contrast, the stem cell-like population, cell migration, and
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invasion declined greatly by the inhibition of the HH signaling,
thus preventing the progress of tamoxifen resistance
(Ramaswamy et al., 2012). Collectively, accumulating evidence
reveals complicated mechanisms with overlapping networks of
tamoxifen resistance, which partly results from BCSCs-induced
evolution, regulated by Notch, Wnt/β-catenin, HH, and other
crucial signaling pathways.

Fulvestrant Resistance
Fulvestrant, a new kind of ER downregulator, can effectively
reduce the level of ER in BC cells (Dowsett et al., 2005). Actually,
fulvestrant was identified as an effective antagonist to endocrine-
sensitive BC after failure of previous tamoxifen or aromatase
inhibitor therapies (Howell and Robertson, 1995). Although the
detailed mechanisms of fulvestrant resistance remain unclear,
some pathways, including EGFR/ErbB2, MEK/ERK, NF-kB,
PI3K-AKT, and β-catenin, have been associated with
development of fulvestrant resistance (McClelland et al., 2001;
Gu et al., 2002; Fan et al., 2006). It is interesting that these
proteins and pathways are also correlated with the induction and
maintenance of BCSCs (Hardt et al., 2012; Harrison et al., 2013;
Luo et al., 2015; Majumder et al., 2016). Therefore, we speculate
that BCSCs may mediate fulvestrant resistance through these
pathways, but further evidence is needed to prove this.

Studies showed that resistance was associated with G protein-
coupled estrogen receptor-1 (GPER) and CDK6 overexpression
(Giessrigl et al., 2013; Alves et al., 2016). GPER, mediating
estrogen-induced proliferation breast epithelial cells, is also
essential for the survival of BCSCs (Chan et al., 2020).
Recently, a study showed that microRNA-221 contributed to
fulvestrant resistance via activation of β-catenin in BC and
promoted the generation of BCSCs, stimulating the production
of an invasive phenotype that predicts adverse outcomes
(Roscigno et al., 2016). Unfortunately, few studies on
fulvestrant resistance have been reported; however, the
relationship between fulvestrant resistance and BCSCs may
become clearer with future research.

Aromatase Inhibitors Resistance
Aromatase inhibitors (AIs) can inactivate aromatase, block
aromatase reaction, inhibit estrogen production, and reduce
estrogen levels in the blood, being an ideal ET drugs for ER+
BC in postmenopausal women. Three AIs, such as exemestane,
letrozole, and anastrozole, exhibited similar resistance
mechanisms in ET (Francis et al., 2015). Besides, AIs could
modulate the action of androgen through the androgen
receptor (AR) as well, thereby inhibiting estrogen-dependent
BC growth (Macedo et al., 2006; Takagi et al., 2010). The
application of AIs greatly reduced the risk of BC recurrence
among postmenopausal women (Magnani et al., 2013). However,
AIs resistance inevitably reduces clinical benefits. Multiple
mechanisms contribute to AI resistance, involving either
estrogen-independent ER growth or ER-independent
activation. Among these, the PI3K pathway is a significant
therapeutic target. A previous study revealed that these BCSCs
showed low ER expression and the activation of PI3K signaling
pathway (Hardt et al., 2012), both of which eventually led to AIs

resistance (Marsden et al., 2009). Actually, the alpha-specific
PI3K inhibitors, such as buparlisib, alpelisib, and taselisib,
were currently utilized as novel drugs for AIs-resistant BC in
phase III clinical trials (NCT02437318, NTC01610284,
NCT02340221).

Stromal cells, extra-cellular matrix (ECM), and other micro-
environment conditions (such as hypoxia and acidity) are also
responsible for the generation of BCSCs phenotypes and
endocrine (AI and TAM) resistance (Generali et al., 2006;
Semenza, 2015). A lot of soluble factors that promote tumor
growth and vascularization, such as transforming growth factor-β
(TGFβ), which induces epithelial-to-mesenchymal transition
(EMT), are secreted by cancer-associated fibroblasts (CAFs).
Furthermore, downstream signaling pathways, especially PI3K
and MAPK pathways, are activated by EGFR and CXCR4, thus
inducing endocrine resistance (Loh et al., 2013; Ma et al., 2015).
Additionally, CXCR4 was found to enhance BCSCs self-renewal
by the activation of PI3K/AKT and MAPK pathways and
promoted tumorigenesis through hydrocarbon receptor (AhR)
signaling (Dubrovska et al., 2012). Mesenchymal stem cells
(MSCs) protected cancer cells from hormone treatment
through direct cell interaction and by secreted proteins
(Rhodes et al., 2010). In conclusion, the tumor
microenvironment is frequently linked to endocrine resistance,
partly due to self-renew and maintenance of BCSCs.

Resistance to Targeted Therapy
HER2 is a receptor tyrosine kinase which is over-expressed or
genetically amplified in 15–25% of invasive BCs. As we have seen,
anti-HER2 drugs, such as trastuzumab and lapatinib, have
obviously improved clinical outcomes in HER2-positive BC
patients. Yet the emergence of resistance to anti-HER2 drugs
becomes a main barrier during the treatment of HER2-positive
BC. In order to improve the prognosis of HER2-positive BC
patients, it is essential to study the mechanisms of resistance to
anti-HER2 therapy (Chihara et al., 2017). Several observations
suggested that the resistance to anti-HER2 drugs may be driven
by CSCs (BCSCs) (Martin-Castillo et al., 2013; Seo et al., 2016).
Therefore, we would like to find out how BCSCs participate in
resistance to anti-HER2 drugs in HER2-positive BC.

