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Abstract: The research evaluated the effects of locust bean gum (LBG) and sodium alginate (SA)
active coatings containing 0.15, 0.30 or 0.60% lemon verbena (Lippa citriodora Kunth.) essential oil
(LVEO) on the bacterial diversity and myofibrillar proteins (MPs) of large yellow croaker during
refrigerated storage at 4 ◦C for 18 days. Variability in the dominant bacterial community in different
samples on the 0, 9th and 18th day was observed. Pseudomonas and Shewanella were the two major
genera identified during refrigerated storage. At the beginning, the richness of Pseudomonas was
about 37.31% and increased for control (CK) samples during refrigerated storage, however, the
LVEO-treated samples increased sharply from day 0 to the 9th day and then decreased. LBG-SA
coatings containing LVEO treatments significantly delayed MPs oxidation by retarding the formation
of free carbonyl compounds and maintaining higher sulfhydryl content, higher Ca2+-ATPase activity,
better organized secondary (higher contents of α-helix and β-sheet) and tertiary structures during
refrigerated storage. The transmission electron microscope (TEM) images showed that the integrity
of the sarcomere was damaged; the boundaries of the H-, A-, and I-bands, Z-disk, and M-line were
fuzzy in the CK samples at the end of storage. However, the LVEO-treated samples were still regular
in appearance with distinct dark A-bands, light I-bands, and Z-disk. In brief, LBG-SA active coatings
containing LVEO treatments suggested a feasible method for protecting the MPs of large yellow
croaker during refrigerated storage.

Keywords: active coating; large yellow croaker; lemon verbena essential oil; bacterial diversity;
myofibrillar proteins structure

1. Introduction

The large yellow croaker (Pseudosciaena crocea) is known as one of the most commer-
cially and economically valuable marine fish in the China [1]. It is a kind of delicious fish
with high nutritional value. However, large yellow croaker is highly susceptible to decay
under the action of microorganisms and related enzymes, resulting in protein degradation,
lipid oxidation, and undesirable compounds, which lead to a relatively short shelf life [2].
Therefore, it is important to maintain the good quality of fresh large yellow croaker and
delay its deterioration during storage. Many bio-preservatives, such as bacteriocin [3],
lysozyme [4], epsilon-polylysine and rosemary extract [5], apple polyphenols [6], bay-
berry leaf extract [7], and Allium sativum essence oil [8] have been applied in large yellow
croaker preservation.

Polymers 2021, 13, 1787. https://doi.org/10.3390/polym13111787 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/polym13111787?type=check_update&version=1
https://doi.org/10.3390/polym13111787
https://doi.org/10.3390/polym13111787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13111787
https://www.mdpi.com/journal/polymers


Polymers 2021, 13, 1787 2 of 18

Active packaging refers to the packaging technology in which active agents are added
into the packaging system to reduce or inhibit the growth of microorganisms in food [9].
Locust bean gum (LBG), extracted from the seeds of Ceratonia siliqua carob tree, is a potential
coating component due to its excellent active coating-forming properties and its ability
to form strong gels at relatively low concentrations [10]. LBG is composed of a β-(1-4)-
d-mannopyranosyl backbone with α-d-galactopyranosyl replaced by C6 of mannose and
therefore they are referred to as the galactomanan. The ratio of mannose to galactose in
LBG is about 3.5:1 [11]. LBG can form viscous solutions at relatively low concentrations
and produce dense coatings with excellent mechanical and vapor barrier properties, which
has been extensively researched for coating applications [12,13]. Sodium alginate (SA) is an
algal carbohydrate macromolecule with potential film-forming properties. It is an anionic
copolymer of alginic acid including (1–4)-β-d-mannuronate and α-l-guluronate residues
covalently linked together in different sequences [14]. SA is non-toxic, renewable, and
biodegradable and can be used in the production of active coating as a polymer matrix
for the substance to be released [15]. The coatings obtained from SA are uniform and
transparent, however, SA-based coatings exhibit poor moisture barrier properties due to
the high hydrophilicity [16]. LBG is non-ionic and its aqueous solubility is not affected by
pH or ionic strength of the liquid medium [17]. SA could be used as an ion source (anionic)
to promote the mucoadhesive property of non-ionic LBG [18].

