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Purpose: Red blood cell (RBC) folate indicates long-term folate intake, and methylenete-

trahydrofolate reductase (MTHFR) gene is the main gene affecting folate status. Increasing

evidence suggests an association between gestational diabetes mellitus (GDM) and increased

folate levels. Whether RBC folate concentrations in the first trimester of pregnancy or

polymorphisms of MTHFR C677T (rs1801133) affect GDM risk in Chinese pregnant

women remains unknown. Therefore, we analyzed the associations of RBC folate concen-

trations and rs1801133 polymorphisms with GDM risk among pregnant women in China.

Methods: A total of 366 women with a singleton pregnancy were followed prospectively from

their first prenatal visit to delivery. RBC folate concentrations and rs1801133 polymorphisms

were assessed during the first trimester of pregnancy. Binary logistic regression analyses were

performed to determine the odds ratios (ORs) of GDM and 95% confidence intervals (CIs) by

using the RBC folate concentration quartiles and rs1801133 polymorphisms.

Results: Participants with the TT genotype had the highest RBC folate concentrations. Those

with heterozygous or homozygous variants did not have a significantly higher risk of GDM than

did women with C alleles. After adjustments for covariates, women in the highest quartile for

RBC folate concentration had a higher risk of GDM (adjusted OR = 2.473, 95% CI = 1.013–

6.037, P = 0.047) than did those in the lowest quartile, but this association was nonsignificant

after adjustment for rs1801133 polymorphisms.

Conclusion: Higher RBC folate, partly caused by MTHFR 677C→T, may be associated

with increased GDM risk, even in early pregnancy. Assessing RBC folate status and

appropriately supplementing folate during early pregnancy, particularly for patients with

MTHFR 677C→T, may prevent GDM. Further studies with larger populations are

warranted.

Keywords: gestational diabetes mellitus, folic acid, folate, red blood cell folate,

methylenetetrahydrofolate reductase, MTHFR

Introduction
Gestational diabetes mellitus (GDM) is common during pregnancy. Although GDM

affects approximately 15% of pregnant women globally,1 its prevalence in Asian

countries can reach 17–20%.2,3 GDM is defined as impaired glucose intolerance and

insulin resistance with onset or recognition during pregnancy,4 and it has various

negative implications for mothers and their children. For mothers, GDM is associated
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with higher rates of preeclampsia, cesarean deliveries,

shoulder dystocia, and type 2 diabetes mellitus in the post-

partum period.5,6 In addition, children born to mothers with

GDM are more likely to develop obesity, impaired glucose

tolerance (IGT), and type 2 diabetes in childhood or early

adulthood.5,7,8 Overweight, obesity, and IGT are significant

risk factors for GDM, causing a vicious intergenerational

cycle of obesity and diabetes. Therefore, effective interven-

tions to treat and prevent GDM are required to halt this

cycle.9 Currently, main preventivemeasures focus on reason-

ably controlling weight gain during pregnancy, a main mod-

ifiable risk factor for GDM. However, increasing evidence of

the relationship between high folate levels and GDM has

emerged.

Folic acid (FA) can prevent neural tube defects

(NTDs), and FA supplements before and during pregnancy

are recommended globally.10 Since increased FA con-

sumption has become common among pregnant women,

the potential adverse effects of FA supplementation or

elevated folate levels in mothers on insulin resistance in

their children are concerning.11,12 Studies from Asian

countries have reported that FA supplementation in early

pregnancy and higher plasma folate concentrations are

associated with higher risks of GDM.13,14 Furthermore,

higher dosages (≥800 μg/d) of FA supplements and longer

supplementation durations are associated with higher

GDM risks.15 Therefore, evaluating the folate levels of

pregnant women is necessary. The determinants of folate

status may be multifactorial, including genetic, biological,

and socioeconomic components.16 Inheritance of the spe-

cific genetic variant methylenetetrahydrofolate reductase

(MTHFR) C677T (rs1801133) in the gene encoding the

MTHFR enzyme is considered the strongest determinant of

folate status in women of reproductive age.16,17 In clinical

practice, mutations in folate-associated genes, among

which MTHFR C677T is the most crucial, are commonly

detected in women with adverse pregnancy histories.