Trastuzumab Resistance
Trastuzumab is a molecular targeting drug for HER2 tyrosine
kinase receptor. The application of trastuzumab has dramatic
therapeutic efficacy in HER2+ BC, but the emergence of drug
resistance hinders its clinical benefits. Multiple evidence shows
that the mutation of PI3KCA (Berns et al., 2007; Dave et al., 2011)
and loss of PTEN (Nagata et al., 2004; Koninki et al., 2010;
Gallardo et al., 2012) leads to trastuzumab resistance in BC.
Indeed, trastuzumab resistance was also associated with CSCs.
CSCs may induce drug resistance via the activation of PI3K/AKT,
JAK/STAT3 and NF-kB pathways (Wang et al., 2017).
Meanwhile, PTEN loss and PI3KCA mutation could lead to
abnormal activation of the downstream PI3K/Akt/mTOR
pathway, which in turn, regulates BCSCs pool (Dey et al.,
2019). Similarly, PTEN down-regulation increased BCSCs
population through Akt activation of Wnt signaling pathway
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(Korkaya et al., 2012).We can speculate that the loss of PTEN and
the mutation of PI3KCA lead to the activation of downstream
PI3K/Akt/mTOR pathway in BCSCs, which results in
trastuzumab resistance. Another mechanism of trastuzumab
resistance was the activation of IL-6 inflammatory loop
mediated BCSCs expansion, resulting in drug resistance of BC
to trastuzumab. Meanwhile, IL-6 was found to inhibit PTEN
when activating Akt, STAT3, and NF-kB pathways (Korkaya
et al., 2012). Interestingly, STAT3 activation led to an increase in
stem cell properties, which caused over-expression of HER2 and
trastuzumab resistance (Chung et al., 2014). Thus, targeting
upstream of JAK/STAT3 pathway, for instance IL-6 receptor
antibody, could inhibit trastuzumab resistance and reduce the
CSC population. A previous study showed that an excellent
functional biomarker for trastuzumab resistance is Mucin1
(MUC1), and its cleaved form is named MUC1* (Sand et al.,
2020). Interestingly, anti-MUC1* was found to have a dramatic,
stimulatory effect on stem cell growth (Hikita et al., 2008). Fessler
demonstrated a significant increase in the number of MUC1* in
trastuzumb resistant cell lines (Fessler et al., 2009). In conclusion,
MUC1* may be a target for reversing drug resistance of
trastuzumab. Among these mechanisms, it is not difficult to
find that CSCs are critical in trastuzumab resistance. Thus, the
BCSCs-targeted strategy may be worth further research in
recovering sensitivity of trastuzumab in BC, and may bring
benefits to patients at risk of BC recurrence.

Lapatinib Resistance
Lapatinib is an oral small molecule drug, which targets both
epidermal growth factor receptor (EGFR) and human epidermal
growth factor receptor 2 (HER2). Its resistance involves many
factors, such as the pathways of receptor tyrosine kinase, non-
receptor tyrosine kinase, CSCs, microRNA, tumor metabolism,
among others (Shi et al., 2016). MiR-205-5p is a highly
conserved miRNA involved in cell differentiation, migration,
and proliferation, which was found to be highly expressed in
BCSCs. Moreover, it leads to lapatinib resistance by directly
repressing HER2 and indirectly inhibiting EGFR (De Cola et al.,
2015; Xiao et al., 2019). It was speculated that the lapatinib
resistance caused by miR-205 was via the activation of PI3K/
AKT signaling pathway. Therefore, down-regulating the
expression of miR-205-5p contributed to inhibit the lapatinib
resistance in BCSCs. The other resistance mechanism for
lapatinib was associated with CD44+/CD24−, which are
surface markers of CSCs (Dey et al., 2019). Knocking down
CD24 could not only increase the sensitivity of HER2-positive
BC cells to lapatinib, but also inhibit Akt phosphorylation
(Hosonaga et al., 2014). For this reason, CD24 may be a
target to reverse lapatinib resistance in BC. Actually, the use
of lapatinib greatly improves BC prognosis. Nevertheless,
clinical evidence suggested that lapatinib resistance led to
poor therapeutic efficacy in HER2-positive BC patients. As
described in the above mechanisms, CSCs seem to be the key
to solve lapatinib resistance. Consequently, further
understanding of the regulatory mechanisms of CSCs in
lapatinib resistance in BC is essential for developing targeting
strategies.

Here, we summarize the resistance mechanism of anti-HER2
drugs. The review suggested that the resistance of anti-HER2
drugs usually occurred by inducing CSC characteristics. TGFβ is a
transforming growth cytokine and SMAD is an effector
transforming factor in TGFβ signaling pathway. The
acquisition of malignant features, such as EMT, cancer cell
stemness, and drug resistance in cancer cells was closely
related to TGFβ-SMAD3 signaling pathway. Sustained
stimulation of TGFβ could induce SMAD3 to phosphorylate
intensely and enhance the CSC traits of BC, thereby leading to
HER2-positive BC resistance. Therefore, TGFβ-SMAD3 pathway
plays a vital role in inducing and maintaining resistance to anti-
HER2 drugs (Chihara et al., 2017). BCSCs undoubtedly
participate in the process of resistance to HER2-positive BC
too. Targeting BCSCs may be a possible way for us to solve
the problem of resistance to anti-HER2 drugs.