The active coating contains antimicrobial agents that inhibit the spoilage and oxidation
of food more effectively compared with the method of adding the active substance directly
into the food formulation [19]. Due to the growing consumer demand for natural products,
essential oils (EOs) are gaining in popularity [20,21] for the antimicrobial and antioxidant
properties to extend the shelf life of foods. Loke et al. [22] reported collagen active pack-
aging containing 6% cinnamaldehyde, which inhibited the growth of microorganisms
and delayed the production of total volatile basic nitrogen (TVB-N), and thiobarbituric
acid reactive substances (TBARS) during cold storage at 4 ◦C to extend the shelf life of
tilapia fillets to 3 days. Homayonpour et al. [23] showed that nanochitosan degradable
coating with nano-encapsulated Cumino cyminum L. essential oil effectively inhibited the
growth of microorganisms and the chemical spoilage reflected at lower pH, peroxide value,
and TBARS for sardine fillets during refrigerated storage. Specifically, lemon verbena
(Lippa citriodora Kunth.) essential oil (LVEO) has received much attention because of its
antimicrobial and antioxidant properties [24,25]. Lemon verbena is an important aromatic
plant, mainly due to the lemon-like aroma exuding from its leaves, and is usually used
to prepare the herbal teas [26]. Previous research showed its beneficial effects, including
antimicrobial, cardioprotective, neuroprotective, anti-inflammatory, anticonvulsant, and
antigenotoxic [27,28]. The LVEO exhibits antimicrobial activity and could be applied to
food preservation. Rezaeifar et al. [29] reported that the chitosan coating incorporated
with LVEO significantly reduced microbial growth and had an agreeable effect on sensory
characteristics during refrigerated storage at 4 ◦C, which can be used as an alternative to
chemical preservatives in fish storage. Hosseini et al. [30] found that sodium alginate active
coating containing 0.5% LVEO in modified atmosphere packaging (65% CO2, 30% N2, and
5% O2) is the most effective combination in lowering both gram-positive and gram-negative
tested bacteria and plays an important role in increasing the shelf life of chicken breast.
Neral, geraniol, 1,8-cineole, and limonene are the most important volatile compounds of
LVEO and are natural monoterpens [31]. Neral is the main active compound in LVEO and
has high antioxidant and fungicidal properties. The antimicrobial activity of neral against
several food pathogens has been well documented in in-vitro trials [32].

In this research, the effects of LBG and SA active coatings containing LVEO on the
bacterial diversity and inhibiting myofibrillar proteins (MPs) oxidation and degradation of
large yellow croaker samples during refrigerated storage at 4 ◦C were explored.
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2. Materials and Methods
2.1. Preparation of LBG-SA Active Coating Solutions Containing LVEO Emulsions

The LVEO/lecithin emulsions were prepared according Liu et al. [33] with some
minor modifications. An amount of 1.5 g of lecithin and different concentrations of LVEO
additions (0.15%, 0.30%, and 0.60%, v/v, respectively) were stirred evenly at 40 ◦C. Then
the deionized water was added and kept stirring for 6 h to obtain 100 mL of LVEO/lecithin
emulsions. LBG (0.5% w/v, from Ceratonia siliqua seeds, >75% galactomannan content),
SA (1.5% w/v, Mann/Gulu = 2:1, Mw 2.1 × 106 g/mol, viscosity of 200 ± 20 mPa·s) and
glycerol (0.6% w/v) were added to the prepared LVEO/lecithin emulsions (1 L) and stirred
for 2 h to be dissolved. Then, the mixture was ultrasonically homogenized to generate
homogeneous LBG-SA active coating solutions containing LVEO emulsions and degassed
under vacuum.

2.2. Preparation of Large Yellow Croaker Samples

Fresh large yellow croaker samples (700 ± 25 g) were randomly divided into four
batches for (1) CK (large yellow croaker samples were packaged with LBG-SA active
solution without LVEO); (2) LYC-0.15%LVEO (large yellow croaker samples were packaged
with LBG-SA active solution containing 0.15% LVEO emulsion); (3) LYC-0.30%LVEO (large
yellow croaker samples were packaged with LBG-SA active solution containing 0.30%
LVEO emulsion); (4) LYC-0.60%LVEO (large yellow croaker samples were packaged with
LBG-SA active solution containing 0.60% LVEO emulsion). The large yellow croaker
samples with different treatments were packaged with the fresh-prepared active coatings
solutions and then stored at 4.0 ◦C for subsequent testing every 3 days (Figure 1).
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Figure 1. A schematic representation of preparation procedures.

2.3. Analysis of Bacterial Diversity and Dynamics

Total genome DNA from large yellow croaker samples was extracted using CATB/SDS
method developed by Biotree (Shanghai, China). 16S rRNA/18S rRNA/ITS genes of
different regions (16S V4/16S V3/16S V3-V4/16S V4-V5, 18S V4/18S V9, ITS1/ITS2, Arc
V4) were amplified used specific primer (e.g., 16S V4: 515F-806R, 18S V4: 528F-706R,
18S V9: 1380F-1510R, et al.) with the barcode. All PCR reactions were performed with
15 µL of Phusion® High-Fidelity PCR Master Mix (New England Biolabs, MA, USA). The
sequencing libraries were generated using TruSeq® DNA PCR-Free Sample Preparation
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Kit (Illumina, CA, USA) at the manufacturer’s recommendations. The library quality was
evaluated on Qubit@2.0 Fluorimeter (Thermo Scientific, MA, USA) and Agilent Bioanalyzer
2100 system. Finally, the library was sequenced on Illumina NovaSeq platform to generate
250 bp paired-end reads.