Folate status can be modulated through the appropriate

dosage and duration of FA supplementation, and several

methods are used to evaluate folate levels, such as measur-

ing folate in urine, serum, and red blood cells (RBCs).18

Serum folate rapidly responds to folate intake or FA supple-

mentation, whereas RBC folate indicates long-term folate

status and responds mainly to supplementation and

fortification.16 The World Health Organization (WHO) pro-

vided a reference for folate status and defined RBC folate

concentrations of ≥906 nmol/L as optimal for preventing

NTDs.16 However, a Chinese study reported that RBC folate

concentrations of ≥906 nmol/L during the second trimester

of pregnancy significantly increase GDM risk.19 Because FA

supplementation in early pregnancy is associated with GDM

risk,13 and no relevant study has accounted for folate-

associated genes, such as MTHFR C677T, we hypothesized

that higher concentrations of RBC folate in early pregnancy

and rs1801133 polymorphisms affect subsequent GDM

development. Therefore, we observed the associations of

RBC folate concentrations in the first trimester of pregnancy

and rs1801133 polymorphisms with subsequent GDM risk

among pregnant women in China. Data from a mother–child

cohort study in which the correlation between single-

nucleotide polymorphisms (SNPs) in nutrient-associated

genes and maternal nutritional status was investigated.

Materials and Methods
Ethical Statement
The study protocol was approved by the Ethics Committee

of Peking Union Medical College Hospital of the Chinese

Academy of Medical Science (Unique Protocol ID: hs-

1646) and registered on www.ClinicalTrials.gov (registra-

tion ID: NCT03651934). This study was conducted in

accordance with both the Declaration of Helsinki, as

revised in 1983, and the guidelines of the center’s institu-

tional review board. All participants received details of the

study and provided written informed consent.

Study Population
Women in early pregnancy were recruited in October and

December 2018 at the Shunyi District Maternal and Child

Health Hospital (Beijing, China). Participants were Chinese

residents, had established prenatal records before recruit-

ment, and intended to deliver in the same hospital. Women

were excluded if they (1) did not have a singleton preg-

nancy, (2) were not of the Han ethnicity (to prevent con-

founding by ethnicity), (3) had lab-tested fasting glucose ≥
6.1 mmol/L or HbA1c > 6.5% or received a diagnosis of

diabetes before pregnancy, (4) had a history of autoimmune

diseases (such as systemic lupus erythematosus) or cur-

rently used corticosteroids, (5) had definite hyperthyroidism

or hypothyroidism, (6) had miscarried or induced labor

before the 75-g oral glucose tolerance test (OGTT) at 24

to 28 weeks’ gestation, (7) had a history of liver or renal

insufficiency or presumed acute inflammation (C-reactive

protein [CRP] > 10 mg/L), or (8) had incomplete RBC

folate or MTHFR C677T gene measurement records.

A total of 432 pregnant women agreed to participate at
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baseline. Trained researchers used a standard questionnaire

to collect participants’ age, ethnicity (self-reported), smok-

ing habits (yes/no), drinking habits (yes/no), physical activ-

ity (0–150 mins or ≥150 mins of weekly moderate exercise

[such as fast walking, jogging, or aerobics]), parity (nulli-

para, secundipara, or multipara [>two deliveries]), family

history of diabetes (yes/no), and use of FA supplements at

enrollment (<400 or ≥400 μg/d). Height was measured to

the nearest 0.1 cm with a portable stadiometer. Weight was

measured in an upright position to the nearest 0.1 kg with

a calibrated scale. Body mass index (BMI) was calculated

as weight (kg)/height (m2). During the entire pregnancy,

routine prenatal examinations for each participant were

performed in the same hospital. At 24 to 28 weeks’ gesta-

tion, a 75-g OGTTwas conducted for all participants. GDM

was diagnosed using the following glucose-level thresholds

of the Implementation of the International Association of

Diabetes and Pregnancy Study Groups and WHO: fasting

plasma glucose (FPG) ≥ 5.1 mmol/L, 1-h plasma glucose

(PG) ≥ 10.0 mmol/L, and 2-h PG ≥ 8.5 mmol/L. All related

data were obtained from medical records. A total of 366

women with complete data were eligible to participate in

this study. A participant inclusion flowchart is presented in

Figure 1.