Therapeutic Strategies for Targeting Breast
Cancer Stem Cells to Reverse Resistance
Drug resistance has turned out to be one of major problems in BC
therapy, while recent studies found that BCSCs are shown to be
the culprit for this phenomenon. Nevertheless, themechanisms of
drug resistance mediated by BCSCs have not been fully
understood. Currently, the following vital mechanisms are
recognized to be related to treatment resistance, which include
overexpression of ATP-binding cassette (ABC) transporter and
ALDH1, enhanced DNA repair mechanism, an altered cell cycle,
resistance to apoptosis, and all microenvironment influences
(Rebucci and Michiels, 2013; Smalley et al., 2013; Cojoc et al.,
2015). Therefore, targeting these mechanisms may help us
develop new therapies for BCSCs to reverse drug resistance in
BC.We will discuss some of the current ways used to target BCSC
below. The novel of therapeutic strategies for reversing drug-
resistance in BCSCs are displayed in Table 3 and Figure 4.

Targeting Signaling Pathways
Hedgehog (Hh) signaling is a crucial regulator of proliferation,
maintenance, and self-renewal of BCSCs. There is a link between
the activation of HH signaling and the over expression of MDR1
and ABCG2 in BCSCs. Targeting ABCG2 or MDR1 with
cyclosporin A, through inhibition of HH signaling, has shown
to regulate and decrease the expression of ABCG2 and ABCG5
(Mao and Unadkat, 2015; Sims-Mourtada et al., 2015). HH
signaling showed aberrant activation in Tamoxifen resistant
cell lines; instead, knocking down the HH pathway can inhibit
growth of tamoxifen resistant cells (Bhateja et al., 2019).
Currently, two smoothened (SMO) inhibitors have made their
way to clinical trials: GDC-0449 (vismodegib) with paclitaxel,
epirubicin, and cyclophosphamide (NCT02694224), and LDE225
(sonidegib) combined with Docetaxel (NCT02027376). Both of
the drugs were tested in triple negative BC (Hui et al., 2013; Cazet
et al., 2018). It seems that oral HH inhibitors appear to be fairly
safe throughout clinical testing.

Confirmatory evidence has recently revealed that the PI3K/
Akt/mTOR pathway plays a significant role in regulating BCSC
pool. A study observed that Akt signaling altered the subcellular
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TABLE 2 | Resistance mechanisms for major drugs in BC therapy.

Drug resistance Related markers or pathways Mode of action In vitro or
in vivo or

clinical trial

References

Resistance to chemotherapy
Paclitaxel JAK/STAT3-CPT1B-FAO-LPEs Paclitaxel resistance is regulated by JAK/STAT3-CPT1B-related fatty

acid oxidation in BCSCs
In vitro Wang T. et al. (2018)

MYC/MCL1-(mtOXPHOS) -(ROS)
-HIF-1α

paclitaxel resistance is regulated by mitochondrial oxidative
phosphorylation (mtOXPHOS) via MYC/MCL1-(mtOXPHOS) - (ROS)-
HIF-1αpathway in BCSCs

In vitro (Lee et al., 2017)

ROS-HIF1/2α-IL-6/IL-8/MDR1 Chemotherapy-induced HIF activity enriched the BCSCs through IL-6
and IL-8 signaling and increased the expression of multidrug resistant
proteins (MDR1)

In vitro (Samanta et al., 2014)

EIF2AK3/EIF2AK4-pEIF2S1-
ATF4

Paclitaxel resistance is regulated by redox homoeostasis (ISR) in
BCSCs

In vitro and in
vivo

Chen et al. (2019a)

Jagged2- microRNA-200 Jagged2 promotes the maintenance of BCSCs properties and
paclitaxel resistance by regulating the over-expression of microRNA-
200

In vitro and in
vivo

Li C. Y. et al. (2018)

IGF2BP3/CD44-IGF2-
Hedgehog signalling

CD44-expressing fibroblasts can inhibit paclitaxel-induced apoptosis,
leading to paclitaxel resistance

In vitro Liu Y. et al. (2017)

ABCB1 Amplification of chromosome region 7q21 coordinated the
overexpression of resistance-related proteins and caused cancer cells
to develop multidrug resistance.

— (Genovese et al., 2017)

ABCB1/ABCG2 Atp binding cassette (ABC) transporter linked to paclitaxel resistance — Arnason and Harkness
(2015);
Robey et al. (2018)

MTDH/NF-κb signalling MTDH reduces NF-κB expression and increases p65/p-p65
expression, causing paclitaxel resistance

In vitro and in
vivo

(Yang et al., 2018)

ERα-activated-DNMT1/DNMT3b DNMT1 induces DNA methylation and promotes paclitaxel resistance In vitro (Si et al., 2016)
MENA/MAPK signalling MENA subtype expression changesmicrotubule status after paclitaxel In vitro and in

vivo
(Oudin et al., 2017)

Anthracyclines SLC34A2-Bmi1-ABCC5
signalling.