2.4. Extraction of MPs Solution

MPs solution was extracted by means of Yang et al. [34] with some modifications.
Two grams of large yellow croaker flesh was homogenized with 20 mL pre-cooling Tris-
buffer A (20 mM Tris-maleate, pH 7.0, 0.05 M KCl) and then the mixture was centrifuged
at 16,560× g for 20 min at 4 ◦C. The supernatant was discarded and 20 mL pre-cooling
Tris-buffer A was added again to repeat the aforementioned steps. The supernatant was
discarded and the precipitate was homogeneously mixed with 20 mL pre-cooling Tris-
buffer B (20 mM Tris-maleate, pH 7.0, 0.6 M KCl). Then the mixture was centrifuged at
16,560× g for 20 min at 4 ◦C and the supernatant was collected as MP solution.

2.4.1. Determination of Total Sulfhydryl Content

One gram of large yellow croaker flesh was homogenized with 10 mL 8 M urea and
0.6 M NaCl solutions, and then the mixture was centrifuged at 2500× g for 10 min at
4 ◦C. Supernatant in an amount of 0.5 mL was mixed with 4.5 mL buffer C (pH 8.0, 0.2 M
Tris-HCl, 8 M urea, 3 mM EDTA, 1% SDS), and 0.625 mL buffer D (pH 8.0, 10 mM Tris-HCl,
10 mM DTNB) was subsequently added. The mixture was incubated at 40 ◦C for 20 min
and the absorbance was then determined at 412 nm. The content of sulfhydryl group was
expressed as µmol/g protein.

2.4.2. Determination of Free Carbonyl Compounds Contents

2, 4-dinitrophenyl hydrazine (DNPH) derivatization method was used to determine
the free carbonyl compounds content with the method of Sun et al. [35]. Ten millimeters of
DNPH was mixed with 1 mL MP solution at 25 ◦C for 1 h. The mixture was precipitated
with 1 mL 20 % trichloroacetic acid (TCA) solution and centrifuged at 2500× g for 15 min
at 4 ◦C. The supernatant was discarded and the precipitate was mixed with 1 mL ethanol:
ethyl acetate (1:1, v/v) containing 10 mM HCl. Then the resulting pellet was incubated
after dissolving in 6 M guanidine hydrochloride at 37 ◦C for 16 min. The absorbance was
then measured at 370 nm and the free carbonyl compounds content was expressed as
µmol/g protein.

2.4.3. Determination of Ca2+-ATPase Activity

The activity of Ca2+-ATPase was measured with the method of Wang et al. [36]. An
amount of 0.2 mL of Tris-maleate (0.5 M, pH 7.0), 0.2 mL CaCl2 (0.1 M), and 3 mL deionized
water were added to the 0.4 mL MP solution (4 mg/mL). The mixture was activated
by 0.2 mL 20 mM ATP. The system was incubated in 25 ◦C water bath for 3 min and
stopped by 2 mL 15% TCA solution. Then the inorganic phosphate, which was gained
by the centrifugation at 9000× g for 2 min, was quantified by the mixed solution of 3%
ammonium molybdate, 3 M H2SO4, and 20% ascorbic acid in the same volumes. The
activity of Ca2+-ATPase was expressed as µmol Pi/mg/min.

2.4.4. Determination of Surface Hydrophobicity

The surface hydrophobicity of MPs was determined with the method of Zhang et al. [37].
Five gradients of MP solutions (0, 0.20, 0.40, 0.60, and 1.00 mg/mL) were prepared and 10 mL
of each diluted MP solution was mixed with 25 µL ANS solution (8 mmol/L ANS, pH = 7.0).
The mixture was reacted in 25 ◦C water bath for 10 min in the dark and the fluorescence
intensity was measured using a microplate reader (MK3, Thermo) with the emission and
excitation wavelengths of 485 and 374 nm, respectively. The slope of the linear equation
between fluorescence intensity and corresponding MP concentration was described as the
surface hydrophobicity (S0) of each MP solution.
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2.4.5. Raman Spectroscopy

A high-resolution Raman spectrometer (Labram HR Evolation, Longjumeau, France)
was used to measure Raman spectra according to Cao et al. [38]. Samples with or without
isotope H/D exchange were prepared. A sample of approximately 1 g MPs was placed on
a glass slide and under the Raman microscope. The acquisition parameters were as follows:
raster of 600 g/mm, resolution ratio of 2 cm−1, slit width of 200 µm, and an integral time
of 60 s. The spectrum of 40–4000 cm−1 was obtained at the ratio of cm−1/min−1 in the
Labspec 6.0 software (Horiba Scientific, Lille, France).

2.4.6. Determination of Intrinsic Fluorescence Intensity (IFI)

The IFI of MPs samples were detected according to Tan et al. [39] and scanned with
a fluorescence spectrophotometer (F-7100, Hitachi, Tokyo, Japan) in emission scanning
mode. The experimental parameters were as follows: emission wavelength of 310–400 nm,
excitation wavelength of 295 nm, slit width of 5 nm, and scan speed of 1200 nm/min. The
maximum fluorescence wavelength (λmax) was recorded.