Blood-Sample Measurements
Blood samples were retrieved from participants during

their first visit before 12 weeks’ gestation after an over-

night (≥8 h) fast. Concentrations of plasma folate, RBC

folate, and vitamin B12 were quantified through chemilu-

minescence assay using a Beckman Coulter DxI 800 chem-

istry analyzer (Beckman Coulter Inc., Brea, CA, USA).

CRP was measured using a Beckman Coulter AU5800

chemistry analyzer (Beckman Coulter Inc., Brea, CA,

USA) and its supporting reagent. Homocysteine concentra-

tions were measured using an enzymatic assay on

a Beckman Coulter DX1 800 automatic chemistry analyzer

(Beckman Coulter Inc., Brea, CA, USA). Plasma glucose

measurements in the OGTT were conducted on a Beckman

Coulter AU2700 chemistry analyzer (Beckman Coulter

Inc., Brea, CA, USA). Homeostasis model assessment-

insulin resistance (HOMA-IR) and homeostasis model

assessment-β (HOMA-β) were calculated as follows:20

HOMA-IR = (fasting plasma glucose [mmol/L] × fasting

serum insulin [mIU/mL])/22.5, and HOMA-β = (20 ×

fasting serum insulin [mIU/mL])/(fasting plasma glucose

[mmol/L] − 3.5).

DNA Extraction
DNA was extracted from saliva or an oral swab sample

with an Auto-Pure 96 automatic extractor and then quan-

tified using a Tecan Infinite multifunction enzyme-labeling

instrument for concentration, and A260/A280 and A260/

A230 ratios were calculated for array testing. Extracted

DNA was amplified before fragmentation. Resuspended

DNA samples were loaded into a Tecan Freedom Evo

liquid-processing workstation for overnight hybridization

with an Illumina array in an Illumina Hybridization Oven

432 unrelated Chinese pregnant women

agreed to participate in the study     

Blood sample were obtained from 427 

pregnant women 

Not the Han ethnicity (n=4)

Diagnosed with diabetes before 

pregnancy (n=1)

With definite thyroid disease (n=6)

C-reactive protein > 10 mg/L (n=11)  

Fasting glucose ≥ 6.1 mmol/L (n=2)

408 potential participants

Miscarried or induced labor before 

a 75-g OGTT (n=10)              

398 participants completed the 75-g 

OGTT

366 participants with completed results 

on RBC folate and genotypes

Figure 1 Participant flowchart.
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at room temperature. After hybridization, the chip was

washed to remove excess nonhybridized nucleic acid frag-

ments. Subsequent extension and dyeing procedures were

performed on the same workstation. The final coated array

was scanned using an Illumina iSCAN scanner and ana-

lyzed to obtain the genotypes of the MTHFR C677T loci.

Statistical Analysis
Statistical analysis was performed using SPSS (version 16.0,

Chicago, IL, USA). Normally distributed variables are pre-

sented as means (standard deviations), whereas skewed vari-

ables are presented as medians (interquartile range,

25–75%). Categorical variables are expressed as frequencies

or percentages and were examined using chi-square tests.

Independent-sample t tests or the Mann–Whitney U-tests,

respectively, were used to compare variables with normal

or skewed distributions between the GDM and non-GDM

groups. Differences in concentrations of RBC folate as well

as homocysteine between the GDM and non-GDM groups or

within each group according to genotype were analyzed

using a univariate analysis of variance (UNIANOVA)

adjusted for age, BMI, and FA supplement use (<400 or

≥400 μg/d). Spearman correlation analyses were performed

to detect associations of RBC folate concentrations with

HOMA-IR, CRP, age, and BMI. RBC folate concentrations

were divided into quartiles (Q1, <509.0 nmol/L; Q2, 509.0–-

647.9 nmol/L; Q3, 648.0–862.4 nmol/L; and Q4, ≥862.5
nmol/L). Binary logistic regression analyses were used to

determine odds ratios (ORs) and 95% confidence intervals

(CIs) of the associations of GDM with RBC folate levels (as

quartiles or a continuous variable) as well asMTHFR C677T

SNP, with or without adjustments for covariates; the domi-

nant [(CT+TT): CC] and additive [(CC+TT): CT] models for

the MTHFR C677T gene loci were also analyzed. All

reported P values were two-tailed, and P < 0.05 was con-

sidered statistically significant.