Increases the expression of SLC34A2 in BCSCs induces
chemotherapy resistance to Dox through the slc34a2-bmi1-abcc5
signaling pathway.

In vitro and in
vivo

(Ge et al., 2016)

Glucosylceramide synthase
(GCS)

The overexpression of GCS in BC cells is induced by Dox and is
related to the pluripotency of BCSCs

In vitro and in
vivo

(Bhinge et al., 2012)

HIF-2α/BCRP axis Chemotherapy-mediated HIF-2α directly promotes the expression of
BCRP and coordinates the ability of anti-dox in BCSCs.

In vitro (He et al., 2019)

TOPOII Mesenchymal stem cells can effectively repair DNA double-strand
breaks induced by topoisomerase inhibitors

In vitro (Nicolay et al., 2016)

ANXA3/NF-κb signalling pathway ANXA3 overexpression increased the heterogeneity and adriamyclins
resistance in BCSCs by the actvation of NF-κB signalling pathway.

In vitro and in
vivo

(Du et al., 2018)

KLF4 signalling pathway Adriamyclins chemotherapy increased the expression of CD133,
ALDH1A1, ABCG2, and the maintenance of BCSCs characteristics

In vitro and in
vivo

(Li et al., 2017)

Resistance to endocrine Therapy
Tamoxifen CD44 + CD24- High CD44 + /CD24 - ratio is displayed in tamoxifen resistant BC In vitro (Wang et al., 2012)

Stem cell markers Upregulates ALDH, Sox2,Oct4, and CXCR4 in tamoxifen resistant
cells

— (Piva et al., 2014;
Gwak et al., 2017;
Raffo et al., 2013;
Dubrovska et al., 2012;
Wang et al., 2012)

ER signaling pathway Mutations in the ERα promote the generation of BCSCs markers and
induce tamoxifen resistance

In vitro (Gelsomino et al., 2018)

PI3K/AKT/mTOR signalling Promotes self-renewal and survival of BCSCs in tamoxifen resistant
cells

In vitro (Gargini et al., 2015;
Kolev et al., 2015)

IGFR Maintains BCSCs surface markers expression and tumorigenesis by
the activation of AKT

In vitro and in
vivo

(Chang et al., 2013)

Wnt/β-catenin pathway Activation along with the enrichment BCSCs in tamoxifen resistant In vitro (Loh et al., 2013;
Angeloni et al., 2015)

Notch signalling Develops tamoxifen resistance via regulating BCSCs In vitro (Magnifico et al., 2009;
Yun et al., 2013)

IL6/STAT3 Promotes BCSCs and stimulates tamoxifen resistance In vitro (Wang et al., 2012)
Hh pathway Maintains the self-renewal of BCSCs in response to tamoxifen

treatment
In vitro and in
vivo

(Ramaswamy et al., 2012)

TGF-β Generates the phenotype of BCSCs and induces tamoxifen resistance In vitro (Liu et al., 2012;
Kopp et al., 1995)

(Continued on following page)
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localization of BCRP, thereby regulating drug efflux activity in
CSCs. Inhibitors of PI3K, which can not only be blocked via Akt
signaling, resulted in the suppression of cancer cell proliferation,
but also enhanced the sensitivity of chemoresistant cells (Hu et al.,
2008). Another observation suggested that suppressing Akt that is
downstream of HER2 signaling might efficiently target BCSCs in
HER2-resistant tumors (Korkaya et al., 2009). Consequently, a
series of PI3K and Akt selective inhibitors, which are being
clinically investigated, demonstrates promising prospects.

Notch signaling is another pathway associated with treatment
resistance. miR-34a regulates Notch-1 pathway in sustaining
stem cell properties of BCSC populations, thereby suggesting
that the miR-34a/Notch-1 pathway might be a potential
therapeutic target for treating BC (Chen et al., 2016).

Activation of Notch signaling is regulated by a proteolytic
enzyme (γ-secretase), so γ-secretase inhibitor is the most
clinically promising candidate in reversing drug resistance
(Real and Ferrando, 2009). Psoralidin had been shown to
effectively inhibits BCSCs proliferation and self-renewal
through downregulating Notch1 signaling (Suman et al.,
2013). Besides, vitamin D compounds showed activity against
BCSCs by impeding the expression of Notch signaling
components, such as Notch1, Notch2, Notch3, JAG1, and
JAG2 (Shan et al., 2017). Meanwhile, a study showed that
targeting FGFR mitochondrial metabolism-Notch1 axis may be
effective to abrogate drug-resistant CSCs in TNBC (Bhola et al.,
2016). Hence, Notch signaling pathway plays an important role in
drug resistance mediated by BCSCs.

TABLE 2 | (Continued) Resistance mechanisms for major drugs in BC therapy.