2.5. Microstructure Observed by Transmission Electron Microscope (TEM)

The TEM observation of large yellow croaker samples was performed with the method
of Yang et al. [34]. The samples were cut into small squares (0.1 cm × 0.1 cm × 0.1 cm) and
soaked in 2.5% glutaraldehyde. The samples were washed with 0.1 M PBS (pH 7.0) for
three times and then dehydrated with gradient ethanol solutions (30, 50, 70, 80, 90, 95, and
100%, v/v). Next, they were soaked in epoxy resin and acetone (1:1, v/v) for 24 h, and then
immersed in 100% epoxy resin overnight. After embedding in epoxy resin at 70 ◦C for 24 h,
the samples were sliced into 70 nm and then stained with uranium acetate and lead citrate
for 10 min. Afterwards, they were observed using a TEM (Hitachi HT 7700, Tokyo, Japan).

2.6. Statistical Analysis

The multiple comparisons were performed by one-way analysis of variance (ANOVA)
using SPSS 22.0, and the results were expressed as means ± standard deviation.

3. Results and Discussions
3.1. Microbiome Analysis
3.1.1. Community Abundance and Diversity

The calculated Good’s coverage values for the bacterial community abundance ranged
from 0.989 to 0.993, indicating that the sample had a high coverage rate (Table 1). The
sequencing results also indicated the bacterial diversity in large yellow croaker samples
during refrigerated storage. The dilution curve of gene sequence V4 region (Figure 2)
showed the sampling depth, and the curves under all storage treatments had gentle trends,
demonstrating that the sequencing results could truly reflect the bacterial distribution in the
large yellow croaker samples during refrigerated storage. Moreover, the number of bacteria
species in the samples refrigerated and stored at 4 ◦C reached the maximum on the 9th day
and then significantly decreased. The bacteria species number went down most sharply
for the LYC-0.15%LVEO samples during refrigerated storage, however, the CK samples
increased from the 9th day to the 18th day. This variation trend of the number of bacteria
species based on the dilution curves with storage time was consistent with the results of
biodiversity analysis (Table 1) in terms of OTUs, Chao (richness), ACE (uniformity), and
Shannon (diversity index). Among them, the OTUs in LYC-0.15%LVEO samples on the
18th day were found to be the lowest. However, the fresh samples had the highest OTUs,
Chao, and ACE indexes, which were 322, 425.722, and 459.919, respectively. These results
suggested that the fresh samples could maintain the diversity of bacteria, while refrigerated
storage might be more liable to form the dominant bacteria, resulting in a decrease in the
diversity [40], especially for the LYC-0.15%LVEO samples.
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Table 1. Biodiversity analysis of 16S rRNA sequences in bacterial V4 region in large yellow croaker
(Larimichthys crocea) samples during refrigerated storage at 4 ◦C.

Sample
Treatments OTUs 1 Shannon 2 Simpson Chao1 3 ACE 4 Good’s

Coverage 5

A 6 322 4.811 0.888 425.722 459.919 0.990
B 247 4.045 0.874 374.918 398.132 0.990
C 265 3.568 0.795 421.004 442.147 0.989
D 234 3.180 0.733 373.916 391.066 0.990
E 258 3.715 0.799 386.996 410.779 0.990
F 253 3.805 0.819 367.052 403.958 0.990
G 141 3.681 0.809 178.549 186.535 0.996
H 195 3.987 0.834 281.772 293.864 0.993
I 251 3.822 0.832 395.197 408.786 0.990

1 Operational taxonomic units (OTUs) were the classified operational units. 2 Shannon defining as the diversity
index. 3 The diversity indexes included Chao representing the species richness. 4 The abundance-based coverage
(ACE) indicating the uniformity. 5 Good’s coverage was calculated using QIIME software at a level of similarity
of 97%. 6 A: fresh; B: CK on the 9th day; C: LYC-0.15%LVEO on the 9th day; D: LYC-0.30%LVEO on the 9th day; E:
LYC-0.60%LVEO on the 9th day; F: CK on the 18th day; G: LYC-0.15%LVEO on the 18th day; H: LYC-0.30%LVEO
on the 18th day; I: LYC-0.60%LVEO on the 18th day.
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H: LYC-0.30%LVEO on the 18th day; I: LYC-0.60%LVEO on the 18th day.