Results
Baseline Characteristics and GDM

Incidence
Of the 366 eligible women, 67 (18.3%) received diagnoses of

GDM. Because none of the participants smoked or consumed

alcohol for at least 3 months before enrollment, we do not

present the data on smoking and alcohol consumption.

Compared with participants in the non-GDM group, those in

GDMgroupwere significantly older, were more likely to have

family history of diabetes, and had higher BMI, HOMA-IR,

and CRP values (P < 0.01 for all). Participants in the GDM

group tended to have higher RBC folate concentrations (P =

0.069) but less exercise time per week (P = 0.01). No sig-

nificant differences in parity, FA supplement use (at enroll-

ment), hemoglobin concentration, serum folate level, serum

vitamin B12 level, serum homocysteine level, HOMA-β, or

MTHFR C677T genotype were observed between the groups

(Table 1).

Table 1 Maternal Characteristics, RBC Folate Concentrations,

and MTHFR C677T Polymorphisms in the GDM and Non-GDM

Groups

Maternal

Characteristics

GDM

(n=67)

Non-GDM

(n=299)

P

Age (years) 30.5 (4.0) 28.9 (3.5) 0.001

<30 30 (44.8) 122 (40.8) 0.551

≥30 37 (55.2) 177 (59.2)

BMI at enrollment (kg/m2) 24.3 (3.6) 22.4 (3.6) <0.001

<24 37 (55.2) 216 (72.2) 0.006

≥24 30 (44.8) 83 (27.8)

Parity

Nullipara 37 (55.2) 180 (60.2) 0.454

Secundipara 30 (44.8) 119 (39.8)

Multipara 0 (0.0) 0 (0.0) -

Family history of diabetes 12 (17.9) 21 (7.0) 0.005

Physical Activity

0–150 minutes per week 45 (67.2) 149 (49.8) 0.01

≥150 minutes per week 22 (32.8) 150 (50.2)

Folic Acid Supplements at

Enrollment

<400μg 24 (35.8) 97 (32.4) 0.595

≥400μg 43 (64.2) 202 (67.6)

Hemoglobin (g/L) 132.4 (8.9) 131.3 (10.8) 0.448

Serum folate (nmol/L) 23.9

(14.1–24.0)

21.4

(16.0–24.0)

0.454

C-reactive protein (mg/L) 3.3 (1.6–5.9) 1.9 (0.9–3.5) <0.001

HOMA-IR 2.1 (1.4–3.0) 1.4 (1.0–2.1) <0.001

HOMA-β 169.1

(121.4–282.4)

168.2

(111.2–279.6)

0.698

Serum homocysteine

(μmol/L)

9.1 (1.9) 9.1 (2.8) 0.978

Serum vitamin B12 (pmol/

L)

237.3 (101.8) 241.0 (108.9) 0.801

RBC folate (nmol/L) 755.1 (276.0) 690.6 (258.3) 0.069

MTHFR Polymorphisms 0.384

CC 8 (12.0) 56 (18.7)

CT 35 (52.2) 151 (50.5)

TT 24 (35.8) 92 (30.8)

Abbreviations: HOMA-IR, homeostasis model assessment-insulin resistance;

RBC, red blood cell; HOMA-β, homeostasis model assessment-β.
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We compared concentrations of RBC folate and homo-

cysteine as well as HOMA-IR among the participants accord-

ing to rs1801133 genotype (Table 2), revealing a significant

difference in the overall concentration of RBC folate and

homocysteine among the three genotypes (P < 0.01 for all).

Associations of RBC Folate

Concentration with GDM Risk,

HOMA-IR, and Inflammatory Markers
The Spearman correlation analysis indicated that RBC

folate level was not significantly correlated with age (coef-

ficient = 0.061, P = 0.241), BMI (coefficient = −0.032, P =

0.541), HOMA-IR (coefficient = 0.039, P = 0.455), or

CRP (coefficient = 0.019, P = 0.722).