Drug resistance Related markers or pathways Mode of action In vitro or
in vivo or

clinical trial

References

Fulvestrant ER signaling pathway ERβ as a therapeutic target to in BCSCs to re-sensitizes fulvestrant
and tamoxifen resistant cells

In vitro and in
vivo

(Ma et al., 2017)

Stem cell markers Up-regulation of ALDH1, NANOG, OCT4 and SOX2 in response to
tamoxifen or fulvestrant

In vitro (Lillo et al., 2017)

NOTCH Maintains the activity of BCSCs to resistant fulvestrant In vitro and in
vivo

(Simoes et al., 2015)

AI CD44/CD24 High CD44 + /CD24 - ratio is demonstrated in AI-resistant cell In vitro (Wang et al., 2013;
Uchiumi et al., 2019)

Letrozole PI3K/Akt/mTOR signalling
pathway

BCBSs-mediated letrozole resistance by regulating PI3K/Akt/mTOR
signaling pathway

In vitro Liu Y. et al. (2019)

Promotes BCSCs enrichment in MCF-7, and inversing by
mTOR inhibitors

In vitro and in
vivo

(Liu et al., 2014)

JNK signaling pathway Promotes the stemness of BC cells to cause aromatase
inhibitors resistance

In vitro (Pelekanou et al., 2018)

Stem cell markers Up-regulation of ALDH1, Oct 4, SOX2, and nanog in resistance cells In vitro (Nasr et al., 2018)
HER2 signaling Mediates AI resistance via regulation of stem cell markers, such as

breast cancer resistance protein (BCRP)
In vitro (Gilani et al., 2012)

Letrozole or
exemestane

HIF-1α Improves the generation of BCSCs to resistant to letrozole and
exemestane

In vitro (Kazi et al., 2014)

exemestane RTKs pathway Accumulates stemn-like cancer cells and resistant to exemestane — (Farahmand et al., 2018)
palbociclib PI3K/Akt/mTOR signalling Increases the ability of stemness and migration in palbociclib-resistant

BCSCs
In vitro Chen et al. (2019b)

IL-6/STAT3 pathway Promotes BCSCs enrichment In vitro and in
vivo

(Kettner et al., 2019)

EMT Promotes the capacity of migration and invasion via regulating BCSCs
in CDK4/6 inhibitor-resistant BC

In vitro and in
vivo

(Kettner et al., 2019;
Pandey et al., 2019)

Resistance to Targeted Therapy
Trastuzumab PI3K/AKT signalling Induces trastuzumab resistance via activating PI3K/AKT pathway in

BCSCs
In vitro and in
vivo

(Choi et al., 2019)

JAK/STAT3 signalling STAT3 activation increases CSCs properties then results in
trastuzumab resistance

In vitro (Chung et al., 2014)

Wnt/β-catenin signalling Over-activating wnt signalling pathway promotes CSCs then leads to
trastuzumab resistance

In vitro (Wu et al., 2012; Choi
et al., 2019)

MUC1 The number of MUC1 increases in trastuzumb resistant cell lines while
anti-MUC1 inhibits CSCs proliferation

In vitro (Sand et al., 2020)

CD44+/CD24- Acts as a predictor of poor response to trastuzumab Clinical trial (Seo et al., 2016)
Trastuzumab
Lapatinib TGFβ- Smad Enhances the CSCs traits then leads to resistance of targeted therapy In vitro (Chihara et al., 2017)
Lapatinib PI3K/AKT signalling Directly represses HER2 and indirectly inhibits EGFR In vitro (Iorio et al., 2009; De Cola

et al., 2015)
CD44+/CD24- Decreases the sensitivity of HER2+ BC cells to lapatinib In vitro (Hosonaga et al., 2014)

MTDH, Metadherin; ISR, The integrated stress response; MUC1, Mucin 1.
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Targeting Tumor Microenvironment
G-protein coupled receptors (GPCRs) are very important in the
survival of BCSCs before and after the chemotherapy process.
Chemokine receptors CXCR1 and CXCR2 generally play a role
in chemotaxis of neutrophils, macrophages, and endothelial
cells in a physiological microenvironment. Antagonizing
CXCR1 by CXCR1-neutralizing antibody or by the small
molecule inhibitor repertaxin selectively depleted more
BCSCs than bulk tumor cells in vitro. This was followed by
massive apoptosis of bulk tumor cells through FASL/FAS
signaling via FAK/AKT/FOXO3A pathway (Ginestier et al.,
2010). Repertaxin has already shown satisfactory effects in
Phase I trials. Moreover, the chemokine receptor CXCR4 is
expressed in BCSCs and forms a target in restraining or removal
of BCSCs. Activation of this receptor is thought to facilitate the
metastasis of mesenchymal BCSCs. CXCR4 probably stimulated
the extracellular signal regulated kinase (ERK) pathway in
BCSCs by activating PKA/MAPKAP2 pathway (Yi et al.,
2014), thus providing resources for the research of BCSC-
targeted cancer therapy through blocking these pathways by
inhibiting receptors.