3.1.2. Relative Abundance of the Major Phyla and Genera

In order to evaluate the change of bacterial community structure, 16S rRNA was also
used to analyze the abundance of individual bacterial species (phyla and genus) during
storage. Figure 3 showed the top 10 most abundant species. Proteobacteria and Firmicutes
were the most abundant bacterial phyla with a total relative abundance of more than
80%, followed by Bacteroidota and Actinobacteria (Figure 3A). On day 0, the relative
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abundance of Proteobacteria reached 70%, which was the key microbial phylum in large
yellow croaker samples. When stored at 4 ◦C, the richness of Proteobacteria increased first
and then decreased during the whole storage. The Proteobacteria reached the maximum
value of 86.23% on the 9th day for LYC-0.15%LVEO and then dropped to 80.15% at the
end. Meanwhile, the richness of Firmicutes increased from day 0 to the 9th day for CK
samples and had an opposite trend to that of LVEO-treated samples during storage. The
Proteobacteria for LYC-0.30%LVEO samples decreased from 15.62% on day 0 to 13.83% on
the 9th day and increased to 22.70% on the 18th day.
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and (B) genus level was shown. Below, the top 10 abundances at the phylum and genus levels were merged into others.
Each bar represents the relative abundance of each sample. Each color represents a particular phylum or genus. A: fresh; B:
CK on the 9th day; C: LYC-0.15%LVEO on the 9th day; D: LYC-0.30%LVEO on the 9th day; E: LYC-0.60%LVEO on the 9th
day; F: CK on the 18th day; G: LYC-0.15%LVEO on the 18th day; H: LYC-0.30%LVEO on the 18th day; I: LYC-0.60%LVEO on
the 18th day.
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At the genus level, Pseudomonas and Shewanella were the two major genera identified
(Figure 3B). Pseudomonas was dominant over the storage period with the initial abundance
of 37.31%. The richness increased for CK samples during refrigerated storage; however, the
LVEO-treated samples increased sharply from day 0 to the 9th day and then decreased. For
LYC-0.30%LVEO samples, the richness increased to 56.20% on the 9th day and decreased
to 45.56% at the end of storage. Shewanella was another dominant microorganism with an
initial abundance about 0.02%. The richness increased for CK and LYC-0.60%LVEO samples
during refrigerated storage. The LYC-0.15%LVEO and LYC-0.30%LVEO samples increased
from day 0 to the 9th day and then decreased. For LYC-0.60%LVEO samples, the richness
increased to 24.07% at the end of storage. Pseudomonas and Shewanella are gram-negative
psychrotrophic bacteria decaying fish in refrigeration and are considered to be the main
spoilage bacteria [41–43]. The main components of LVEO are citral (31.79%), neral (23.75%),
geraniol (22.01%), and D-limonene (10.36%), inhibiting the production of the essential
enzymes and causing damage to the bacterial cell walls [44,45]. However, Pseudomonas
and Shewanella have high resistance to LVEO due to the presence of lipopolysaccharide
in their outer membrane, which led to LVEO failing to penetrate the outer membrane.
Hence, the two bacteria were the predominant bacteria in all samples. Similar results were
also reported by Huang et al. [46], who found that Pseudomonas and Shewanella were the
dominant spoilage bacteria identified in grass carp (Ctenopharyngodon idellus) fillets during
chilled storage treated with oregano essential oil. Other key microbial genera, such as
Acinetobacter, increased for CK and LYC-0.60%LVEO samples from day 0 to the 9th day
and then decreased. However, the richness of Acinetobacter decreased for LYC-0.15%LVEO
and LYC-0.30%LVEO samples from day 0 to the 9th day and kept at a low level to the end.
Other species like Psychrobacter were found at a high level at the beginning and reduced to
be negligible on the 9th and 18th days.

3.1.3. Changes of Bacterial Diversity in Large Yellow Croaker Samples during
Refrigerated Storage

A heatmap on the relative abundance of bacteria under the top 35 genus-level phy-
lotypes was constructed to directly reflect the differences in bacterial composition and
dynamics of large yellow croaker samples during refrigerated storage (Figure 4). The
dominant bacterial genera differed among treatments. The most abundant genera of
bacterial community in fresh samples were Parococcus, Chryseobacterium, Psychrobacter,
Vulcaniibacterium, and Comamonas. However, it turned into more complex distribution
in samples during refrigerated storage. Regarding the bacterial community dynamics,
the five most abundant genera for CK were Arthrobacter, Paeniglutamicibacter, Brochothrix,
Acinetobacter and Aeromonas. It switched into Rhodoferax, Rheinheimera, Flavobacterium,
Anaeromusa-Anaeroarcus, and Pseudomonas for LVEO-treated samples. For samples stored
at 4 ◦C on the 18th day, Clostridium, Morganella, and Serratia for LYC-0.15%LVEO samples;
Akkermansia and Vagococcus for LYC-0.30%LVEO samples; and Dubosiella, Romboutsia, Buch-
nera, Thauera, Coriobacteriaceae, Kocuria, and Faecalibaculum for LYC-0.60%LVEO samples
showed the highest abundance (Figure 3).
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3.2. Changes in Free Carbonyl Compounds Contents

Protein oxidation causes the backbone to break, forms crosslinking, and converts some
amino acid residues to carbonyl compounds [47]. Therefore, the free carbonyl compounds
are the main chemical products of protein oxidation. The total free carbonyl compounds
contents of MPs from large yellow croaker samples increased with the prolonged storage
times. The increase in total free carbonyl compounds content indicated that MPs were
subjected to oxidative reactions, resulting in the oxidative degradation of proline, lysine,
histidine, and arginine residues [48]. Generally, free amino acids are prone to oxidation [49].
The initial free carbonyl compounds content was 1.92 µmol/g protein, continuously in-
creased, and reached 6.87 µmol/g protein for CK sample at the end of storage (p < 0.05)
(Figure 5A). The LVEO treatment was found to significantly inhibit carbonyl formation in
large yellow croaker samples, and their total free carbonyl compounds contents were 5.61,
5.12, and 4.06 µmol/g protein for LYC-0.15%LVEO, LYC-0.30%LVEO, and LYC-0.60%LVEO-
treated samples on the 18th day, respectively. This might be associated with the lower
microbial load with higher LVEO addition. Microbial proteases might cause the proteolysis,
leading to the generation of peptides and the attachment of secondary lipid oxidation
products, such as malondialdehyde or 4-hexyl-2 nonenal, to peptides generated [50]. Thus,
the use of antioxidants is an effective strategy to retard carbonyl groups formation during
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protein oxidation. Farvin et al. [51] reported that the application of potato peel extract as a
natural antioxidant in minced horse mackerel (Trachurus trachurus) led to a slower increase
in carbonyl contents during chilled storage.
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3.3. Changes in Total Sulfhydryl Contents