RBC folate concentrations were divided into quartiles

according to the cutoff points of the distribution for this

entire study population, and the lowest quartile was used

as a reference. Binary logistic analyses indicated that

women with RBC folate concentrations in the highest

quartile had a higher risk of GDM (adjusted OR = 2.473,

95% CI = 1.013–6.037, P = 0.047) than did those with

RBC folate concentrations in the lowest quartile, after

adjustments for age, BMI, physical activity, family history

of diabetes, parity, FA supplement use at enrollment, and

HOMA-IR, CRP, hemoglobin, serum vitamin B12, and

serum homocysteine level (Table 3). After further adjust-

ment for rs1801133 SNPs, this association became non-

significant (adjusted OR = 2.251, 95% CI = 0.890–5.696,

P = 0.087). When RBC folate was regarded as

a continuous variable, it was not linearly associated with

GDM risk (Table 3).

Associations Between MTHFR SNP and

GDM Risk
In the study population, the CC, CT, and TT C677T geno-

types had frequencies of 17.5%, 50.8%, and 31.7%, respec-

tively. No significant differences were discovered between

the observed and genotype distributions expected according

with the Hardy–Weinberg equilibrium (P > 0.05).

We analyzed the associations of the CT and TT

rs1801133 genotypes with GDM risk, with the CC geno-

type as a reference. After adjustment for covariates in the

logistic regression analysis, women with the CT or TT

genotypes of rs1801133 did not have a significantly higher

risk of GDM than did women with C alleles. Furthermore,

in the analysis of both mutant genotypes (CT or TT),

women without the C alleles did not have a significantly

higher risk of GDM than did women with C alleles (all P >

0.05), after adjustment for covariates. Finally, with the CT

genotype was used as a reference, women with the CC or

TT genotype did not have a significantly higher risk of

GDM than did women with the CT genotype (Table 4).

Discussion
China currently has no policy regarding food fortification with

FA, and insufficient dietary FA intake and FA deficiency

remain common. FA supplementation before and during

early pregnancy may lead to significantly higher folate levels

among pregnant women than among the general population.

Because the current dosage (200–5000 μg/d) and courses of

FA supplements before and during early pregnancy are rela-

tively broad, excessive FA supplementation in early preg-

nancy requires attention.

To our knowledge, this is the first study to analyze the

association between maternal RBC folate concentrations in

the first trimester of pregnancy and GDM risk. Our find-

ings suggest that high RBC folate levels, even in early

pregnancy, may be associated with an increased risk of

GDM. This evidence strengthens a previous finding that

daily FA supplement use in the first trimester is associated

with a higher risk of GDM,13 despite differences in folate

evaluation between our studies.

Table 2 HOMA-IR, RBC Folate, and Homocysteine

Concentrations by Genotype

Variables CC CT TT P

RBC folate (nmol/L)a

GDM 717.1 (233.0) 667.2 (238.4) 895.9 (291.7) 0.016

Non-

GDM

596.2 (195.2) 645.7 (220.3) 816.3 (297.5) <0.001

All 611.5 (202.4) 649.8 (223.3) 832.9 (296.8) <0.001

Homocysteine (μmol/L)b

GDM 8.6 (1.3) 9.0 (1.6) 9.2 (2.4) 0.688

Non-

GDM

8.7 (1.4) 8.6 (1.2) 10.0 (4.5) 0.002

All 8.7 (1.3) 8.7 (1.3) 9.8 (4.2) 0.001

HOMA-IRc

GDM 1.91

(0.96–4.66)

2.23

(1.45–2.84)

1.89

(1.38–3.31)

0.866

Non-

GDM

1.66

(1.15–2.24)

1.29

(0.93–1.92)

1.47

(1.05–2.07)

0.077

All 1.66

(1.13–2.45)

1.42

(0.98–2.31)

1.53

(1.10–2.26)