Targeting Breast Cancer Stem Cell Metabolism
The induction of oxidative stress is an important mechanism of
action for many anticancer agents. BCSCs possess a highly active

DNA repair system, which repairs DNA damages, particularly
after chemotherapy treatment. Previous trials suggested that the
ability of BCSCs to repair DNA damage is significantly related to
reactive oxygen species (ROS), the levels of ROS are markedly
lower in BCSCs than in non-CSCs (NCSCs) due to the high
expression of free radical scavenging systems in BCSCs, such as
superoxide dismutase, catalase, and glutathione peroxidase,
which keep them from genotoxic damage of ROS. Thus,
reduction of ROS scavengers in BCSCs markedly decreased
their clonogenicity and resulted in therapeutic sensitization
(Phillips et al., 2006; Diehn et al., 2009). Through H2O2-
induced BCSC loss of function, ROS-generating drugs may
have the therapeutic potential to eradicate drug-resistant
BCSCs via induction of premature senescence (Zhong et al.,
2019). Moreover, increasing mitochondrial activity is
associated with resistance to DNA damage in BC. BCSCs are
obviously dependent on glucose and mitochondrial metabolism.
BCL-2 protein is a famous regulator of mitochondrial
metabolism, inhibition of BCL-2 can result in the inhibition of
oxidative phosphorylation (OXPHOS), which will lead to the
reduction of BCSCs depending on OXPHOS (Deshmukh et al.,
2016).

Besides potentiated ROS scavenging systems, BCSCs can
protect themselves from several chemotherapeutic drugs which
target the cell cycle process by maintaining a quiescent state in G0

FIGURE 4 | The novel strategies of drug resistance reversal in BCSCs. These strategies mainly include inhibited proliferation ability (Hh, NF-κB signaling pathway)
and self-renewal ability (EMT and Wnt/β-catenin signaling pathway), promoted DNA damage (ROS scavenging system and Mitochondrial metabolism) and apoptosis
(Notch and FOXO/FASL/FAS signaling pathway).
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TABLE 3 | Therapeutic strategies to reversing drug-resistance in BCSCs.

Drug/Compound Target Mode of action In vitro or
in vivo or

clinical trial

References

Surface markers
HA-decorated

nanoparticles and
salinomycin

CD44 Increases efficiency of drug delivery by the system
of CD44-HA-Nanoparticles loaded with
salinomycin

In vitro (Muntimadugu et al., 2016)

Doxycycline CD44, ALDH1 Inhibits BCSCs by apoptosis Clinical trial (Scatena et al., 2018)
Lentivirus-mediated

CD44 shRNA
CD44 Sensitizes BCSCs to doxorubicin In vitro (Hu et al., 2016)

CD133-targeted
polymeric nanoparticles

CD133 Reduces tumor initiating cell by conjugating anti-
CD133 monoclonal antibody to nanoparticles

In vivo (Swaminathan et al., 2013)

scFv- PE38KDEL CD133 Promotes BCSCs apoptosis by inducing
cytotoxicity

In vitro and in
vivo

(Ohlfest et al., 2013)

Quercetin ALDH Inhibits expression of Sox2, Oct4, nanog, and
Bmi-1

In vitro Wang R. et al. (2018)
Withaferin A In vitro Kim and Singh (2014)
Benztropine mesylate Inhibits sphere formation and self-renewal of

BCSCs
In vitro and in
vivo

(Cui et al., 2017)
Deptropine citrate
Signaling pathway
Cyclopamine Hedgehog signaling Suppresses the activation of the SMO

transmembrane receptor protein
In vivo (Kubo et al., 2004)

Monoclonal antibody
(5E1)

Inhibits breast cancer growth and metastasis. In vivo (O’Toole et al., 2011)

Nitidine chloride Inhibits the stemness of BCSCs by downregulates
the marker of CD44

In vitro (Sun et al., 2016)

GANT61 (gli protein
inhibitor)

Inhibits expression of glioma-associated
oncogene in the Hh signaling pathway

In vitro (Koike et al., 2017)

Vismodegib Sensitizes BC cells to commonly used
chemotherapy drugs by the inactivation of
Hedgehog signaling

In vivo (Hui et al., 2013; Palomeras et al., 2018)

Sonidegib Inhibits the expression of BCSCs markers to
sensitize BC cells to docetaxel

In vitro and in
vivo

(Cazet et al., 2018; Palomeras et al., 2018)

NVPBGT226 PI3K signaling Novel ATP-competitive mTOR kinase inhibitors for
advanced breast cancer

In vitro and in
vivo

(Cidado and Park, 2012)

Perifosine Restores Tamoxifen sensitivity in resistant breast
cancer cells

In vitro (Farahmand et al., 2018)

Everolimus (RAD001) Sensitizes advanced breast cancer to aromatase
inhibitor

Clinical trial (Baselga et al., 2012)

MK2206 Inhibits growth and induces breast cancer cells
apoptosis

Clinical trial (Chien et al., 2019)

PF-03084014
(nirogacestat)

Notch signaling Sensitizes BCSCs to known chemotherapy drugs
by blocking notch signaling

In vitro and
clinical trial

Zhang C. C. et al. (2012); (Zhang and
Grivennikov 2013); Locatelli et al., (2017);
Ocana et al., 2010)

MK-0752 Promotes the sensitivity of BCSCs to docetaxel by
strong modulation of Notch signaling

In vitro, in vivo
and clinical trial

(Aktas et al., 2009; Schott et al., 2013;
Venkatesh et al., 2018)

LY3039478
(crenigacestat)

γ-secretase inhibitor to promote inactivation of
notch signaling

Clinical trial (McCartney et al., 2018)

Capsaicin Inhibits the entry of NICD to nuclear In vitro (Shim and Song, 2015)
Psoralidin Promotes apoptosis and inhibits BCSCs

proliferation and repairing
In vitro (Suman et al., 2013)

RO4929097 (RG-
4733)

γ-secretase inhibitor to promote inactivation of
notch signaling

Clinical trial (Strosberg et al., 2012; Koury et al., 2017;
Venkatesh et al., 2018)

Foxy-5 Wnt/β-catenin Simulates the effect of Wnt5a to inhibits
metastasis

In vivo (Canesin et al., 2017; Palomeras et al., 2018;
Goldsberry et al., 2019)

Sulforaphane Inhibits BCSCs self-renewal by the
downregulation of the wnt/β-catenin signaling.