Sulfhydryl groups are sensitive to active hydroxyl radicals and are generally consid-
ered to be a good indicator for analyzing the degree of protein denaturation [52]. The
total sulfhydryl contents of all large yellow croaker samples were significantly (p < 0.05)
decreased during refrigerated storage (Figure 5B). LVEO acted as a novel protective agent
on the total sulfhydryl contents of the MPs during refrigerated storage. The sulfhydryl
contents of CK, LYC-0.15%LVEO, LYC-0.30%LVEO and LYC-0.60%LVEO treated samples
decreased by 41.90%, 34.07%, 28.71%, and 19.03% on the 18th day, respectively, compared
with the initial value. The decreased sulfhydryl contents may be due to the denaturation
and aggregation of muscle proteins caused by cysteine sulfhydryl oxidation or disul-
phide interchange reactions, resulting in the formation of disulphide bonds [53]. The
results showed that the decrease of the total sulfhydryl contents of LYC-0.30%LVEO and
LYC-0.60%LVEO-treated samples were clearly slower than that of the CK (p < 0.05) dur-
ing refrigerated storage, which could probably be related to the antioxidant activity of
LVEO. Previous studies attributed the protective effect of different antioxidant agents
on sulfhydryl groups to oxidation reactions in MPs [47,54]. The decrease in sulfhydryl
contents with the concomitant formation of a disulfide bond was somewhat coincidental
with the activity of Ca2+-ATPase. The degree of sulfhydryl oxidation is similar to that
of the decrease of Ca2+-ATPase activity, indicating that the sulfhydryl groups played a
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crucial role in the activity of ATPase and the sulfhydryl oxidation led to the decrease of
Ca2+-ATPase activity [55].

3.4. Changes in Ca2+-ATPase Activity

Even though the sulfhydryl content indicates the protein unfolding, Ca2+-ATPase
helps to examine the protein integrity. A decrease in Ca2+-ATPase activity usually indicates
the destruction of myosin S-1 structure [56]. Ca2+-ATPase activity of MPs in large yellow
croaker samples exhibited a significant decrease (p < 0.05) during refrigerated storage
(Figure 5C), which could be due to the conformational changes of myosin globular heads,
protein-protein interaction, and increased ionic strength [57]. The Ca2+-ATPase activity of
CK sample decreased with the highest speed during the refrigerated storage, indicating
the degeneration of MPs. Ca2+-ATPase activity in fresh large yellow croaker samples
was about 0.85 µmol/mg protein·min−1 (Figure 5C); the values decreased to 0.40, 0.45,
0.51, and 0.61 µmol/mg protein·min−1 for the CK, LYC-0.15%LVEO, LYC-0.30%LVEO,
and LYC-0.60%LVEO-treated samples on the 18th day, respectively. It can be concluded
that LYC-LVEO treatments can maintain the activity of Ca2+-ATPase to some extent by
protecting MPs integrity. Ca2+-ATPase activity is closely related to the sulfhydryl groups
on the myosin globular head [57]. The sulfhydryl group of cysteine is the center of the
Ca2+-ATPase activity; therefore, the oxidation of the sulfhydryl groups on the myosin
globular head is the reason for the decrease of Ca2+-ATPase activity [58,59]. The oxidation
of sulfhydryl groups on the active site led to a decrease in Ca2+-ATPase activity, which had
a similar trend between the sulfhydryl content and Ca2+-ATPase activity. In the present
study, LYC-LVEO treatments could retard the oxidation of sulfhydryl groups and decrease
Ca2+-ATPase activity in large yellow croaker samples during refrigerated storage.

3.5. Changes in Surface Hydrophobicity

Changes in surface hydrophobicity can be utilized to monitor the conformational
changes in protein structure and be a sensitive indicator of subtle changes in physical
and chemical states of MPs [60]. The surface hydrophobicity of fresh sample was approx-
imately 177.96 and increased significantly (p < 0.05) to 550.61 in the CK samples on the
18th day, which is significantly higher (p < 0.05) than 499.90, 485.20, and 458.13 in LYC-
0.15%LVEO, LYC-0.30%LVEO, and LYC-0.60%LVEO-treated samples on the 18th day, re-
spectively (Figure 5D). However, the results between the three treatments (LYC-0.15%LVEO,
LYC-0.30%LVEO, and LYC-0.60%LVEO) had no significant difference (p > 0.05). The results
demonstrated that the LYC-LVEO treatments effectively retarded the increase of surface
hydrophobicity in the large yellow croaker samples during refrigerated storage. Lower sur-
face hydrophobicity demonstrated that less hydrophobic protein was bound to fluorescent
probes, reflecting less exposure of hydrophobic groups and less protein denaturation [60].
The increase in surface hydrophobicity of MPs during refrigerated storage can be ascribed
to the proteins unfolding and the exposure of hydrophobic aliphatic and aromatic amino
acids [61].