0.347

Notes: a,bAdjusted for age, BMI, and use of FA supplements. cComparisons made

using the Kruskal–Wallis H-test.
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Although the underlying mechanism by which high

folate levels affect GDM susceptibility remains unclear,

two possible explanations have been proposed.13 The first

is an imbalance between vitamin B12 and folate. High

folate levels may exacerbate the metabolic effects of vita-

min B12 deficiency21 and affect the pathogenesis of GDM

by impairing insulin resistance. Several studies have con-

firmed the possibility of this mechanism.11,22,23

Furthermore, the combination of vitamin B12 deficiency

and high plasma folate concentrations was associated with

a higher risk of GDM compared with normal vitamin B12

status and high folate concentrations.14 This adds evidence

to the two studies. A UK population study24 reported that

women with vitamin B12 deficiency rather than those with

high folate levels were more likely to have obesity and

GDM. However, we demonstrated that women whose

RBC folate status was in the highest quartile had higher

odds of GDM than did women whose RBC folate status

was in the lowest quartile, independent of serum vitamin

B12 and other covariates. Several factors may contribute

to the inconsistency of the aforementioned findings. First,

the time windows for determining folate status and serum

vitamin B12 were different. Second, differences in parti-

cipant ethnicities or dietary patterns may partly account for

the inconsistent findings. Third, none of these studies,

including the current study, included details on the dura-

tion of folate intake, which is crucial to the association of

FA intake with adverse pregnancy outcomes,25 suggesting

that differences in FA intake duration may affect the

results.

The folate status of the participants in our study was

assessed using RBC folate, which is indicative of long-

term folate status and responds mainly to supplementation

and fortification.16 In this case, RBC folate is an ideal

index of effectiveness of folate supplementation because

food fortification with FA has not been implemented in

China, and FA supplements were the only source of syn-

thetic FA used by the study population. Furthermore,

a Chinese study confirmed that high-dose (≥800 μg/d)

FA supplementation from prepregnancy to midpregnancy

is significantly associated with a higher GDM risk,15 sup-

porting our findings.

The second possible explanation for the mechanism

underlying the association between high folate levels and

Table 3 Association of GDM Risk with RBC Folate Levels

RBC Folate levels GDM, n (%) Model Onea Model Twob

OR (95% CI) P OR (95% CI) P

Q1(<509.0nmol/L) 12 (13.2) 1.00 (Reference) – 1.00 (Reference) –

Q2 (509.0–647.9nmol/L) 15(16.3) 1.417 (0.612–3.277) 0.416 1.354 (0.530–3.456) 0.526

Q3 (648.0–862.4nmol/L) 17(18.7) 1.671 (0.735–3.800) 0.173 1.374 (0.546–3.455) 0.500

Q4 (≥862.5nmol/L) 24(26.1) 2.567 (1.173–5.619) 0.018 2.473 (1.013–6.037) 0.047

As a continuous variable (SD, 262.4 nmol/L) – 1.001 (1.000–1.002) 0.071 1.001 (1.000–1.002) 0.121

Notes: aWithout adjustment for covariates. bAdjusted for age, physical activity, BMI, parity, family history of diabetes, use of folic acid supplements,

HOMA-IR, C-reactive protein, hemoglobin, vitamin B12, and serum homocysteine.

Table 4 Association of MTHFR SNPs with GDM Risk

SNPs Loci GDM, n (%) Non-GDM, n (%) Adjusted Modela

OR (95% CI) P

Genotype CC 8 (12.0) 56(18.7) 1.000

CT 35(52.2) 151(50.5) 2.162(0.842–5.551) 0.109

TT 24(35.8) 92(30.8) 2.391(0.875–6.529) 0.089

Dominant model CC 8 (12.0) 56(18.7)

CT+TT 59(88.0) 243(81.3) 2.241(0.901–5.578) 0.083

Additive model CT 35(52.2) 151(50.5)

CC+TT 32(47.8) 148(49.5) 0.822(0.452–1.497) 0.522

Note: aAdjustments for age, physical activity, BMI, parity, family history of diabetes, use of FA supplements, HOMA-IR, C-reactive protein, hemoglobin,

vitamin B12, and serum homocysteine.
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an increased risk of GDM is the harmful effect of unme-

tabolized plasma FA, which is associated with reduced

cytotoxicity of natural killer cells.26 This reduced cyto-

toxicity may be involved in the pathogenesis of GDM.27

However, studies on the effect of long-term high-FA

intake on the immune function and health of pregnant

women are warranted.