In vitro (Li et al., 2010)

Microenvironment
AMD3100 (CXCR4

antagonist)
SDF-I/CXCR4 Inhibits BCSC self-renewal and maintenance In vitro Liu B. Q. et al. (2017)

Reparixin CXCR signaling Induces BCSCs apoptosis through FASL/FAS
signaling

In vitro and
clinical trial

(Schott et al., 2013)

Evofosfamide (TH-302) Hypoxia Suppresses BC growth by selectively cytotoxic In vitro and in
vivo

(Liapis et al., 2016)

Echinomycin Hypoxia response element Reduces cytotoxic in breast cancer cells In vitro (Lathan and Von Hoff, 1984)
Tumor metabolism

(Continued on following page)
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phase (Yoshida and Saya, 2016). BCSCs can adopt dormancy-
associated phenotypes through upregulating autophagic
pathways (Vera-Ramirez et al., 2018). Salinomycin is a kind of
ionophore antibiotic, which has been shown to be effective in
clearing BCSCs through autophagy (Jiang et al., 2018). Recently,
studies showed that the mechanistic link between autophagy and
metastastic dormancy was associated with Spleen Tyrosine
Kinase (SYK) in epithelial-mesenchymal transition (EMT)
required for BC metastasis. Fostamatinib, a SYK
pharmacologic inhibitior, prevents mesenchymal-epithelial
transition (MET), which can inhibit metastatic tumor
outgrowth (Shinde et al., 2019). Currently, tyrosine kinase
inhibitors are being tested in clinical trials.

Nano-therapeutics Against Breast Cancer Stem Cell
Nanoparticle (NP)-mediated therapy is an effective delivery
strategy for cancer therapeutics. It contributes to specific
delivery of a chemotherapeutic drug, RNAi, or antibodies to
the stem cell population by recognizing antibodies/aptamers
against BCSC-specific markers.

CD44 is the first discovered and the most commonly used
surface marker of BCSCs, which plays an important role in all
aspects of tumor cells, such as growth and proliferation,
migration, differentiation, apoptosis, self-renewal,
microenvironment, EMT, and drug resistance (Jin et al., 2017).
As a cell receptor, CD44 mediates the communication with the
microenvironment through interacting with certain extracellular
ligands. For the past few years, the development of an antibody
against CD44, which could induce BCSCs terminal
differentiation, had already been found to be effective and has
been gradually accepted (Naor et al., 1997). In aggressive BC, the
combination of anti-human CD44 monoclonal antibody with

doxorubicin and cyclophosphamide using NPs has been used to
prevent tumor recurrence (Fan et al., 2010; Wu et al., 2017).

Micro RNAs (miRs) play a key role in the sustenance and
heterogeneity of BCSCs in BC. They can regulate proteins
associated with drug resistance in human BC. For instance,
miR-21 may facilitate the inhibition of tumor proliferation,
growth, and migration (Han et al., 2012); miR-100 inhibits
self-renewal of BCSCs and tumorigenesis (Deng et al., 2014);
miR-199a can increase stem cell properties in BCSCs (Celia-
Terrassa et al., 2017). miR-205-5p is highly expressed in BCSCs
and is related to therapy resistance (De Cola et al., 2015).
Moreover, research shows that the high expression of STAT3
affects doxorubicin resistance of BCSCs, and miR-124 reverses
this resistance of BCSCs through targeting STAT3 to control the
HIF-1 signaling pathway (Liu C. et al., 2019). Consequently,
targeting miRs and delivering siRNAs to tumors using NPs is an
effective strategy to reverse drug resistance and enhance drug
efficacy.

Aldehyde dehydrogenase 1 (ALDH1) is a NAD(P)+-
dependent enzyme, which is the key enzyme to oxidize
intracellular aldehydes to carboxylic acids. ALDH1 is found to
be highly active in BCSCs, increasing their proficiency by
removing toxic oxygen radicals from the tumor
microenvironment (Charafe-Jauffret et al., 2013). By
consulting relevant literatures, we also found that the
increased levels of ALDH family members were correlated
with chemoresistance (Croker et al., 2009; Tanei et al., 2009).
ALDHs inhibition sensitizes BCSCs to chemotherapy (Croker
and Allan, 2012). NPs containing doxorubicin and chloroquine
have been shown to reduce ALDH high population of MDA-MB-
231 cells (Li et al., 2015), and several ALDH inhibitors are
currently in the preclinical stage.

TABLE 3 | (Continued) Therapeutic strategies to reversing drug-resistance in BCSCs.

Drug/Compound Target Mode of action In vitro or
in vivo or

clinical trial

References

VLX600 Mitochondrial OXPHOS Makes BCSCs death by inhibiting BCL-2 In vitro (Dey et al., 2019)
Etomoxir Carnitine

palmitoyltransferase-1
inhibitor

Activates metabolic by cAMP-induced In vitro (Manerba et al., 2019)

Salinomycin Sodium potassium gradient Selectively eradicates BCSCs selectively via
lysosomal iron Targeting.