3.6. Secondary Structure Changes Analysed by Raman Spectroscopy

Raman spectroscopy can reflect the secondary structure of MPs [62], and the contents
of different types of secondary structure are usually determined by analyzing the amide I
band. In order to explore the secondary structure changes of MPs in large yellow croaker
samples during refrigerated storage, this measurement was performed and the spectra con-
tained four secondary structures, α-helices (1645–1657 cm−1), β-sheets (1665–1680 cm−1),
β-turns (near 1680 cm−1), and random coils (1660–1665 cm−1) [63]. In denaturation of
MPs, the α-helices shifted to β-sheets and β-turns, and then β-sheets shifted to random
coil, which were ascribed to the breakdown of hydrogen bonds and the increase of hy-
drophobicity [38]. Therefore, α-helices were a kind of regular structure, with a higher
content of α-helices indicating more stability in secondary structure. The proportion of
α-helices in the CK samples significantly decreased to 63.46% on the 18th day (Table 2),
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while the proportion of random coils increased dramatically to 58.64%, compared with
fresh samples (p < 0.05). However, the ratio of α-helices in LVEO-treated samples decreased
by 33.25–45.29% on the 18th day. The changing trend of secondary structure in the CK
samples was similar to that of the LVEO-treated samples, indicating that the α-helices
transformed into random coils. The transition from α-helices to random coils is mainly for
the increase of hydrophobicity and the destruction of the hydrogen bonds, which keep the
stability of α-helices structure, leading to the disintegration of the α-helix structure [64].
The decreased α-helices contents and the increased random coils contents usually result
from the denaturation and unwrapping of protein molecules [65]. The α-helix contents in
LVEO-treated samples were higher than that in CK samples at each sampling time. The
α-helices, β-turns, and random coils contents in the three LVEO treated samples had no
significant differences in the three LVEO-treated samples (p > 0.05) during refrigerated
storage. There were less α-helices transforming into random coils in LVEO-treated sam-
ples, indicating that the LVEO-treated samples had more stable MPs structure. Hydrogen
bond is the main interaction force maintaining the stability of the α-helical structure. The
decrease of α-helices content in the MPs was related to the gradual breaking of hydrogen
bonds and the partial unfolding of the helical structure [66,67]. In the present research, the
decrease in α-helices with hydrogen bond fracture was induced to expose the hydrophobic
groups, resulting in the increase in hydrophobic interactions. The antioxidant compounds
in LVEO exhibited a protective effect against lipid oxidation, inhibiting the formation of
secondary lipid oxidation products and protein oxidation and maintaining the protein
conformation. Furthermore, polyphenols in LVEO interacting with protein may also lead
to structure stability (higher α-helical content and lower random coils content) than the CK
samples through hydrophobic interactions and hydrogen bonding [68].

Table 2. Changes in the secondary structure contents of myofibrillar protein in large yellow croaker
(Larimichthys crocea) during refrigerated storage.

Samples α-Helices β-Sheets β-Turns Random Coils

Fresh 20.8% 12.5% 28.5% 38.2%
CK on 9th day 1 27.6% 13.3% 20.4% 38.7%

LYC-0.15%LVEO on 9th day 8.4% 15.5% 20.3% 55.8%
LYC-0.30%LVEO on 9th day 21.0% 12.0% 26.6% 40.4%
LYC-0.60%LVEO on 9th day 17.0% 20.6% 33.0% 29.4%

CK on 18th day 7.6% 10.1% 21.7% 60.6%
LYC-0.15%LVEO on 18th day 8.3% 15.6% 20.6% 55.5%
LYC-0.30%LVEO on 18th day 10.2% 15.4% 23.5% 50.9%
LYC-0.60%LVEO on 18th day 10.9% 15.6% 22.3% 51.2%

1 CK: large yellow croaker samples were packaged with FG/SA films without LVEO emulsion; LYC-0.15%LVEO:
large yellow croaker samples were packaged with LBG/SA films containing 0.15% LVEO emulsion; LYC-
0.30%LVEO: large yellow croaker samples were packaged with LBG/SA films containing 0.30% LVEO emul-
sion; and LYC-0.60%LVEO: large yellow croaker samples were packaged with LBG/SA films containing 0.60%
LVEO emulsion.