The MTHFR gene has been mapped to chromosomal

region lp36.3 and comprises 11 exons encoding 5′,10′-

MTHFR,28 a crucial regulatory enzyme in folate metabo-

lism that converts 5′,10′-MTHFR into 5′-MTHFR, which

is the methyl donor for the remethylation of homocysteine

to methionine.29 MTHFR 677C→T is a common missense

mutation resulting in the substitution of alanine with valine

at amino acid position 222. Inheritance of the recessive

T allele reduces enzyme activity and increases homocys-

teine concentrations,30 which is associated with insulin

resistance.31,32

We observed no significant differences in HOMA-IR

among the three genotypes. However, overall homocys-

teine concentrations in women with the TT genotype

were significantly higher than those with the CT or CC

genotypes (P = 0.001), after adjustment for age, BMI,

and FA supplement use. These results are consistent with

previous findings.30 In addition, carriers of the TT geno-

type typically have lower folate levels than do C allele

carriers.17 However, we demonstrated that RBC folate

concentrations in the TT group were generally higher

than those in the other two groups when adjusted for

age, BMI, and FA supplement use. This suggests that the

TT genotype is related to increased RBC folate; how-

ever, dietary factors and FA supplementation duration

were not quantitatively evaluated. Our findings are sup-

ported by a Chinese study in which RBC folate levels

were significantly higher in individuals with the TT

genotype than in those with the CC genotype.33

The effects of MTHFR C677T SNPs on GDM risk

were analyzed in our study. Currently, only one study

from India has researched the relationship between

MTHFR C677T polymorphisms and GDM risk.34 That

study reported no significant difference in the allele or

genotype frequencies of MTHFR C677T polymorphisms

between patients with and without GDM. This result is

consistent with our findings. Furthermore, we performed

binary logistic regressions to determine the ORs and 95%

CIs of GDM risk according to MTHFR C677T polymorph-

isms. When the CC genotype was used as a reference, we

observed that women with the CT or TT genotypes did not

have a significantly higher risk of GDM, after adjustment

for covariates. Furthermore, when analyzing the dominant

and additive models for the MTHFR C677T gene loci, we

observed a negative association between GDM risk and

MTHFR C677T polymorphisms in this population.

We demonstrated that women whose RBC folate con-

centrations were in the highest quartile had a higher risk of

GDM (P = 0.047) than did those whose RBC folate con-

centrations were in the lowest quartile, after adjustments

for covariates. Moreover, rs1801133 SNPs were unlikely

to be associated with GDM risk in this Chinese population.

However, when rs1801133 polymorphisms were regarded

as a covariate in the model of the relationship between

RBC folate status and GDM risk, the GDM risk of women

in the highest quartile of RBC folate was not significantly

higher than that of women in the lowest quartile (adjusted

OR = 2.251, 95% CI = 0.890–5.696, P = 0.087). Because

women with the T allele genotype had the highest concen-

tration of RBC folate in this population, rs1801133 SNPs

may affect the association between RBC folate and GDM

risk by influencing folate status.

Conclusion
The strengths of this study were its prospective design,

novel analysis of the associations of RBC folate status in

the first trimester of pregnancy and rs1801133 poly-

morphisms with GDM risk, and careful recording of

obstetric outcomes by researchers blinded to folate status

and rs1801133 genotype. However, our study has several

limitations. First, the sample size was relatively small.

Although high RBC folate status in early pregnancy was

associated with an increased risk of GDM in this popula-

tion, the significance was weak. Studies with larger sam-

ple sizes are warranted. However, our findings correspond

to those of a Chinese study in which high-dosage (≥800
μg/d) FA supplementation from prepregnancy to mid-

pregnancy was significantly associated with higher

GDM risk.15 Second, we measured RBC folate concen-

tration only once during early pregnancy. However,

increased folate levels in the second or the third trimester

of pregnancy are also associated with high GDM risk.

Third, dietary folate intake and duration of FA supple-

mentation were not quantitatively evaluated. Despite

these shortcomings, our study suggests for the first time

that higher maternal RBC folate levels during early preg-

nancy are associated with greater GDM risks, and this

association may be affected by rs1801133 polymorph-

isms. Therefore, folate status assessment using RBC
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concentrations and subsequent administration of appro-

priate folate supplements during early pregnancy may

help prevent GDM.
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trahydrofolate reductase; RBC, red blood cell; FA, folic acid;
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model assessment-β; SNP, single-nucleotide polymorphism.
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