In vitro (Versini et al., 2020)

XCT790 ERRn-PGC1 Targets FOXM1 and mitochondrial biogenesis to
block both the survival and propagation of BCSCs

In vitro (De Luca et al., 2015)

Others
MS-209 P-glycoprotein Makes BCSCs more sensitive to docetaxel In vitro and in

vivo
(Naito et al., 2002)

Glucosamine STAT 3 Inhibits BCSCs the ability to form mammosphere In vitro (Hosea et al., 2018)
Apigenin Hippo Inhibits BCSCs migration and metastasis by

downregulating transcription activity of TAZ and
YAP1

In vitro and in
vivo

(Li et al., 2018)

MLN4924 Sox-2 Suppresses stem cell property and makes breast
cancer cells more sensitive of tamoxifen

In vitro (Yin et al., 2019)

MRX34 MiR-34a Contains miR-34a mimic and a lipid vector and
inhibits cellular proliferation, invasion and tumor
sphere formation.

In vitro, in vivo
and clinical trial

(Adams et al., 2016; Mohammady et al.,
2019)

αEPCR-1535 Protein C receptor Attenuates tumor growth In vitro (Schaffner et al., 2013)

NICD, Notch intracellular membrane domain.
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Other Therapeutic Approaches
CSCsmanifest a high number of proteins on their cell surface, such
as ABC transporters, ABCB1 (P-gp, MDR1), ABCG2 (BCRP1),
ABCC11 (MRP8), and ABCB, which are strongly expressed in
CSC’s chemo-resistance (Dean, 2009). How do CSCs develop drug
resistance through the protein molecule above? In BC, a recent
study has indicated that the prominently activated ATP binding
cassette (ABC) or drug efflux pump of BCSCs can successfully
pump out chemotherapeutic drugs, such as anthracycline or
taxanes, which are known as the most essential drugs of BC
treatment (Cojoc et al., 2015). Furthermore, other scholars have
found that an increased level of ABCG2 in BCSCs enabled rapid
expulsion of cytotoxic drugs, conferring cellular resistance to
antitumor drugs (Hirschmann-Jax et al., 2004). A recent study
has confirmed that SOX2-ABCG2-TWIST1 axis can promote
stemness and chemoresistance in TNBC, further indicating that
ABC proteins are potential targets for BCSCs eradication
(Mukherjee et al., 2017). Dofequidar, an ABC transporter
inhibitor, could increase the sensitivity of BCSC to anticancer
drugs; it showed promising results in patients with advanced or
recurrent BC when combined with other chemotherapeutic agents,
such as cyclophosphamide, doxorubicin, and fluorouracil (Saeki
et al., 2007). Additionally, SOX2 is a key transcription factor that
plays critical roles in maintaining stem cell properties and
conferring drug resistance. MLN4924 can repress the expression
of SOX2, leading to suppression of stem cell properties and
sensitization of BC cells to tamoxifen (Yin et al., 2019).

CONCLUSION

BC remains the most frequent cancer in women, and significant
public health issue globally (Zavala et al., 2019). Both of the
developing and developed world are suffering from BC incidence
and mortality (Global Burden of Disease Cancer Collaboration
et al., 2015). Due to limitations of therapeutic strategies, it is urgent
to explore novel and effective strategies. The important role of
BCSCs in drug resistance, recurrence, and metastasis of BC has
attracted more and more attention. Many studies have also
enlightened the drug resistance mechanism of BCSCs. Currently,
various treatments targeting BCSCs have been in preclinical and
clinical trials. Unfortunately, the mechanism of drug resistance that
is controlled by BCSC rarely functions individually. In the process of
antagonizing anticancer drugs, thesemechanisms interact with each
other and form a complex functional network of drug resistance.

Hence, inhibiting a drug resistant pathway is likely to trigger
feedback mechanisms that ultimately allow BCSCs to escape the
effects of the drug. Therefore, the therapy based on the combination
of multiple targets for BCSCs’ functional network is the most
promising approach. Furthermore, existing nanobiology
technologies should be fully utilized, through finding specific
surface markers of targeting BCSCs, to locate and eliminate
BCSCs accurately. Recently, biologically and chemically
synthesized gold nanoparticles (AuNPs) (Virmani et al., 2019),
silver nanoparticles (AgNPs) (Muthupandian et al., 2019) and
selenium nanoparticles (SeNPs) (Vahidi et al., 2020) have
attracted significant attention for their anticancer effects against
cancers such as lung cancer, colorectal Cancer (Barabadi et al.,
2020a), cervical cancer (Barabadi et al., 2020b) and prostate cancer
(Barabadi et al., 2019a). Fortunately, AuNPs (Barabadi et al., 2019b)
and AgNPs (Saravanan et al., 2020) have also been reported to play
an important role in the treatment of BC. With the development of
cancer nanomedicine, it is expected that biologically and chemically
synthesized NPs may emerge as potential BCSCs therapeutic agents
alone or in combination with anti-cancer drugs before long of
future. In conclusion, these therapies targeting BCSCs will lay the
foundation for reversing drug resistance and attaining favorable
prognosis in BC.
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