3.7. Tertiary Structure Changes Analysed by IFI

IFI is a well-established technique for tracking tertiary structure changes in MPs during
refrigerated storage. The IFI of MPs mainly contributed to by tryptophan (Trp) residues is
sensitive to the micro-environments [69]. When Trp and other hydrophobic amino acid
residues are embedded in the protein core, the fluorescence intensity is higher [54]. The
maximum IFI of MPs was found at 330–340 nm for each sample in the present research
(Figure 6). Storage time resulted in a shift of λmax from 336.3 nm (on 0 day) to 333.7, 334.0,
336.3, and 336.3 nm for CK, LYC-0.15%LVEO, LYC-0.30%LVEO, and LYC-0.60%LVEO
samples on the 9th day, respectively. This result indicated that the fluorophores were
exposed to the hydrophilic environment. While the λmax of CK, LYC-0.15%LVEO, LYC-
0.30%LVEO, and LYC-0.60%LVEO samples on the 18th day showed a slight shift to 336.0,
338.3, 338.7, and 339.3 nm, respectively, the result showed that some of the tryptophan
residues were exposed to a polar environment, and the exposure of hydrophobic groups
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and the hydrophobic interaction led to the formation of protein aggregates [70]. The
unfolding and aggregation of MP in large yellow croaker samples that occurred during
refrigerated storage may destroy hydrophobic interactions. The IFI of Trp in the large
yellow croaker samples decreased significantly compared with the CK sample during
refrigerated storage. The IFI decreased with the increase storage time. The trend indicated
that refrigerated storage enhanced the polar environment around the Trp residues, which
may produce a shielding effect to reduce the overall fluorescence [71]. At the end of storage,
the IFI in CK, LYC-0.15%LVEO, LYC-0.30%LVEO, and LYC-0.60%LVEO samples decreased
by 62.54%, 59.35%, 59.33%, and 55.28%, respectively, compared to the initial value. The IFI
of large yellow croaker treated with LYC-LVEO bioactive coatings was significantly higher
than that in CK after 18 days (p < 0.05) and decreased protein degeneration and tertiary
structure changes during refrigerated storage.
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3.8. Morphological Changes Detected by TEM

The ultrastructure of the muscle determines the structure of the fish and reflects
the changes in MPs. Therefore, a deep investigation on muscle ultrastructure played an
important role in exploring the potential effect of LYC-LVEO treatments on the degradation
of MPs. As shown in Figure 7, the fresh samples had clear Z- and M-lines as well as H-, A-,
and I-bands, and the refrigerated storage changed the sarcomere structure of the samples.
At the end of storage, the Z- and M-lines of CK samples were fuzzy and they were not able
to identify the sarcomere structure in some cases to the full extent. The boundaries of H-, A-,
and I-bands became blurred, and the sarcomere integrity was damaged, which was related
to the degradation of titin, playing an important role in the stability of thick filaments
and the connection between sarcomere [34]. Sarcomere is the basic unit of contraction of
striated muscles, which are stacked in the muscle tissue. The sarcomere contains many
actin (thin) and myosin (thick) filaments assembling into parallel bundles. Myosin and
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actin filaments are maintained within the sarcomere by the M and Z lines, respectively.
The sarcomere extends from one Z-line to the next, with the M-line in the center of the
H-zone [72]. Yang et al. [34] suggested that the degradation of desmin and titin could
cause the destruction of Z-disk. In addition, the severe degradation inevitably led to the
disintegration of A- and I-bands due to the connection between M-line and Z-disk. The
sarcomere structure of CK samples appeared completely destroyed. Previous research
showed that the reduction of the mechanical constraints of the fiber nets could result in
the conversion of secondary structure by reducing the hydrogen bond’s force [73]. The
disordered arrangement of MPs was consistent with the results of Raman spectroscopy
parameters. However, the ultrastructures in the LVEO-treated samples were still regular in
appearance. The light I-bands and dark A-bands were distinct in the large yellow croaker
samples from LYC-0.30%LVEO and LYC-0.60%LVEO samples, and Z-disk was also in
good shape.
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Figure 7. Transmission electron microscopy (TEM) micrographs of large yellow croaker (Larimichthys crocea) during
refrigerated storage. (CK: large yellow croaker samples were packaged with FG/SA films without LVEO emulsion;
LYC-0.15%LVEO: large yellow croaker samples were packaged with LBG/SA films containing 0.15% LVEO emulsion;
LYC-0.30%LVEO: large yellow croaker samples were packaged with LBG/SA films containing 0.30% LVEO emulsion; and
LYC-0.60%LVEO: large yellow croaker samples were packaged with LBG/SA films containing 0.60% LVEO emulsion).

4. Conclusions

Pseudomonas and Shewanella were the two major genera identified during refrigerated
storage according to the high throughput sequencing analysis results. The obviously de-
creased degradation of MPs during refrigerated storage was observed in the presence of
LVEO treatments. Compared with the CK sample, LVEO-active coatings exerted signif-
icant protective effects against MPs oxidation, including the restriction of free carbonyl
compounds formation and surface hydrophobicity, and a smaller reduction in the total
sulfhydryl groups and Ca2+-ATPase activity. The secondary protein structure was effec-
tively protected by LVEO coatings with the increased α-helices and decreased random coils
contents. IFI measurements revealed a slighter decrement of the conformational changes
of MPs. What is more, the treated MPs ultrastructure of large yellow croaker was still in
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good shape with better light I-bands, dark A-bands, and Z-disk at the end of storage. In
summary, the antibacterial effect of LVEO-active coatings played an important role in the
changes of bacterial diversity and MPs.
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